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has a sharp maximum. The fact that the angle between the two branches
of the isopycnals becomes very much sharper means that the phenomenon
of maximum density becomes much more striking at higher pressures. In
connection with this it will be interesting to investigate the course of the
isopycnals in the solid state !). Especially also the properties of the point
where the lambda-curve meets the melting curve deserves attention. It is to
be expected that these properties will have many points in common with
those of the lambdapoint in the saturated vapour pressure curve2),

At the lower temperatures the isopycnals of helium II become more and
more horizontal. This is in harmony with what NERNST's heat theorem
leads us to expect. It is a question whether the isopycnals at lower tempe-
ratures than those at which we experimented still have a flat maximum, so
that the expansion coefficient changes its sign. The course of the isopyc-
nals as far as measured does not make this probable.

1) In the experiments dealt with in this paper we did not go so far, as we preferred
not to block the capillaries leading to and from the piezometer by solid helium.
2) Cf. W. H. KEEsoM, Comm. Leiden Suppl. NO. 71e § 1, and Suppl. N, 71d § 3.

Hydrodynamics. — On the application of statistical mechanics to
the theory of turbulent fluid motion. VI.!) By ]J. M. BURGERS.
(Mededeeling No. 26 uit het Laboratorium voor Aero- en Hydro-
dynamica der Technische Hoogeschool te Delft.)

(Communicated at the meeting of May 27, 1933).

7. General remarks concerning the application of the formulae obtained.

The results of the foregoing section may be summarized as follows:
It has been shown that for a special choice of the function 1 a set of
functions y.x can be obtained, which enable us to develop the stream
function  of the relative motion into an expression of the type (26),
while at the same time the exponent of the distribution function (12) is
transformed into a homogeneous quadratic function of the coefficients A
and B. If the choice of 1 is taken for granted, and if provisionally it is
assumed that the constant f occurring in the exponent be known, then
it will be clear that — apart from difficulties connected with the numerical
evaluation of integrals, etc. — it is possible to calculate the statistical
mean values of quantities of the type A.x A etc. Further, having regard
to equations (27) and (28), it must be possible to write down expressions

| — —
for —u’v’ and for z as functions of the coordinate % (or of y).

1) Part V has appeared in these Proceedings, 36, p. 390, 1933.
31
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Before starting with such calculations it will be useful to sketch in general
terms the way in which it was intended to apply the results in order
to work out the ideas indicated roughly in § 11 of Part III. It must be
stated once more, however, that all considerations introduced have been
tentative and provisional in character, and it will appear that several
of the formulae arrived at do not seem very promising. The greatest diffi-
culty in this respect is that the integral (30) apparently does not converge,
as will be seen in § 10.

According to the programme drawn up in §2 of Part IV, 1 was meant
to represent an unknown function, which ought to be determined in such

— —
a way, that the results to be obtained for — u’v’ and for U should
fulfill eq. (4). As the rigorous observation of this condition probably
will lead to a functional equation of a rather hopeless type, it may be
investigated whether an approximate fulfilment of eq. (4) can be obtained
with a properly choosen function 4, the degree of approximation depen-
ding upon the number of adjustable parameters that might be introduced
into this function. In this train of thought the function defined by eq.
(36) had been taken, as it promised some simplification in the treatment
of the equations. In this function the parameter b is undetermined, while
also a certain freedom had been left with regard to the course of di/dy
in the neighbourhood of the walls.

