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Our thanks are due to Mr. H. BRINKMAN for discussions on the subject,
and to Mr. G. G. ZAALBERG for assistance in carrying out the experimental
work. One of us (G. O. L.) is indebted to the Royal Commission for the
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Hydrodynamics. — On the application of statistical mechanics to the
theory of turbulent fluid motion. V.') By ]. M. BURGERS.
(Mededeeling N°. 26 uit het Laboratorium voor Aero- en
Hydrodynamica der Technische Hoogeschool te Delft).

(Communicated at the meeting of April 29, 1933).

4. Application of the normal functions obtained from equation (19) to
the reduction of the exponent occurring in the distribution function (12).

We proceed with the investigation of the statistical distribution of the
relative motion and shall introduce the development of the stream function
w of an arbitrary mode of relative motion (which satisfies the boundary
conditions) according to the system of normal functions deduced from
eq. (19).

It must be borne in mind that with the normalizing conditions assumed
in § 3 the characteristic values of the parameter .1 all will be positive,
provided that a is positive. It is convenient to adhere to the restriction
of a to positive values, and to the type of functions obtained in § 3,
but in the development of the stream function also terms will occur in
which the sign of a is reversed (that is to say terms representing functions
which are the symmetrical ones — with respect to the line x=0 — of
those obtained before). As moreover both types of terms may have
arbitrary phases with respect to x, we must expect that any stream
function y will be built up from an aggregate of terms of the form:

a (1 cos ax + yu sin ax) + b (— y1sin ax + i cos ax) + { (25)
~+ ¢ (s cos ax — yur sin ax) + d (y; sin ax + yi cos ax) y o

It is convenient to introduce complex quantities, and so we assume
that the stream function v, of the mode of relative motion numbered
m can be represented by the expression:

Ym =% Zk' { e~ (Aue Lak + B ak 2at) + € (Auk Yok + Bk 1)} . . (26)

where Aw — AL +i AL, A= AL —i AL, etc. Any mode of relative
motion is now specified by the values of the A's and B's, and in cal-
culating statistical mean values the summation with respect to the number
m (i.e. the summation over the “-space’’) can be replaced by an inte-

1) Part IV has appeared in these Proceedings, 36, p. 276, 1933.
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gration over all the A's and B's!). — In formula (26) the normal func-

tions have been denoted by yu, etc. in order to mark their dependence

upon the parameter a; likewise we write A for the characteristic num-

bers corresponding to a given value of a. The summation with respect

to a properly speaking must be replaced by an integration; for simpli-

city of writing we provisionally keep to the notation used above.
From (26) we deduce:

- _l;T.U_, = ; ﬁ; a [(Aak /—xal - Eak Bc(l) (xlak ,‘:(Tzl — Nak Z_Ial) "}‘ ( ) (27)
+ Ak Bxl (Z,ak Kal — Xak X,al) == /_\uk Bal (x/ak X-al = 20(/: ;,,al) ] S

= I _ _ . . ~

2= 2/;1 [ (Aak Aar -+ Bak Bat) (tar — @? yor) (toar — @? et) + )

+ Ak But (fak — 02 ai) (xar — @2 yar) + S .- (28)
+ Auk But (tax — @ 2a) (Xat — @* 1)
from which the following expressions for the integrals are obtained:

o Pl 5 5, Au — BuB.
_fdy uv dy— 2R i a (Aak Aak Bak Buk) o e e (29)

jdyi:%Za’Aak(AakZak—}-B,kBak) .. . . (30)
[y ok

Here use is made of equations (21) — (24) and of two other orthogo-
nality relations:

odi,, ,
dedy(ka—xkxf)zo. v ow o o ow ow (31)

fdy(x;[—a’x,,)(x}'——azx,):o B )|

which latter (together with the equations obtained by changing every
z into its conjugate complex) are valid for all values of k and [, the
case k =1 included.

