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§ 1. Variational principles. 
Instead of MAXWELL'S equations (E MI (5) I)) 1 will further use the 

equations 
(1) 

where the potentials ({ii (-({i4 = ({i = electric potential. A -= (({i I , ({i2' ({i3) = 
- 1 ~ - -

magnetic potential vector, 50 that E = - grad ({i - - A, B = rot A) have 
c 

been introduced. The formal analogy between the two equations (I) is 
made evident, if the first of them is brought into the form, equivalent 
with it, 

(2) 

(Hij = t (Sj/ijk I ~k~ . Hence, whereas E j and Sijk are wholly determined, 
({ii is only determined but for the gradient of a scalar and Hij but for 
the rotation of a covariant vector (hence ~ij is determined but for the 
divergence of a contravariant trivectordensity). 

Now let )ID be an arbitrary function (scalar density of weight 1) of 
the ({ii and the O[i ({ij]. and let us define F/j by (1. 11). ~ij and Si by 

~ij __ o)ID 51 __ o')ID (3) 
-- 0 E/ - 0 ({ii • 

The variation of the integral 

(4) 

gives 

because 0 )ID/o (Oi ({ij) = - 0 )ID/o (Oi ({i;) = 0 )ID/o Fij as only the alternated 
part of ai ({ij occurs in )ID, Hence 

I) Cf. D _ VAN DANTZIG. Electromagnetism independent of metrical geometry. 1. The 
foundations . these Proceedings 37. (1934) 521-525, abbreviated as EM 1. 

" 
2) i is an abbreviation for i iJ i ; dI: is the fourdimensional volume-element (densityof 

weight - 1). 
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Hence d W = 0 leads to (1. I). whereas (1. II) has been used as a 
definition. 

Another variational principle exists which leads to (1. 11). if (1. I) is 
assumed. Indeed let now m3 be an arbitrary function of the ~ij and 
the Si. the latter being defined by (1. I) (and not of the epi. gj) and let 
us define gj. epi by 

Then we have because of 

0m3 
epi = - OSi' (5) 

(6) 

(which equation is a consequence of the fact that ih ~ji does only occur 
in m3 in the combination a; ~ij): 

~ cm _ 1- 0m3 ~ ç:..ij + 1- 0 m3 .t (:0\ ""jl)_ 
U=-2 o~iju't>' 20(àk~ji)u Vk'h' -

= t gj ~~ij - Ati epj] Ok b~ji = 

= Ok (epi b~ki) + t (gj - 20[; epj]) b~ij 

50 that d W = 0 leads to (1. 11). 
Hence we have a full parallelism between the gj and the Sijk and 

between the ~Ij and the -epi 1) 2) . 

1) This parallelism may he brought into evidence by the use of a five-dimensional 
formalism. which greatly simplifies the calculations. This may be done in two ways. By 
the first method equations (I. I. 11) take the forms 

I OIL Jti.,u = O. 11 0[,. flLiI = 0; 
by the second method they are taken together into one equation of the form 

f,' .ui, = 3 a[v Jt ,ui.]. 

(x. À. It. IJ = I. 2. 3. i. 5). I will. however. not vet make much use of these formalisms. 
because until now the fifth coordinate seems to have onlya formal significanee. 

2) Hence we may compare the 
mechanical quantities 

q'" ~ epi 

q"'~Fji 

pa. ~ ~ji 

k", ~ Si 

(ka. = pa.) 

electromagnetical 

or 

quantities in two ways with the 

q'" ~ ~iJ 

q'" ~ Si 

P'" ~ epi 

k", ~ Fji 

In the latter case the corresponding quantities are also physically analogous. ?,i being 
related to the velocity and Pij to the forces. Hence we will prefer to work with the 

second variational principle; the physical meaning of the analogy between the f)/j and 
the 'Jol with the q'" and the Pa. wil! be shown later. 
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In the important special case, when 5ill is (in the first case) homogeneous 
of degree 2 (but not necessarily quadratic !) in the epi and Fij together 
or (in the second case) homogeneous of degree 2 in the ~ij and the 
i:Ji together, we find from EULER'S condition for homogeneous functions 

(7) 

It is remarkable that in this case 5ill itself is a divergence: 

2 5ill = ài ~ij qJj • (8) 

§ 2. The linking equations (General case). 