/
Now although material has been prepared for the calculation of — u'v’,
no definite statement has yet been made concerning the problem presen-

ted by the determination of u. According to the general idea put forth
in § 11 of Part IIi, the distribution of the mean motion over a section
of the channel also must come out as a result of the statistical formulae,
in a similar manner as it was the case with the distribution of the rela-
tive motion. In fact the point of view accepted l.c. was that the statis-
tical considerations should be applied to the actual motion (i.e. the sum
of the relative motion and the mean motion), which actual motion is
described by a stream function ¥. Now the coordinates to be introduced
into the generalized space in which the function ¥ is represented (in
§ 11 this space had been called the *“&, p-space’), can be divided into
two groups. One group is formed by the A’'s and B's used in describing
the stream function y of the relative motion, that are all those coordi-
nates which give rise to zero mean values of ¥ (taken with respect to x).
The second group on the other hand must describe the distribution of
the mean values ¥ as a function of y. This second group of coordinates
can be considered as being “orthogonal” to the coordinates of the first
group, in consequence of the circumstance that the exponent of the
distribution function (10) could be divided into two parts, one part
depending exclusively on the mean motion, the other part depending
exclusively on the relative motion. It thus will be in line with our pro-
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gramme if we try to obtain the statistical mean value of U from an
investigation of the distribution function :
B dygqu di (au)zg

dy dy dy

eR. (57)

This function can be considered as representing the quotient of the
original distribution function (10) and the distribution function (12) of
the relative motion. Hence we arrive at the conclusion that every func-

tion 4 that might be choosen will determine a certain function u

In working out this idea we are confronted with a certain difficulty
relating to the choice and the number of the coordinates that shall des-
cribe the course of the function 7, especially as their number, or rather
their “spacing’’, in some way must bear a relation to the “spacing’ of
the coordinates used to describe y. Moreover as the exponent of the
function (57) is not homogeneous with respect to U, it does not give
rise to a variational problem from which a system of normal functions
can be deduced. However, we may try whether a simple Fourier ex-
pansion of the type:

V=3U,sin2n+V)ay . . . . . . (58)

may be used. The form of this expression ensures that 0%/dy shall be

zero at the walls of the channel. In order that the value of ¥ itself
shall be + § at the walls a certain relation must exist between the
coefficients U,, which can be easily written down. — Now let us put:

A= tcos@n+ )=y . . . . . . . (59

which expression makes 1—=0 at the walls. There will exist also a cer-
tain relation between the coefficients 4,, on account of eq. (9) to which
1 is subjected. — If (58) and (59) are introduced into (57) the statistical
problem can be worked out. The result is:

T - M 24 (1)
u. T 27(2n+ 1)+ at 2n+1)*

This leads to the following formula for dﬁ/ dy:

dU_ 1di
This formula is substantially the same as the one obtained in § 4 of
Part II, and, as has been mentioned there, apparently leads to values
which in the central part of the channel are much too high. Hence in
this respect no improvement has been obtained in comparison with the
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method of Parts I and II!), while — as will be seen below — in another
respect we have drifted away even farther from experimental values, as

the magnitude of dﬁ/dy at the wall appears to surpass many times the
estimate made formerly.

Notwithstanding this result, let us proceed to see how it stands about
the application of eq. (4). This equation can be written:

d=  1d&U_
ZC—d—yuv +§dy2—0 e e e (43)
Integrating with respect to y we obtain:
== ldd_
2Cy—uv+Rdy—_0 B (30

Now let us assume the course of di1/dy which is described by eq. (36)
for the region 6 <y <} (i.e. —4+ 0 <y <0), and by eq. (38) for the
region in the immediate neighbourhood of the wall, while for positive
values of y we simply change the sign of di/dy. If 1 is found by
an integration, then eq. (9) leads to a connection between b and 9,
which approximately works out to: d =2b/R. So there is only one
adaptable parameter in A. Consequently, as the pressure drop 2C is still
unknown, we can make eq. (61) fit at two points at most, and then shall
obtain relations that determine both b and C. Apparently it will be

convenient to take as one of these points the point: =0 (y = — ),
|
where we have —u'v’=0 (as will be seen if it is remembered that

tak and dya [ dny are zero for 7 =0). Eq. (60), when applied to the same
point, gives us approximately: 1/R. dﬁ/ dy —1/8b, and thus we obtain:

C=1/8b . . . . . . . . . (62

The second point will be taken at a distance from the wall which is
great compared with 4, but still can be considered as small in comparison
with the half breadth of the channel. Then we may neglect the contri-
bution of dﬁ/dy into eq. (61). Further it will be seen in § 9 that in

—
this region an approximate expression can be deduced for — u’v’ which

is independent of 7. As the term 2Cy in (61) for n ({ § still may be
replaced by — C, we obtain:

—/
= —u'v" (for $))n)>4). . . . . . (63
The right hand side of this equation is a function of b and of j.