Consequently the exponent occurring in the distribution function (12)
assumes the form:

- ﬂ > a? gAak Kuk (Aotk —1) + BatkEuk (Avxk + 1)} P (33)
2R ok

The distribution function can have a meaning only if it remains finite

1) As the Auk are complex quantities the integration with respect to Aak in reality stands
for an integration with respect to the two real variables Aik and A",’k A similar remark

applies to the Buk.
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for all values (finite or infinite) of the variables. This requires that all
characteristic numbers . shall be greater than unity, and thusimposes
a certain condition on the function 1. If the condition is fulfilled we can
calculate the statistical mean value Tof any quantity f depending on the
A’'s and B’s, by means of the formula:

=) [(Em) . . . . (34)

where — as mentioned before — the summation with respect to m can
be replaced by an integration over all the A's and B's.

5. Introduction of a special function A.

In the theories developed by PRANDTL and by VON KARMAN much
attention is given to considerations of similarity, and one of the ques-
tions which have arisen in this connection is, whether in some region in
the neighbourhood of the wall the relative motions for various distances
from the wall may be considered as similar, the scale being proportional
to the distance. It seems possible to introduce an analogous consideration
into the problem we are treating here, and it may be asked whether
there may exist a certain similarity amongst the normal functions yax.
As the scale in the direction of the coordinate x is determined by the
parameter a, it may be asked if, for any given value of the number k,
the functions y«x might be functions of a single variable &é=a(y + %)
(in the following lines we shall write 7 in stead of y + 4 for the dis-
tance from the wall at y — — }). As the presence of the other wall at
y—=-+ 4 disturbs the similarity, we shall provisionally assume that the
other wall is situated at a very large distance, so that, if it may happen
that we find functions y.x which decrease sufficiently fastly for large
values of £, the presence of this second wall may be without appre-
ciable influence upon them.

If we consider y as a function of £, the differential equation (19), after
division by a*, takes the form:

4 2
diy 1 didy 1 dl):o (35)

d?y .
dE‘_2d§2+x_lR‘l(a23f/dE 20 dnt”

It is easily seen that « and 7 will disappear as separate variables
form this equation, if we assume that d1/dy is proportional to 152 It
is convenient to write:

di b

dy = Ry (36)
The constant b must be positive. In fact the expression can be applied

in the neighbourhood of the wall 4 =0 (y = — 1) only, and it is evident

that the statistical mean value of —u’ v’ must be positive here. From
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(12) it will be seen that a positive statistical mean value of this quantity
is to be expected only if d1/dy is positive.
Integrating (36) with respect to n, we obtain:

A=constant —b|/Ry . . . . . . . (37)

This expression, however, will violate the condition =0 for =20
(y = — %) we have assumed in § 2. In order to amend this point we
must assume that for very small values of %, say for y < ¢, the function
di/dy deviates from the course indicated by (36). This assumption, of
course, is at variance with the similarity hypothesis; however, if we
might suppose that the distance 0 is sufficiently small, the similarity could
be preserved approximately for values of 4 sufficiently surpassing 6. Such
a case does not seem improbable; in fact an assumption of the same
kind must be introduced by PRANDTL, as otherwise it would not be
possible to understand how the constant a in eq. (**) of § 1 could take

a definite value. — In order to fix the ideas we might assume f.i. that
for 5 < d the function di/dy has the constant value:

di b

dn —R& (38)

For abbreviation we write b A —=p. With £ everywhere as the inde-
pendent variable, and using primes, etc. to denote derivatives with
respect to &, we now arrive at the following differential equations for

the function y:
(a) in the domain £ <{ad:

Z'V—ZX”‘FX—(’;%#Z':O. .0 .. (39a3)

(b) in the domain & >ad:
x'V—Zx”+x—ip(§2—§>:o. . . . (39b)

Equation (39a) can be solved by means of functions of the type e™*,
m being one of the four roots of an equation of the fourth degree.
Hence the general solution for y in the domain £ < ad is of the form:

r=232B.,e™. . . . . . . . . (40

Equation (39b) can be reduced to a hypergeometric equation, which
will be investigated in the next §.

