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has a sharp maximum. The fact that the angle between the two branches 
of the isopycnals becomes very much sharper means th at the phenomenon 
of maximum density becomes much more striking at higher pressures. In 
connection with this it will be interesting to investigate the course of the 
isopycnals in the solid state I ) . Especially also the properties of the point 
where the lambda-curve meets the melting curve deserves attention. It is to 
be expected that these properties will have many points in common with 
those of the lambdapoint in the saturated vapour pressure curve 2). 

At the lower temperatures the isopycnals of helium 11 become more and 
more horizontal. This is in harmony with what NERNST's heat theorem 
leads us to expect. It is a question wh ether the isopycnals at lower tempe
ratures than those at which we experimented still have a flat maximum. so 
that the expansion coefficient changes its sign. The course of the isopyc
nals as far as measured does not make this probable. 

I) In the experiments dealt with in this paper we did not go so faro as we preferred 
not to bloek the eapillaries leading to and from the piezometer by solid helium. 

2) Cr. W . H . KEESOM. Comm. Leiden Suppl. NO. 71e § I, and Suppl. NO. 71d § 3. 

Hydrodynarnics. On the application of statistical mechanics to 
the theory of turbulent {luid motion. VI. 1) By J. M. BURGERS. 

(Mededeeling No. 26 uit het Laboratorium voor Aero- en Hydro
dynamica der Technische Hoogeschool te Delft.) 

(Communicated at the meeting of M a y 27. 1933) . 

7. General remarks concerning the application of the formulae obtained. 
The results of the foregoing section may be summarized as follows: 

It has been shown that for a special choice of the function ), a set of 
functions X a. k can be obtained. which enable us to develop the stream 
function lP of the relative motion into an expression of the type (26), 
while at the same time the exponent of the distribution function (12) is 
transformed into a homogeneous quadratic function of the coefficients A 
and B. If the choice of À is taken for granted. and if provisionally it is 
assumed that the constant f3 occurring in the exponent be known. then 
it will be c1ear that - apart from difficulties connected with the numerical 
evaluation of integrals. etc. - it is possible to calculate the statistical 

mean values of quantities of the type A "'k A"'l etc. Further. having regard 
to equations (27) and (28). it must be possible to write down expressions 

;---"1 ......., 

for - u' v' and for z as functions of the coordinate 1] (or of y). 

I) Part V has appeared in these Proee~dings. 36. p. 390. 1933. 

31 * 
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Before starting with such calculations it will be useful to sketch in general 
terms the way in which it was intended to apply the results in order 
to work out the ideas indicated roughly in § 11 of Part 111. It must be 
stated on ce more. ho wever. that a1l considerations introduced have been 
tentative and provisional in character. and it will appear that several 
of the formulae arrived at do not seem very promising. The greatest diffi~ 
culty in this respect is that the integral (30) apparently does not converge. 
as wi1l be seen in § 10. 

According to the programme drawn up in § 2 of Part IV. À was meant 
to represent an unknown function. which ought to be determined in su eh 

r--; ........ 

a way. that the results to be obtained for - u'v' and for U should 
fulfill eq. (4). As the rigorous observation of th is condition probably 
will lead to a functional equation of a rather hopeless type. it may be 
investigated whether an approximate fulfilment of eq . (4) can be obtained 
with a properly choosen function )" the degree of approximation depen~ 
ding upon the number of adjustable parameters that might be introduced 
into th is function . In this train of thought the function defined by eq. 
(36) had been taken. as it promised some simplification in the treatment 
of the equations. In this function the parameter b is undetermined. while 
also a certain freedom had been left with regard to the course of dÀ /dy 
in the neighbourhood of the wal Is. 

r--; 

