§ 7. Die ϱ^{3}, welche eine vorgegebene Ebene φ berühren, bilden eine Fläche Φ.

In der Kongruenz der ϱ^{3} durch vier Punkte $\left(A_{1}, A_{2}, A_{3}, U_{1}\right)$ welche eine Gerade b zweimal treffen, gibt es 8 Kurven, welche eine Gerade (c_{2}) schneiden und eine Ebene (φ) berühren. Hieraus erhellt, dass die Bildkurve des Systems Φ einen achtfachen Punkt in U_{1} (also auch in U_{2}) besitzt, wonach sie eine $\varphi^{16}\left(U_{1}{ }^{8} U_{2}{ }^{8}\right)$ ist.

Im Büschel (β^{3}) gibt es vier Kurven, die φ berühren ; denn die Gerade $\alpha \varphi$ wird durch (β^{3}) in einer kubischen Involution geschnitten, wo es bekanntlich vier Gruppen mit einem Doppelpunkt gibt. Demnach hat φ^{16} in S_{0} einen vierfachen Punkt.
Im Büschel $\left(\alpha_{1}{ }^{2}\right)$ finden sich 2 Kurven, welche φ berühren; also ist S_{1} Doppelpunkt von φ^{16}.

Die Bildkurve des Systems Φ entspricht daher dem Symbol $\varphi^{16}\left(U_{1}{ }^{8} U_{2}{ }^{8} \sim\right.$ $S_{0}{ }^{4} S_{1}{ }^{2} S_{2}{ }^{2} S_{3}{ }^{2}$).

Mit einer Bildkurve $\lambda^{8}\left(U_{1}{ }_{4} U_{2}{ }^{4} S_{0} S_{1} S_{2} S_{3}\right)$ hat sie $16 \times 8-2 \times 8 \times 4$ -$-4-3 \times 2$, also 54 Punkte R gemein. Die ϱ^{3}, welche eine vorgegebene Ebene berühren, bilden daher eine Fläche vierundfünfzigsten Grades.

Chemistry. - The Exact Measurement of the Specific Heats of Solid Substances at Higher Temperatures: XVI. The Specific Heats of metallic Thorium and of Thoriumdioxide between 20° and 1400° C. By F. M. Jaeger and W. A. Veenstra.
(Communicated at the meeting of May 26, 1934).
§ 1. In this paper we wish to publish the results of the exact measurement of the specific heats of metallic thorium and of thoriumdioxide at a series of temperatures ranging from 300° to $1400^{\circ} \mathrm{C}$.

Thorium crystallizes in the cubic system: its face-centred cell has: $a_{0}=5.04$ A.U.; its specific gravity is: 11.96 at $0^{\circ} \mathrm{C}$. and the meltingpoint lies above $1700^{\circ} \mathrm{C}$. For the determination of the specific heats of metallic thorium, we had at our disposal a $\operatorname{rod} A$ of the pure metal, which most kindly was furnished us by the Westinghouse Lamp Company in Bloomfield N. J. On analysis it proved to contain 93.94% Th, traces of iron, bismuthum, lead, calcium and phosphorus and, moreover, $6.04 \% T h \mathrm{O}_{2}$. A second preparation B consisted of thorium in powderform from E. Merck; this specimen contained $26.8 \% \mathrm{ThO}_{2}$. With the purpose of applying the necessary corrections for this content of dioxide, also the specific heats of $T h \mathrm{O}_{2}$ within the same range of temperatures were determined. The metal, as well as the dioxide, were included in evacuated platinum crucibles of the usual type; because the platinum proved to
be attacked at about $1400^{\circ} \mathrm{C}$. by the metal enclosed, the measurements were not continued above that temperature and stopped at about $1200^{\circ} \mathrm{C}$. The behaviour of the metal was, in the beginning, not quite normal, although no retardationphenomena to such a degree as stated in the cases of beryllium, zirconium, cerium, chromium, etc., were observed. After stabilisation of the metal at $1200^{\circ} \mathrm{C}$., finally we were able to determine data for \bar{c}_{p} which were pretty accurate, - at least in the case of the massive $\operatorname{rod} A$.
§ 2. The measurements with this specimen were started at $400^{\circ} \mathrm{C}$.: as the maximum temperature of the calorimeter, however, proved no sooner to be reached than after 25 minutes, while the normal coolingrate of the instrument was only re-established after 2 hours, - the