1) It thus appears that the expectation expressed in § 11 of Part IIl in connection with
eq. (77) of that paper comes out negatively.
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We thus have arrived at two equations between the three constants
C,b,8. It remains to find a third equation, and it is evident that this
equation must be furnished by the dissipation condition. This condition
is expressed by eq. (7); written explicitly it takes the form (after division

by 2):
s —___ 'z
1, Uy 1 [, —
C_ﬁj dﬂ (—@) = R‘J d?]Z—-—O . . . . (64)
0 0

The first integral perhaps may be replaced by '):

l/l ~—
1 Can (98 =L
Rj ! dy) 24b°
0

If this is taken for granted, it remains to calculate /dy? This integral

can be expressed as a sum with respect to the indices k and a. As has
been mentioned, however, this sum does not converge, if the domain of
both k and a is stretched out to infinity. Hence eq. (64) can be used
only if the “spectrum” of normal functions is cut off in some way. It is
possible that a limit for the index k will be imposed by the finite breadth
of the channel (see below, § 8), but with a the matter is much more
serious.

We shall come back to this point in § 10, but first it will be indicated

—

=
in which way expressions may be obtained for —u'v’ and z.

8. Data concerning the normal functions yax.
The results obtained in § 6 lead us to a system of normal functions
defined by the formula:

xak:Nkandee“"‘;wk(C) B (+55))]

where N, is a numerical constant, while w; is the function denoted
formerly by w; and given by eq. (46a), for the case: p—=p, =
=4(2k+1) VK k r=2k-+1, s—2V k2 + k. In this case the hyper-
geometric function reduces to a polynomial of degree 2k—1 in 1—¢.
The factor Ni must be determined in such a way that the normalizing
condition (23) shall be fulfilled with di/dy given by (36) down ton=0;
it is independent of a.

In connection with the formula: p—=>5 A it follows that the characteristic
values of A are given by:

Av=pb . . . . . . . . . (66)

1) This point ought to be investigated with the aid of the distribution function (57).
(See a remark in Part VII).
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They are independent of a. The condition that all A, shall be greater
than unity (which condition was stated in § 4) requires b < p,. As
p: is about 17, this result, when taken in connection with eq. (62), leads
to C > 0,0073, which is many times superior to experimental values.

If the polynomial for wj is substituted into the integral (65), the
integration of the separate terms leads to “confluent hypergeometric
functions”” (see WHITTAKER and WATSON's Modern Analysis, Chap.
XVI). We mention the asymptotic expansion for very great values of ay:

foak = constant. e=* [(2an)™ — a; Lan)~=—'...]. . . (67)

where: —a, =(k+1)—iV'k? + k. The first term of this series has its
maximum for ay —k -+ 1. Unfortunately for this value of an the asymp-
totic expansion becomes nearly useless. If notwithstanding this circumstance
we consider this first term in order to have a very coarse image of the
function y., it is found that for great values of k this term may be
roughly approximated by the following expression:

(oca’)?

Yk =2ce 2 (cosan’ —isinay’) . . . . . . (68)

an’ being written for an—k, while c is a constant. This expression can
be separated into its real and imaginary parts; if these parts are
substituted into formula (14) the stream function of the mode of relative
motion corresponding to x.x is found to be:

(eer')?