N ow although material has been prepared for the calculation of - u' v'. 
no definite statement has yet been made concerning the problem presen~ 

ted by the determination of fl. According to the general idea put forth 
in § 11 of Part 11 l. the distribution of the mean motion over a section 
of the channel also must come out as a result of the statistical formulae. 
in a similar manner as it was the case with the distribution of the rela~ 
tive motion . In fact the point of view accepted l.c. was that the statis~ 
tical considerations should be applied to the actual matian (i.e. the sum 
of the relative motion and the mean motion). which actual motion is 
described by a stream function IJl. Now the coordinates to be introduced 
inta the generalized space in which the function IJ' is represented (in 
§ 11 this space had been called the .. ~ . 7J~space" ). can be divided into 
two groups. One group is formed by the A' s and B' s used in describing 
the stream function tp of the relative motion. that are a1l those coordi~ 
nates which give ri se to zero mean values of IJ' (taken with respect to x) . 
The second group on the other hand must describe the distribution of 

the mean values IJ' as a function of y. This second group of coordinates 
can be considered as being "orthogonal" to the coordinates of the first 
group. in consequence of the circumstance that the exponent of the 

distribution function (10) could be divided into two parts. one part 
depending exclusively on the mean motion. the other part depending 
exclusively on the relative motion. It thus will be in line with our pro~ 
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gramme if we try to obtain the statistical mean value of U from an 
investigation of the distribution function : 

(57) 

This function can be considered as representing the quotient of the 
original distribution function (10) and the distribution function (12) of 
the relative motion. Hence we arrive at the conclusion that every func-

tion À that might be choosen will determine a certain function U. 
In working out this idea we are confronted with a certain difficulty 

relating to the choice and the number of the coordinates that shall des

cribe the course of the function 'P, especially as their number, or rather 
their "spacing", in some way must bear arelation to the "spacing" of 
the coordinates used to describe lp. Moreover as the exponent of the 
function (57) is not homogeneous with respect to U, it does not give 
rise to a variational problem from which a system of normal functions 
can be deduced. However, we may try whether a simple Fourier ex
pansion of the type: 

'1' = I U n sin (2n + I) 7l Y (58) 

may be used . The form of this expression ensures that à 'Pfày shall be 

zero at the walls of the channel. In order that the value of 'P itself 
shall be ± t at the walls a certain relation must exist between the 
coefficients U n , which can be easily written down. - Now let us put: 

À = I Àn cos (2n + I) 7l Y . (59) 

which expression makes À = 0 at the walls. There will exist also a cer
tain relation between the coefficients Àn' on account of eq. (9) to which 
À is subjected. - IE (58) and (59) are introduced into (57) the statistical 
problem can be worked out. The result is : 

......., Àn 24 (-I)n 
U n 

- 271 (2n + l) + 7 (2n + 1)1 ' 

This leads to the following formula for dUf dy: 

dU _ 1 dÀ 6 
- - - - Y dy - 2 dy (60) 

This formula is substantially the same as the one obtained in § 4 of 
Part 11, and, as has been mentioned there, apparently leads to values 
which in the central part of the channel are much too high. Hence in 
this respect no improvement has been obtained in comparison with the 
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method of Parts land 11 I), while - as will be seen below - in another 
respect we have drifted away even farther from experimental values, as 

the magnitude of ifi / dy at the wall appears to surpass many times the 
estimate made formerly. 

Notwithstanding this result, let us proceed to see how it stands about 
the application of eq. (4) . This equation can be written: 

(ia) 

Integrating with respect to y we obtain : 

(61) 

N ow let us assume the course of dÀ / dy which is described by eq. (36) 
for the region (~ < IJ < i (i.e . - t + 15 < 1I < 0), and by eq. (3B) for the 
region in the immediate neighbourhood of the wall, while for positive 
values of y we simply change the sign of dJ, I dy . If À is found by 
an integration , th en eq . (9) leads to a connection between band 15 , 
which approximately works out to : d = 2b / R. So th ere is only one 
adaptable parameter in J, . Consequently, as the pressure drop 2C is still 
unknown, we can make eq. (61) fit at two points at most, and then shall 
obtain relations that determine both band C. Apparently it wil\ be 
convenient to take as one of these points the point : I) = 0 (y = - î), 

~ 

where we have - U I V I = 0 (as will be seen if it is remembered that 
Xak and dXa.k I d17 are zero for I) = 0). Eq. (60), when applied to the same 

point, gives us approximately : 1/ R . dU / dy = 11B b. and th us we obtain : 