6. Investigation of equation (39b).
In (39b) we write y —=~&y,., and multiply by &; this gives:

E (" — 225 + ) + 45y — 1) —ipx,=0 . . . . (41)
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This equation can be transformed by LAPLACE's method, if we put:

x(,:fdgef:w(z:). R 70

{ being an auxiliary variable. Then w must satisfy the equation of the
second order:

d2w+ 4¢ dw ip{

=0 . . . . . (43

I T T |
while besides it must be ensured that the value of the expression:
dw
£3 (72 — 1)2 s, e
s 1)(w§ dc)' L )

shall be the same at both ends of the path of integration.
Equation (43) is a hypergeometric equation, having the singular points
(all being regular):

{=—1 with exponents: a, =§(—1—r+is)a,=4(—1+r—is)
C:+l ” " :ﬂ,:%;(—l—r—is),ﬂz———%(—l-}—r—l—is)
C:m ” ” : Y|:3 ,}’2:0.

Here we have written V1 + ip—=r-is etc.; p is a real and positive

quantity, and we take r and s to be positive. — The function w thus
can be defined by the scheme !):

—1 41 o
w=D<( a B 3 ¢
az B2 0

In order to obtain an integral for y that does not become infinite for
infinite values of & (which by nature is always real and positive), we
must take the path of integration in such a way that the real part
of ¢ is always negative. This brings us to the path A BCD E; this

Baolase

path at the same time ensures that the expression (44) shall vanish at

both ends.

!) See fi. E. T. WHITTAKER and G. N. WATSON, A course of modern analysis
(Cambridge), § 10.7 and Chap. XIV.
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In the vicinity of the point { — — 1 two linearly independent solutions
of (43) are given by the following expressions, F being the symbol for
the hypergeometric series:

w,—=t" F(—1—r,—14is,1—r+is;t) . . (45a)
w,=t" F(—1+4+r,—1—is,14+r—is; ) . . (45b)

Here ¢ has been written for ({4 1)/(( — 1); the series converge for
all values of t satisfying |¢' << 1, that is for all values of { having their

real part negative or zero. For |t| <1 the expression (45a) may be re-
placed by:

wy=t (1 —t)FQRQ—r,2+4+is, 1 —r+is; ). . . (450)

It is also possible to write down two solutions, valid in the vicinity of
{ = oo; one of them is given by the series:

w=t(1—P*FQ2—r2+is,4;1—¢) . . . (46a)
while the other is of the form:
wp—=wilg(l—04+co+ca(l—8+c;(1—82+4.... . (46b)

These expressions are convergent for |1 —¢| <1, the first one at any
rate also for |1 —¢|=1.

The functions w,, w, are connected with the functions w;, wy by
linear relations, which will be introduced subsequently. — In the special
case when r is an integer _ 2, the series defined by (45a) and (45¢) and
the one defined by (46a) break off, and reduce to polynomials. The func-
tion w, then is regular at t—=1 ([ = o) and is equal to w; multiplied
by a constant factor.

Boundary conditions. — If we take w in the form A, w, + A, w,,
we obtain:

x:zE‘JdCe“(A,w,—i—Azwz). N

There now are altogether six constants in our solution (B,, B,, B, By,
A,, A,), which must be determined in such a way that y =" =0 for
&£=0, while y, x’, ¥/, ¥’/ must be continuous at £ —=ad. Consequently
there are also six homogeneous equations of the first degree for the six
constants, and solutions different from zero can be obtained only if the
determinant of the system vanishes. We shall not, however, try to develop
an expression of this determinant for arbitrary values of d, as this would
require the evaluation of complicated integrals etc., but will turn at once
to the case that 6 becomes vanishingly small.
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In that case the conditions y—=%"—0 for £ =0 can be applied at
once to the expression (47), and lead to the equations:!)

ltmj dl e {(A, wy + Ay wy))=finite . . . . (48)

limfd&'e“(A,w,-{—Azwz):O. R € 3]
§=0

In the general case, r not being an integer, w, and w, assume con-
stant values for { — — oo. If these values are denoted by a,, a, respec-
tively for the case arg ({ + 1) = — @, arg t =0, which are the values that
can be assigned to the arguments along the part A B of the path of
integration, then for the case arg ({ + 1)= + n, arg t = 2a (which takes
place along the part D E of the path of integration) the limiting values
become: e¥"i* a,, e*** a,. Hence it will be seen that the condition (48)
can be fulfilled only if:

Aja (1—e*™4) 4 Aya, (1 —e¥ ) =0 . . . . (50

It will appear from the results obtained below that this is also sufficient.