Y =2ce 2 cos(ax-t+ay-tconst). . . . . (69)

If the expression (68) is applied to the calculation of the integrals (23)
and (24), it is found that the proper value of 4 does not come out:
a value about half the true one is obtained. Still it may be supposed
that some features indicated by formula (69) are not far from the truth,
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viz. that the mode of motion corresponding to y.x consists of a system
of skew vortices, having their centers upon the line: 7 — k/a; the dimen-
sions in the direction of x being n/a = @n/k, while the dimensions in
the direction of 7 are of the order 2 l/k/(l — 2:}/|/k(compare the accom-
panying sketch) !).

If a is increased while k is kept constant, the dimensions of the system
are diminished proportionally. On the other hand, if, for a constant q,
the value of k is increased, the system moves outwards. Clearly this
cannot go on indefinitely, on account of the presence of the second
wall at y = 1. Hence we are led to the supposition that k cannot
increase beyond a certain amount of the order of a. An exact expression
for this limit cannot be obtained from our calculations, as in the function
A that has been used no account is taken of the presence of this second
wall. The point, however, is of importance in connection with what
has been mentioned at the end of § 7. (An investigation of the
character of the normal functions for a modified form of di/dy, which
should change sign at =1 (y =0), might be of interest).

= —_—
9. Calculation of —u’v’ and z for values of 1 greatly surpassing 0.

The values of — ur'?’ and z are obtained from egs. (27) and (28) if for

Ak Aur etc. the statistical mean values are substituted. The way in
which these statistical mean values can be calculated has been sketched
in § 4 for the case that normal functions exactly corresponding to the
course assumed for the function 4 have been obtained. Now actually
we have calculated a system of normal functions for a course of di/dy
described by eq. (36) right down to 5 = 0. If we adhere to this system
of normal functions, and nevertheless at the same time wish to introduce
the course of di/dy which is determined by egs. (36) and (38) taken
conjointly, then it will be clear that the integrals (21), (23), (31) no
longer will have the values indicated before. Without going into the
details of the calculation we may suppose that certain corrections must
be added to the right hand sides of these equations. Then the distri-
bution function will not have the form given by eq. (33), but will
contain certain additional terms, depending on these corrections.
However, if we restrict ourselves to values of 5 that are great com-
pared with 4, then, judging by what has been found in the foregoing §,
it may be assumed that those functions y.« which materially contribute

| —
in the value of — u’v’ or of z, will be very small in the narrow region
where di/dy is given by eq. (38) (it will be remembered that the width
0 of this region, according to what has been deduced in § 7, is of the

1) It is probable that a more accurate calculation will show that the slope of the
vortices is not equal to 45° as would follow from eq. (69).
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order b|/R). Hence for these functions we may neglect the corrections
in the integrals (21) etc. and keep to the expression (33) for the distri-
bution function. From this expression the following results are obtained
for the statistical mean values:

oyl Sy SO
ak ak:—s_A_jl" ok Dak — 304 1
B a3 (Ax—1) a3 (A1) 70)
Aak Zal = Bak Eul pu— Aak Eal = O 5
Substituting these into (27) we have:
r_1 ~ R ( X ok lak Nok ilak)
—HU :—‘B‘f (12(/1,2‘—1) . . . . . (71)

In order to carry out the summation with respect to a in (71), we
avail ourselves of the remark made in § 4 that this summation properly
speaking ought to be replaced by an integration. The transition from a
sum to an integral can be effected if we assume that the (constant)
interval between the values of a in the sum is given by a certain num-

ber 4. Then it is allowed to write: 3 (....) == 1/64. / da (....)1".

Further by making use of eq. (65) it can be shown that the expression
i (o Yok — Jak X'ax) is of the form: a/b. fi (an). Hence eq. (71) may be

written :
I 1 da
—uv = /f{ % 2-1f’a_ﬂ(a’7).