The parallelism we found in § 1 is lost if we introduce the "linking 
equation" E MI (9) 

(9) 

as no such relation exists between the qJi and the Si. Equation (9), how~ 
ever, is extremely special and holds e.g. for special cases of homogeneous 

matter. Now it is weil known that e.g. jj and H may be defined by 

means of volume-integrals of the magnetisation~vector B-H over the 
whole magnetic body (or even over the whole space), exclusive a small 
hole of a definite form at the point where the vectors are to be deter~ 

mined. Now the magnetisation cannot appear in our theory, jj being a 

covariant bivector, whereas H is a covariant vector, so that their difference 
cannot be invariant. Hence it seems a rather natural assumption that, 

instead of these integral relations, we can express e.g. jj by means of a 

volume~integral of H, and just so E by a volume-integral of D . Finally 
to get fourdimensional invariance we will take instead of volume-integrals 
fourdimensional~integrals . Hence we assume instead of (9) 

1 

F _J1 Ç\k' l' d ~I 
ij - 'l rijk' I' 'h' .,;.,. (10) 

Here the coefficients rijk' I ' are "two~point~functions", depending on 
the coordinates of two world-points: P (where Fij is to be calculated) 
and P' (which runs through the whole space-time). With the first two 
indices rijk' I' transforms as a covariant bivector at p, with the lat ter 
two as a covariant bi vector at P'. Hence with respect to the variabie 
point P' the integrand of (10) is a scalar, so that the equation (10) is 
invariant under arbitrary transformations of coordinates. The integration 
with respect to the time has not only a formaI. but also a physical meaning: 

it expresses that the Fij (especially B) may depend not only on the 

present, but also on past (or future) values of H in whole space, i. e. it 
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allows to treat of phenomena of the kind of remanent magnetism 1). 
Of ten we will suppose the rijk' l' to depend symmetrically on Pand P'; 

rljk' l' (P. PI) = rk'l'ij (P'. P). (11) 

especially if we wish to deduce our equations from a variational principle. 
However. it will he necessary to drop this supposition. as soon as we 
will make difference hetween past and future. as it is necessary in the 
actual laws of physics. 

Now it is known that the epi may he expressed as integrals of the 
5' over the three~dimensional light~cone. We assume these integrals to 
he a limiting case of fourdimensional integrals. and put 

i 

epi -J rij' sj' dI' . (12) 

wh ere the integral is to he taken over the whole space~time. If we 
suppose the rij' to he symmetrical 

rij' (P. PI) = rj'i (P'. P) (13) 

we must admit advanced as weil as retardated potentials. We mayalso 
keep to the ordinary theory. hy allowing the rij' and the rijk'l' to he 
symholical functions of the kind of DIRAC's function d (x) 2). Indeed we 
get ordinary retardated potentials in empty space (of special relativity) 
hy putting rij' (P. PI) • gij r (P PI). wh ere 

y (P. PI) • _ ~ d (ct - ct' - r) 3) i) 
"""Inr 

(ti) 

with respect to Galileancoordinates. where r=V(x-x/)2+(y_y/)2+(z_z/)2. 
Here rij' (P. PI):f rj'i (PI, P). 

The action (-4). (7) now hecomes 

i i i 

w= J ®dI J dI J ro(P,PI)dI ' , (15) 

2 ro = t rijk' I' .f;>ij .f;>k' I' - rij' Si Sj' . (16) 

1) We might suppose that Fij were to depend not only on the f;>'j, bUI also on 

the Si, past and present. This does make only a difference, ho wever, in so far as 
boundary integrals are to he considered, which we will not do now. It is, however, not 
improbable th at this will have to be done in the final version of the theory. 

2) Properly spoken d' (x) i~ not a point-function but d (x) dx is an interval function, 
viz. equal to 1 or 0 if the (fini te) Interval dx does or does not contain x = O. This exact 
theory leads to STIELTjES-integrals. Cf. J. VON NEUMANN, Mathematische Grundlagen 
der Quantenmechanlk, J. SPRINGER f 1932). 

3)· means that the equation holds only with respect to special (e.g. orthogonall 
coordinates. 