Investigation of the condition (49). — We begin with the parts of the
integral relating to A B and D E, which can be combined into the
expression :

lEim ‘J di et [A wy (1 —e¥ )+ A, w, (1 —e¥™i)] . . (51)
:0
A

to be taken, as indicated, along A B.
We now put:

w,—aw; +bwy, w,—mcwrt+dwy . . . . (52

the arguments of {4+ 1 and of ¢ in the points of A B being as defined
above. Making { = — o (f=1), and having regard to the expressions

1) Objections perhaps might be raised against the procedure of applying the conditions
% (0) = »'(0) =0 to the expression (47), as the point ¢ =0 is a singular point of eq. (39b).
The same results, however, can be obtained in the following way: A finite value of o
is taken, and the equations expressing the continuity of ¥, »', x"', " at § = «o are written
out in full. Then the exponential functions occurring in (40) are developed according to
powers of d; certain combinations of terms obtained in this way cancel in consequence
of the relations £ By = x my B» =0, which must be fulfilled in order that (40) satisfies the
conditions at § =0. Then a comparison is made of the terms of the lowest orders in &
on both sides of the equations. If now ¢ is made to decrease to zero, it is found that
independently of the values of the B: the system of equations leads to certain relations
between A; and A;, viz. to eq. (50), which is equivalent with (48), and to eq. (49).

It may be remarked that also in the case of a finite value of « the system of normal
functions obtained for the case ¢ —>0 can be used for the reduction of the integrals
occurring in the distribution function, though the formulae will differ slightly from those
deduced in § 4. We hope to come back to this point in a future paper.
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(46a), (46b), we find: a, = b c,, a, =d c,. Hence if the relations (52) are
substituted into the integral (51), it is found that the terms depending
on wy cancel in consequence of (50). The integral thus contains w; only,
and as w; is of the order {3 for { — oo, it is convergent also when £
is replaced by zero. The integral takes the form:

B
A,(a—cay/ay) (1 — e¥"m) f dl wy.
A

By comparing the values of the various solutions for ¢#—0 and also
for t=1, we obtain: a—ca,/a,—=1/F,, where F, has been written
for F(2—r,241is,4; 1). We further introduce the expression (46a) for
wy into the integral and put: 1—=1—¢—=—2/((—1), so that d{=2dr/7%
In this way the integral to be evaluated becomes:

1—o

yhﬂ—émofddhﬂ%rFQ—n2+mAﬂL . (53)
0

F,

o being the value of ¢ at the point B. Replacing the factor z before the
function F by 1 — (1 — 1), it is required to calculate'):

1—0o 1—0
wa—ﬂ%F—fdﬂhﬂwﬂE
° 0

We begin with the first integral. To abbreviate we write: F—=X3 f, 1" .
Then we make use of the equation ?):

1—o

= (deg—op o=t [aea— e,
‘0 K

I'(a, + h+2) 1—

where the circuit denoted by K is defined by the formula: r—=1—ge'?®
6/ moving from 0 to 27. We expand (1 —oe'%)" according to powers
of o by means of the binomial theorem; in this expansion it is sufficient
to retain such terms o" only, as leave the real part of a +n—=
=n—+4(r+ 1) + }is negative, as the other terms may be made arbi-
trarily small by taking o sufficiently near to zero. In this way we find:

['(al+1) I'h+1) r7m (— 1) hlgntn+l

I'e, +h+2)  Sola+ntl)nl(h—n)l’

1;,:

where m is the greatest integer contained in 4 (r 4 1).

1) For the evaluation of the integral (53) I am indebted to the very valuable help of
Dr. S. C. VAN VEEN at Dordrecht, and it is a pleasure for me to express my gratitude
towards him also at this place.