TABLE I. Mean specific Heats \bar{c}_{p} of Thorium between 400° and $1200^{\circ} \mathrm{C}$.				
Temperature t in ${ }^{\circ} \mathrm{C}$.	Final temperature t^{\prime} of the Calorimeter:	\bar{c}_{p} between t° and $t^{\prime} \mathrm{C}$. :	Corrected specific heat \bar{c}_{p} for the oxide-free metal:	Corrected values of \bar{c}_{p} calculated from the formula
397.6	21.10	0.03651	\} 0.03496	0.03496
397.53	21.02	0.03658		
499.95	21.32	0.03722) 0.03556	0.03537
500.05	21.27	0.03721		
628.72	21.30	0.03756	0.03584	0.03584
629.13	21.55	0.03756	0.03	
700.03	21.42	0.03795	0.03623	0.03617
801.23	21.39	0.03844	0.03666	0.03666
801.26	21.31	0.03833		
1065.5	21.7	0.04023)	
1062.7	21.9	0.04033		
1062.6	21.7	0.04015	0.03853	0.03842
1062.5	21.5	0.04002		
1201.1	21.7	0.04121		
1201.1	21.8	0.04124	10.03959	0.03959
As the value of \bar{c}_{p} at $10^{\circ} \mathrm{C}$. can hardly be deduced from the $\bar{c}_{p}-t$-curve with a sufficient degree of accuracy, the slight corrections of Q_{0} between t^{\prime} and $o^{\circ} \mathrm{C}$. have not been applied.				

crucible was heated at $1200^{\circ} \mathrm{C}$. for some hours and then slowly cooled: now the maximum temperature was reached after $16-17$ minutes, above 800° C. after $10-13$ minutes and the calorimeter proved to have reassumed its normal cooling-rate within the ordinary interval of time. Although the interval of $10-13$ minutes is still rather appreciable in comparison with that observed with most metals, the values of \bar{c}_{p} thus measured are, however, sufficiently accurate. The results obtained are collected in the following table I.

These latter (corrected) values of \bar{c}_{p} between 400° and $1200^{\circ} \mathrm{C}$. can, with sufficient accuracy, be represented by the formula:
$\bar{c}_{P}=0,03437+0,99078 \cdot 10^{-6} \cdot t+0,14384 \cdot 10^{-8} \cdot t^{2}+0,113014 \cdot 10^{-11} \cdot t^{3}$.
The true specific heats, therefore, by:
$c_{P}=0,03437+0,198156 \cdot 10^{-5} \cdot t+0,43152 \cdot 10^{-8} \cdot t^{2}+0,452056 \cdot 10^{-11} \cdot t^{3}$, and the atomic heats C_{p} by:

$$
C_{p}=7,97816+0,45997 \cdot 10^{-3} \cdot t+0,10014 \cdot 10^{-5} \cdot t^{2}+0,10493 \cdot 10^{-8} \cdot t^{3} .
$$

Some of the values of C_{p} thus calculated, are collected in Table II and graphically represented in Fig. 1; most remarkable are the very

TABLE II.		
True Specific and Atomic Heats C_{p} of Thorium between 300° and $1200^{\circ} \mathrm{C}$.		
Temperature t in ${ }^{\circ} \mathrm{C}$.	Specific Heats c_{p}	Atomic Heats C_{p}
300°	0.03547	8.235
400	0.03618	8.390
500	0.03700	8.590
600	0.03809	8.841
700	0.03942	9.151
800	0.04103	9.524
900	0.04294	9.968
1000	0.04518	10.489
1100	0.04779	11.092
1200	0.05077	11.785

high values: 8,235 at $300^{\circ} \mathrm{C}$; 10,489 at $1000^{\circ} \mathrm{C}$.; and, extrapolated, 14,463 at $1500^{\circ} \mathrm{C}$., as would follow from the formula, if the increase of C_{p} with the temperature might supposed to continue in the same way up to $1500^{\circ} \mathrm{C}$.

As no data concerning the compressibility and the coëfficient of thermal
expansion of thorium are available in the literature, no calculation of c_{v} and C_{v} could be made.

§ 3. The values of \bar{c}_{p} obtained in the case of thorium in powderform (B) were the following (Table Ia). As this preparation contained 26.8%

Temperature t in ${ }^{\circ} \mathrm{C}$.:	Final temperature t^{\prime} of the Calorimeter :	Time elapsed till temperature-maximum of the Calorimeter:	Mean Specific Heat \bar{c}_{p} observed:	Mean Specific Heat \bar{c}_{p} after Correction:
397.20	21.20	5 minutes	0.04977	0.04546
500.03	21.28	5.5 ..	0.05124	0.04682
629.30	21.31	5.5 .	0.05346	0.04940
800.68	21.56	4.5 .	0.05859	0.05609
500.00	21.28	5 "	0.05111	0.04669
1062.30	21.70	6.5 ..	0.05256	0.04756
629.43	21.15	7.5 .	0.04750	0.04123