Now the integralj # fi (ay) — which appears to be convergent —

yields a number, say o, , which is independent of ». Thus we find (with
Ay =pi | b):
Rb O

~u'v’%ﬁ7,-%“ b (forg ) n>d). . . . (72)

The numbers o, have not been calculated, as this required the evalu-
ation of certain rather complicated integrals; these integrals, however,
can be expressed in the form of a series, and thus a numerical evaluation,

') The introduction of # does not bring a new unknown constant into the problem, as
it will appear that in all further equations only the combination 26 occurs.
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though laborious, will be possible. It is probable that the sum with
respect to k is convergent. If b should prove to be nearly equal to p,
(it must be <p,), the first term of the sum will be far more important
than the rest.

/

The result that the value of — u’v’ is independent of 7 applies only
to a domain of values of 7 satisfying the conditions: §)) 5 )) 4. In this
domain the shearing force acting in layers parallel to the x -axis is still
substantially equal to the value at the wall itself, which value in our
system of non dimensional variables is given by the constant C. —

A similar calculation carried out starting from eq. (28) leads to the

result that z must be proportional to 4~2, though the nature of the factor
has not been investigated.

!y
10. The expression for / dn’;.
0
As we have found that z is proportional to =2 for 7 )) 4, it may
be expected that in this integral the upper limit of » may be replaced
by oo without great error.
The values of the integrals (22), (24), (32) are not affected by the
course assumed for the function 1. Hence eq. (30) must remain true also
if di/dy is determined by egs. (36) and (38) taken conjointly.

If in eq. (30) we substitute the approximate values of A, A etc. as
given in (70), we find:

2R A; 2R A;
dy z~ =2 —e~=——|dalX 5— . . . (73
J 1555 . A,,—l po v Ai—1 v
This expression is divergent — both with respect to k and with

respect to a. The summation with respect to k probably may be limited,
as has been indicated, the number of terms being of the order a. But
at the present moment I do not see from where a limit for a might
arise.

It is true that the approximations (72) are not valid for modes of
relative motion which wholly, or at least for the greater part, fall into
the region defined by 5 < 4. But as far as I can see an exact calculation

will not give values for A Au etc. which decrease sufficiently fastly
in order to make the integration with respect to a convergent. This
may be inferred already from the general formulae of § 4. Suppose that
the exact system of normal functions has been determined corresponding
to the precise course of the function di/dy, with all modifications in
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this function that might have been considered appropriate. In that case
formulae (29), (30) and (33) are exact and we should obtain:

2R A2,

p s —1) 7

¥ a® Ay (Arxk Aak + Bk Emk) =

It thus would appear that the dissipation for every separate mode
of relative motion approaches to the constant limiting value R f (it may
be supposed that also in the general case the characteristic values
Au soon will become great in comparison with unity)!). Hence the

total dissipation threatens to become infinite, unless a limit can be found
to the system of modes of motion. Although the discussion of the
properties of the system of normal functions determined by eq. (19)
with an arbitrary form of di/dy will be necessary to settle such a
point, I cannot find any indication of such a limit.

Perhaps there may be a limit to a of the order of magnitude of 1/é
(i.e. of R). If such a limit is assumed artificially, then an estimate of the
integral for the dissipation could be made, and the third equation be-
tween the constants C, b, f (or rather, f #) might be written down.

I must leave the problem at this point, the main object of the
foregoing lines having been to give a somewhat more detailed view
of the ideas which in a rather crude form had been indicated already
formerly. A few additional remarks will be made in a concluding paper,
in which it will be tried moreover to apply the statistical method to an
imaginary mechanical problem, of a simpler character than that presented
by the motion of a fluid, as this perhaps may afford an easier basis
for a criticism of the method.

1) The expression (74) actually gives the dissipation for two modes of relative motion,
one of which is of the nature indicated by eq. (69), while the other is obtained by
changing x into — x in this expression. In those cases where .,, does not differ much
from unity, the former of these is much stronger than the second onme: if .1,, is very
great, the intensities of the two become nearly equal.