C 2:- I /Bb (62) 

The second point will be taken at a di stance from the wall which is 
great compared with d, but still can be considered as small in comparison 

with the half breadth of the channel. Then we may neglect the con tri

bution of dU l dy into eq . (61). Further it will be seen in § 9 that in 
,--, 

this region an approximate expression can be deduced for - U I VI which 
is independent of 17. As the term 2 Cy in (61) for 17 < < t still may be 
replaced by - C, we obtain : 

,--, 
C ....... - U

l
[ ,' (for t » 1) » 15) •• (63) 

The right hand side of this equation is a function of band of (3. 

I) It thus appears thar the expecration expressed in § 11 of Part III in connection with 
eq . (77) of that paper comes out negati ve ly. 
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We thus have arrived at two equations bet ween the three constants 
C. b. (J. It remains to find a third equation. and it is evident that th is 
equation must be furnished by the dissipation condition. This condition 
is expressed by eq. (7); written explicitly it takes the form (af ter division 
by 2): 

(64) 

The first integral perhaps may be replaced by ,): 

'I, ,........, 

1 Jd (dU)l ~. 1 
R 17 dy = 24 b' 

o 

If this is taken for granted. it remains to calculate Idy":? This integral 

can be expressed as a sum with respect to the indices k and a. As has 
been mentioned. however. this sum does not converge. if the domain of 
both k and a is stretched out to infinity. Hence eq. (64) can be used 
only if the "spectrum" of norm al functions is cut olf in some way. It is 
possible that a limit for the index k will be imposed by the finite breadth 
of the channel (see below. § 8). but with a the matter is much more 
serious. 

We shall come back to this point in § 10. but first it will be indicated 
~ ,........, 

in which way expressions may be obtained for - u' v' and z. 

8. Data concerning the normal functions Xak . 
The results obtained in § 6 lead us to a system of normal functions 

defined by the formula: 

(65) 

where N k is a numerical constant. while Wk is the function denoted 
formerly by W[ and given by eq . (46a). for the case: p - - Pk = 
= 4 (2k + I) Vk2 +k. r = 2k + I. s = 2 V p + k. In this case the hyper
geometrie function reduces to a polynomial of degree 2k-l in I-t. 
The factor N k must be determined in such a way that the normalizing 
condition (23) shall be fulfilled with dl /dy given by (36) down to 17 =0; 
it is independent of a. 

In connection with the formula: P = b A it follows that the characteristic 
values of A are given by: 

(66) 

1) Thts point ought to be investigated with the aid of the distrihution function (57). 

(See a rernark in Part VII). 
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They are independent of a . The condition that all Ak shall be greater 
than unity (which condition was stated in § 4) requires b < PI ' As 
PI is about 17. this result. when taken in connection with eq. (62). leads 
to C > 0.0073. which is many times superior to experimental values. 

IE the polynomial for Wk is substituted into the integral (65). the 
integration of the separate terms leads to "confluent hypergeometrie 
functions" (see WHITTAKER and WATSON's Modern Analysis. Chap. 
XVI). We mention the asymptotie expansion for very great values of a1]: 

where: - al = (k + 1) - i V k2 + k. The first term of this series has its 
maximum for a1] = k + 1. Unfortunately for this value of a1] the asymp
totie expansion becomes nearly useless . If notwithstanding this circumstance 
we consider this first term in order to have a very coarse image of the 
function XIXko it is found that for great values of k this term may be 
roughly approximated by the following expression : 

(IX '- ')' 

XIXk "'W ce - 2k (cos a1]' - i sin a1]') . (68) 

a1]' being written for a1] - k. while c is a constant. This expression can 
be separated into its real and imaginary parts; if these parts are 
substituted into formula (i 4) the stream function of the mode of relative 
motion corresponding to XIXk is found to be : 

(IX'''')' 

V'IXk ~ ce - 2k cos (ax + a1] + const.) . (69) 

If the expression (68) is applied to the calculation of the integrals (23) 
and (24). it is found that the proper value of A does not come out: 
a value about half the true one is obtained. Still it may be supposed 
that some features indieated by formula (69) are not far from the truth. 