2) This equation is obtained by a process similar to that used by WHITTAKER and
WATSON, lc., § 12.43.
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The integral to be calculated now is given by the sum'): 3 fi I, .
h

Taking the first term of I, , it appears that the sum:

. I'(a, +1)I'(h+ 1)
=+ ht2)
can be transformed in such a way, that it takes the form of a hyper-
geometric series in which the independent variable has the value unity,
together with some additional terms; the series can be summed by a
known formula, so that F* can be reduced to a relatively simple ex-
pression. — On the other hand it can be shown that for any value of
n<r:

(— 1)" gatntl . h! g tntl

(a,—l—n—f-l)n!%fh(h—n).’:

where the g. are the coefficients of the hypergeometric series
F2Q—r2+is,1—r+is;x).

A similar process can be carried out with the second integral, and in
this way it is found that the original integral occurring in (53) can be
transformed into an expression of the form:

1‘—7 , " . gtatntl g tnt2
.Idr(l—v)er_(F —F )—F,ggn(al+n+1—al+n+2). (54)
0

By means of some further transformations the difference (F* — F**)
can be brought into the following form:

g os = (r+is)
F*_Fﬁ*:_ 2;* 3 ,—3—— —+— 1 % . . . (55)
p (cosé(r——is) 5

It remains to consider the part of the integral (49) relating to the
circuit BC D. Here we may put at once &£—=—0. Further, as the real
part of a, is positive, the contribution of w, into the integral can be
made as small as we please by diminishing o; hence it is sufficient to

consider : A,‘J d¢ w,. For the function w, the expression (45c) will be

taken; upon integrating by terms it is found that the same series appears
as occurred in (54).

Having regard to the constant factors before the integrals, it is easily
seen that upon adding together the various terms, these series cancel in

1) The series F=x fn th is uniformly convergent in the domain 0 =:=1 — ¢ and
so term by term integration is allowed.
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the final result, and thus equation (49) takes the form !):

7
cos —(r+is) )
. ‘;)82 ?Il (1 — e2ia) 2— +1 =0 . . . (56)

cos ; (r—1is)

Characteristic values of the parameter p. — The characteristic values
of p are determined by the condition that the coefficient of A, in (56)
shall vanish. This condition reduces to the equation?):

T (t—is)=0,

cos ; (r +1is) + cos-

N

having the roots: r=1, 3, 5,.... or, in general: r=2k 41, k being
an integer. As: 1+ ip—=(r+1is)% it is found that the values of p are
given by the expression :

p=4Q2k+ 1)V K2+ k.
The case k=0 (r=1) must be excluded, as p must be greater than zero.

(To be continued).

1) In connection with the expression obtained for Ir and with the calculation of ¥ fu In
it may be remarked that it has not been proved that the whole sum of the neglected
terms vanishes for 6 =0 in such a way that the summation with respect to h can be
executed absolutely safely. However, as Dr. VAN VEEN has pointed out to me, any
difficulties arising from this circumstance can be obviated, by considering first the integrals
for the case that r is a positive number included between the limits ¢+, and 1 — ¢, (¢, and
¢, being arbitrary positive numbers <1/;). In that case the real parts of both «; and «;
are > — 1, and the integrals of both w; and w; along the circuit BCD can be discarded,
and also the integral along the circuit K occurring in the expression for In, so that
the additional terms in the result for I» are got rid of. By means of the theory of
analytic continuation it then can be shown that the final result obtained for the integral
(49) remains valid for all cases provided r > — 2.

2) The factor 1/F; has the value: 2+ r¢)1rr(2—is)/6r(r—is).

Astronomy. — Mittlere Lichtkurven von langperiodischen Veridnderlichen.

XIII. R Arietis. Von A. A. NIJLAND.
(Communicated at the meeting of April 29, 1933).

Instrumente: S und R. Die Beobachtungen wurden alle auf R reduziert :
die Reduktion R—S betragt —0™.19. Spektrum M3e (Harv. Ann. 79, 164).
Der Stern ist von Anfang April bis Anfang Juni nicht beobachtbar : die
letzte Beobachtung im Friihjahr erhielt ich am 3. April, die erste Sommer-
beobachtung am 5. Juni. Es konnten mehrere Minima und Maxima ent-