Prolongated heating at higher tempatures obviously causes the values of \bar{c}_{p} to decrease, as is illustrated by the determinations repeated at 500° and at $629^{\circ} .4 \mathrm{C}$. This fact. seems to indicate, that also in the case of thorium not only recrystallisation occurs, but that the metal really has a complex character.
$T h o O_{2}$, the necessary corrections are applied in the fifth column. All these values prove to be considerably greater (about 27%) than in the case of massive thorium (A) : this fact is in agreement with what was observed in all such cases, where the mean specific heats of massive metals ($B e, C e, Z_{r}, T i$) were compared with those of the pulverized or finely-ground metals at the same temperatures. Also in this case, the time τ necessary for reaching the maximum temperature of the calorimeter is much shorter, than in the case, when the massive metal is investigated. This time increases somewhat after repeated heatings at higher temperatures, in accordance with the fact, that a recrystallisation and a forming of greater granules sets in at increasing temperatures; at $1065^{\circ} \mathrm{C}$. the experiments had to be stopped, because the platinum crucible proved to be attacked by the powdered thorium enclosed. The values obtained cannot be considered as sufficiently accurate and have only significance for the purpose of comparison of the influence, which the size of the grains has upon the values of \bar{c}_{p} observed: the greater the grains are, the lower the values of \bar{c}_{p} always prove to be.
§ 4. Thoriumdioxide. Pure thoriumdioxide: Th_{2} was enclosed in an

TABLE III. Mean Specific Heats of Thoriumdioxide between 400° and $1400^{\circ} \mathrm{C}$.			
Temperature t in ${ }^{\circ} \mathrm{C}$.	Final temperature t^{\prime} of the Calorimeter:	Mean Specific Heats \bar{c}_{p} :	\bar{c}_{p} as calculated from the formula:
398.20	21.13	0.06141	0.06141
501.04	21.06	0.06318	0.06332
630.79	21.21	0.06450 \} 0.06444	0.06444
630.87	21.31	0.06438)	
800.93	2142	0.06533	0.06511
900.17	21.50	0.06556	0.06544
959.57	21.57	0.06566	0.06566
1001.10	21.60	0.06600	0.06583
1062.3	21.70	$0.06603)_{0.06609}$	0.06609
1062.3	21.80	$0.06614)$	
1203.7	21.80	0.06675	0.06675
1391.2	21.90	0.06783	0.06783

As the value of \bar{c}_{p} at $10^{\circ} \mathrm{C}$. could, from the $\bar{c}_{p}-t$-curve, not bo determined with a sufficient accuracy, the slight correction for ${ }^{p}$ the interval between 21° and $0^{\circ} \mathrm{C}$. has not been applied in this case.
evacuated platinum crucible and its specific heats were determined in the usual way. The data obtained are collected in the following table III the maximum temperature of the calorimeter always was reached within 1.5 to 2 minutes.

The mean specific heats \bar{c}_{p}, in their dependance on the temperature, can fairly well be expressed by the formula:

$$
\begin{aligned}
\bar{c}_{\rho}=0,027316 & +0,183054 \cdot 10^{-3} \cdot t-0,361497 \cdot 10^{-6} \cdot t^{2}+ \\
& +0,357245 \cdot 10^{-9} \cdot t^{3}-0,17382 \cdot 10^{-12} \cdot t^{4}+0,33525 \cdot 10^{-16} \cdot t^{5}
\end{aligned}
$$

The true specific heats \bar{c}_{p}, therefore, by:

$$
\begin{aligned}
& c_{P}=0,027316+0,366108 \cdot 10^{-3} \cdot t-0,108449 \cdot 10^{-5} t^{2}+ \\
& 0,142898 \cdot 10^{-8} \cdot \mathrm{t}^{3}-0,8691 \cdot 10^{-12} \cdot t^{4}+0,20115 \cdot 10^{-15} \cdot t^{5}
\end{aligned}
$$

and the molecular heats C_{p}^{\prime} of the dioxide by:

$$
\begin{aligned}
C_{p}^{\prime}=7,2147+ & 0,096696 \cdot t-0.28644 \cdot 10^{-3} \cdot t^{2}+ \\
& 0,37742 \cdot 10^{-6} \cdot t^{3}-0,22955 \cdot 10^{-9} \cdot t^{4}+0,5313 \cdot 10^{-13} \cdot t^{5} .
\end{aligned}
$$

It must be remarked, however, that all these formulae may only be applied between 300° and $1400^{\circ} \mathrm{C}$.; some of the values of C_{p}^{\prime} thus calculated (see below) are graphically represented in Fig. 1.

Temperature :	$C_{p}^{\prime}:$	Temperature:	$C_{p}^{\prime}:$
300°	18.904	1000°	18.470
400	18.749	1100	18.835
500	18.444	1200	19.214
600	18.018	1300	19.695
700	17.818	1400	20.756
800	17.879	1500	22.886
900	18.142	1600	27.295

The curve has a flat minimum at about $720^{\circ} \mathrm{C}$. and then rises rapidly with increasing temperatures. The apparent atomic heat of 1 atom of oxygen in the compound gradually decreases with increasing temperatures from 5.334 at $300^{\circ} \mathrm{C}$. to 3.715 at $1200^{\circ} \mathrm{C}$. : also ${ }^{1}$) in this case, evidently no additivity of the atomic heats of the constituting elements is present after their chemical combination.

Groningen, Laboratory for Inorganic and Physical Chemistry of the University.

[^0]
[^0]: ${ }^{1}$) F. M. Jaeger, Chemisch Weekblad, 31, (1934), 60.