4) The factor 4" occurs because we always me HEAVISlDE·LoRENTZ-units. 
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Here Tl) is a two~point~density of weights (1. 1) I). whereas Si is defined 
by (1. I). If F;j and epi are defined by (10), (12). and if we suppose that 
the conditions of symmetry (11). (13) are valid 2). that all boundary~ 
integrals and integrals resulting from eventual singularities of the 'Yij'. 'Yijk'l' 
vanish. and that the integrations with respect to dI and d I' are inter~ 
changeable. it is easily seen th at variation of W leads to (1. 11). 

Combining th is with (12) we get 

i 4 

F;j = 20[iJ 'Yj]k Sk' dI' = 2 J(O[i 'Yj]k') Ol' ~k'l' dI' = 
(17) 

i i 

= 2J'OI' (~k'l' 0[/ rj]k') dI' - 2 J'(OI'[i 'Yj]d. ~k'l' d I' 3) 

If we suppose the first integral. which may be transformed into a 
boundary~integral. to vanish i). we find from (17) and (10) the identity 

1 J(t 'Yijk'l' + 201'[i rj]k') ~k'l' dI' = 0 . (18) 

Now rij' and rijk' I' characterise the properties of matter. Hence if we 

I) lts transformation-Iaw is : 

Tl) (P. P') - Tl) (P. P') 6. (P)-I 6. (P')-I. 

2) As only the symmetrical parts of rij' and rijk'l' occur in W, this supposition is 

necessary for a variational principle of this type. 

3) è)1' i Is an abbreviation for i)1' è)i. 

1) As the integrals in (17) are to be extended over the whole space-time, this condition 
seems acceptable as far as the infinity of spa ce is concerned (if we accept a closed space, 
this condition disappears at all), but not for t' -+ ± 00. As we have 

1 3 

J Ol' (~k'l' rjk') dI' J ~k'l' 'Yik' d61, 

we need therefore only consider the integration over db = db1' for t' -+ ± 00, hence 

3 3 

J'à[i ~k'l' 'Yj]k' d 6 1, = O[i [J'Yj]k' ~k' l' d 6 1 , I::: ... 
3 

[J 1 ]t'=+oo 
,. 0[/ gjja' ttJa' . 'iJl r d (ct - ct' - r) . r2 sin ep dr dep d{} t' =_ 00 ... 

where '15a' (r) is the mean value of ':tJa' over the surface of a sp here with radius r, hen ce 
het supposition that the boundary integrals for t' -+ ± 00 vanish is also acceptable. 
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suppose these properties to be sufficiently generaI. so that they allow 
every possible electromagnetical field. (18) must hold for arbitrary values 
of ~k' I' . i. e. the integrand must vanish. Hence we find: 

rijk'l' = 4 D[i[k' rj)/'J = 1) ~ 

= Dik' rjl' - Djk' ril' + Djl' rik' - Djk' ril' ~. 
(19) 

We may consider equations (10). (12) as integral equations of the 
first kind with the kerneIs rijk' I' and rik' respectively. If we call the 
resolving kerneIs p'l'm" n" and rk'm" (allowing these. however. also to be 
"symbolic" functions. i. e. operators) so that 

j~. r"'m" d ... ' _Ji['m"k' . d ... ' - A ,:," I rik' .. - rk'l .. -W, 

\ 

. (20) 

IJ i rk'l'm" n"d ... '- tJirm"n""' I' d ... '_ Am"n" 
"2 rijk' l' .. - T rk'l'ij .. - Wi j 

wh ere 

6~" • A~ d (P. Pil) • A~ d (x-x") d (y_y") d (Z-z") . d (ct-ct") (21) 

6~"j" = 2 Alm" Ar) d (P. P'1 . (22) 

the solution of (10). (12) may be written 

i 

ç.. i · - tj'r··"'I' F d"" .'h' J - T IJ Ic ' I' .. (23) 

i 

Si J Fi'" fP'" dI'. (24) 

With the identity (19) corresponds the identity 

rik' = Djl' rijk'l' (25) 

and the action-density (16) becomes 

(26) 

Again by variation of W under assumption of the second set of (1) 
and of the symmetry 

pjk' l' (P. P') = F"'I'i j (P'. P). Fik' (P. PI) = F"'i (P'. P). (27) 

we get the {irst set of (1) . 
Hence we see that also if we use the general linking equations (10). (12). 

we can obtain MAXWELL'S equations in two ways from a variational 
principle. viz. by varying either the fPi or the ~,j in (15) with (16) or (26). 

1) In the symbols [[ ... )) the first opening bracket belongs to the first closing bracket, etc. 