I 
? m , 1 
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viz. that the mode of motion corresponding to r.."k consists of a system 
of skew vortices. having their centers upon the line: 17 = k la; the dimen~ 
si ons in the direction of x being :Tl /a = m7/k. while the dim en si ons in 

the direction of 17 are of the order 2 Vk/a = 2/I IV k (compare theaccom~ 
panying sketch) I). 

If a is increased while k is kept constant. the dim en si ons of the system 
are diminished proportionally. On the other hand. if. for a constant a. 
the value of k is increased. the system moves outwards. Clearly this 
cannot go on indefinitely. on account of the presence of the second 
wall at 17 = I. Hence we are led to the supposition that k cannot 
increase beyond a certain amount of the order of a . An exact expression 
for this limit cannot be obtained from our calculations. as in the function 
l that has been used no account is taken of the presence of th is second 
wall. The point. however. is of importance in connection with what 
has been mentioned at the end of § 7. (An investigation of the 
character of the norm al functions for a modified form of dJ. ldy. which 
should change sign at 17 = t (y = 0). might be of interest). 

r-, 

9. Calculation of - u' v' and '7 for values of 17 greatly surpassing b. 
,--, ,........, 

The values of - u' v' and z are obtained from egs. (27) and (28) if for 

A "k A ",! etc. the statistical mean va lues are substituted . The way in 
which these statistical mean values can be calculated has been sketched 
in § -4 for the case that normal functions exactly corresponding to the 
course assumed for the function l have been obtained. Now actually 
we have calculated a system of normal functions for a course of dl ldy 
described by eg . (36) right down to 17 = O. If we adhere to this system 
of normal functions. and nevertheless at the same time wish to introduce 
the course of dl/dy which is determined by egs. (36) and (38) taken 
conjointly. then it wiJl be c1ear that the integrals (21). (23). (31) no 
longer wiJl have the values indicated before. Without going into the 
details of the calculation we may suppose that certain corrections must 
be added to the right hand sides of these eguations. Then the distri~ 

bution function wiJl not have the form given by eg. (33). but wiJl 
contain certain additional terms. depending on these corrections. 

However. if we restrict ourselves to values of 17 that are great com~ 
pared with b. then. judging by what has been found in the foregoing §. 
it may be assumed that those functions r.."k which materially contribute 

r-, ,........, 

in the value of - u' v' or of z. will be very small in the narrow region 
where dJ.. / dy is given by eg. (38) (it wiJl be remembered that the width 
b of this region. according to what has been deduced in § 7. is of the 

1) It is probable that a more accurate calculation will show that the slope of the 
vortices is not equal to 45° as would follow from eq. (69). 
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order b! R). Hence for these functions we may neglect the corrections 
in the integrals (21) etc. and keep to the expression (33) for the distri
bution function . From th is expression the following results are obtained 
for the statistical mean values : 

...-------, 2R - 2R ~ 
A Clk A Clk = f3 a 3 (A k-l)' Bak B Clk = 7f a 3 (A k+ 1) 

A Cl k A ClI = B Clk BrJ.1 = A Clk lt, = 0 . 

(70) 

Substituting these into (27) we have : 

(71) 

In order to carry out the summation with respect to a in (71). we 
avail ourselves of the remark made in § 4 that this summation properly 
speaking ought to be replaced by an integration . The transition from a 
sum to an integral can be etfected if we assume that the (constant) 
interval between the values of a in the sum is given by a certain num-

ber fJ. Then it is allowed to write : 2 ( .. .. ) ~ l ! fJ. ( da ( ... . ) 1). 
Cl • 

Further by making use of eq. (65) it can be shown that the expression 

i (x'ak XClk - XClk X'ak) is of the form : a l b. 6 (a 17). Hence eq. (71) may be 
written: 

Now the integral J daa fk (a 1] ) - which appears to be convergent -

o 
yields a number. say Ok. which is independent of 1]. Thus we find (with 

Ak = Pk / b): 

(72) 

The numbers Ok have not been calculated. as this required the evalu
ation of certain rather complicated integrals; these integrals. however. 
can be expressed in the form of a series. and thus a numerical evaluation. 

1) The introduction of (I does not bring a new unknown constant into the problem, as 
it will appear that in all further equations only the combmation (l () occurs. 
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though laborious. will be possible. I t is probable that the sum with 
respect to k is convergent. If b should prove to be nearly equal to PI 
(it must be < PI)' the first term of. the sum wil! be far more important 
than the rest. 

r---"1 

The result that the value of - u' v' is independent of 1) applies only 
to a domain of values of 1] satisfying the conditions : 1- > > ') > > Ö. In this 
domain the shearing force acting in layers parallel to the x -axis is still 
substantially equal to the value at the wall itself. which value in our 
system of non dimensional variables is given by the constant C . -

A similar calculation carried out starting from eq. (28) leads to the 

result that --; must be proportional to 1]-2. though the nature of the factor 
has not been investigated. 

'/., 

10. The expression {or ( d1) 7. 
o 

As we have found that '; is proportional to 17- 2 for 1) > > Ö. it may 
be expected that in th is integral the upper limit of 1] may be replaced 
by 00 without great error. 

The values of the integrals (22). (24). (32) are not affected by the 
course assumed for the function J.. Hence eq . (30) must remain true also 
if dJ. ! dg is determined by eqs. (36) and (38) taken conjointly. 

If in eq. (30) we substitute the approximate values of A Clk A Clk etc. as 
given in (70). we find : 

00 2 

J ~ 2R Ak 2RJ d1] Z ':""' - I - 2- -- ........ - d a I 
{J Clk Ak - 1 {J () k 

(73) 

o 

This expression is divergent - both with respect to k and with 
respect to a. The summation with respect to k probably may be limited. 
as has been indicated. the number of terms being of the order a. But 
at the present moment I do not see from where a limit for a might 
arise. 

It is true that the approximations (72) are not valid for modes of 
relative motion which wholly. o~ at least for the greater part. fall into 
the reg ion defined by 1] <~. But as far as I can see an exact calculation 

will not give values for A Clk A "k etc. which decrease sufficiently fastly 
in order to make the integration with respect to a convergent. This 
may be inferred al ready from the general formulae of § 4. Suppose that 
the exact system of normal functions has been determined corresponding 
to the precise course of the function dJ. 1 dg. with all modifications in 



496 

this function that might have been considered appropriate. In that case 
formulae (29), (30) and (33) are exact and we should obtain: 

(74) 

It thus would appear that the dissipation for every separate mode 
of relative motion approaches to the constant limiting value R fJ (it may 
be supposed that also in the general case the characteristic values 
A"k soon will become great in comparison with unity) I). Hence the 

total dissipation threatens to become infinite, unless a limit can be found 
to the system of modes of motion. Although the discussion of the 
properties of the system of normal functions determined by eq. (19) 
with an arbitrary form of dÀ /dy will be necessary to settIe such a 
point, I cannot find any indication of such a limit. 

Perhaps there may be a limit to a of the order of magnitude of 1115 
(i.e. of R). If such a limit is assumed artificially, then an estimate of the 
integral for the dissipation could be made, and the third equation be
tween the constants C, b, fJ (or rather, fJ 8) might be written down. 

I must leave the problem at this point, the main object of the 
foregoing lines having been to give a somewhat more detailed view 
of the ideas which in a rather crude form had been indicated al ready 
formerly. A few additional remarks will be made in a concluding paper, 
in which it will be tried moreover to apply the statistical method to an 
imaginary mechanical problem, of a simpIer character than that presented 
by the motion of a fluid. as this per ha ps may afford an easier basis 
for a criticism of the method. 

I) The expression (74) actually gives the dissipation for two modes of relative motion. 
one of which is of the nature indicated by eq . (69). while the other is obtained by 
changing x into - x in this expression. In those cases where .I " k does not differ much 
from unity. the former of these is much stronger than the second one; if .I"k is very 
great, the intensities of the two become nearly equal. 


