
Chemistry. - A mathematical analysis of the single and double six-ring. 
By P . COHEN HENRIQUEZ. (Communicated by Prof. J. BÖESEKEN). 

(Communicated at the meeting of September 29. 1934) . 

Very little is known as yet concerning the spatial configuration of the 
ring systems. Por a long time the ring systems were merely assumed to be 
plane. Since in plane carbon rings the angles between the valences can 
never be equal to the tetraeder angle. it was supposed that " tension" 
occurred in the rings. 

In 1918 MOHR 1) pointed out that only in carbon rings with fewer than 
six C-atoms. tension must of necessity occur. He demonstrated that a 
spatial model could be constructed from the six-ring without any tension. 

If. however. we make a model from the six-ring in which the C-atoms are 
represented by little wooden balls and the valences by little brass rods (in 
such a manner that rotation with a valence as axis remains possible) . not 
only one spatial configuration will prove to be possible. but an infinite 
number. We find namely one fixed form and one mobile form which can 
occupy a continuous series of tensionless positions. 

A mathematical demonstration. however. of the existence of the mobile 
form has never been given yet. On account of th is it is therefore impossible 
to link up calculations with the mobile form. In the literature we mostly find 

o 

Fig . 1. 

the fixed form designated as the "chair 
position" and the mobile form as the 
"bed position". 

In the following we shall try to find 
out all possible forms of the si x-ring 
on strictly mathematical grounds. 
postulating only the fixed angle be­
tween the valences. 

If we state the problem very 
generally. we get : 

"T 0 construct in space all possible 
forms of a si x-ring. given equal sides 
and equal angles". 

Let us now approach the six-ring 
problem stated above. 

By distortion of the angles of the 
spatial six-ring in such a manner th at the whole six-ring lies in one plane. 
we get fig. 1. 

1) J. Prakt. Chem. (2) . 98.352 (1918) . 
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If we conneet the vertices A. Band C. we get an equilateral triangle 
Whatever form the six ring may assume now. the form and size of triangle 
A.BC will constantly remain the same. If we call one side of the triangle: q. 
one side of the hexagon : pand the angle between two sides of the 
hexagon: "P. then q = 2p sin ~ "P' We shall assume the triangle ABC to !ie 
in the plane of drawing. The small triangles BEC. CFA and ADB in the 
spatial six~ring now make all three an angle with the plane of drawing; let 
these angles be !Pl . !P2 and !P3' 

The angles !Pl. !P2 and !P3 must now be in such a relation to one another 
that the six~ring angles DBE. ECF and FAD are equal to 'IJ}. in other 
words the distances DE. EF and FD must be equal to q. 

Now. if we express DE. EF and FD in terms of the angles !Pl' !P2 and 
!P3. and if we set these to be equal to q. we obtain three equations from 
which we can get the required relation between !Pl' !P2 and !P3. which 
enables us to calculate all possible formations of the six~ring. For the sake 
of facility we shall assume for a moment the system of coördinates XYZ. 
where X and Y !ie in the plane of drawing. and to which plane Z is per~ 
pendicular. Working out analytically the distance between F and E we get 

If. for the sake of simplicity. we suppose ~ q V3 = kro where 

k= V3. tg ~ "P. we get: 

k2 - 2 = cos !Pt cos flJ2 - 2 sin fIJt sin flJ2 + k (cos fIJt + cos !P2)' 

In this equation nothing is found any more of the system of coördinates. 
hence we get equations of the same form for the distances DE and DF. 

We th us get three equations with !Pl' !P2 and !P3 as unknown quantities. 
viz . : 

k2 - 2 = cos !PI COS!P2 - 2 sin fIJt sin !Pl + k (cos fIJt + cos !P2) (1) 

k2 - 2 = cos fIJt cos flJ3 - 2 sin fIJt sin !P3 + k (cos fIJt + cos !P3) (2) 

k2 - 2 = cos !P2 cos flJ3 - 2 sin flJ2 sin !P3 + k (cos !P2 + cos flJ3) (3) 

In generaI. only a few very particular values of the unknown quantities 
satisfy three equations with three unknown quantities. 

This will not be so. if the equations are dependent. in that case an 
infinite number of solutions is possible. 

Thus. in order to ascertain whether a mobile form of the six~ring is 
possible. we must investigate whether the equation (3) is dependent on 
(1) and (2). 

For th is purpose we proceed as follows: 

36 
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CP2 and CP3 we represent both by cp'. From (1) as weIl as from (2) it is 
then found: 

and 

. , - b ± V b2-4 ac 
sm cp = ----;;2:-a---

cos cp' 
- bi ± V b'2-4ac' 

2a 

wh ere a = (k + coscpd 2 + 4 sin2CPI 

b =4sincpI (k2-2-kcoscpd 

(4) 

(5) 

c ={(k2-2)2 + k2 COS2cpl-2k(k2-2)coSCPI-(k + coscpd 2} 

b' = 4 cos CPI + 2 k cos2 CPI - 2 k (k2 - 2) 

c' = (k2 - 2) 2 - 4 sin2 CPI + k2 cos2 CPI - 2 k (k2 - 2) cos CPI 

For each value of CPI we now find two values of cp' (between + 90° 
and -90°). 

In the most general case we have CP2 i::- CP3; we must therefore assign 
one of the values of cp' to CP2 and the other value to CP3' 

Now, if we substitute the values thus obtained from sin CPI' sin CP2' cos cp! 
and cos CP2 in (3) , we get, after working out, 0 = 0, from which it follows 
that equation (3) is dependent on the equations (2) and (1), and the 
relations which CPI' CP2 and CP3 must satisfy, are therefore always completely 
given by the equa tions (1) and (2). 

Let us imagine a system of rectangular coordinates XY Z in space and 
let cp! be set oH on the X-axis, CP2 on the Y-axis and CP3 on the Z-axis, then 
equation (1) represents a closed area parallel to the Z-axis, equation (2) 
an area parallel to the Y -axis and equation (3) an area parallel to the 
X-axis. 

The equations (1) and (2) together represent a line in space, viz. the 
intersection of the areas represented by (1) and (2). 

Equation (3) must now also contain the spatial line represented by (1) 
and (2), which line symbolizes the mobile farm af the six-ring. 

The projection of the line on a plane which cuts oH equal pieces from 
the X- and the Y- and the Z-axes, is a circle. 

The spatialline passes through all the octants, with the exception of the 
first octant and the seventh octant (which lies diametrically opposite the 
first one). 

We can see th is as follows : 
If we consider form (4), we see that for a positive value of CPI' b is 

always positive (for the carbon si x-ring ). Hence we obtain either two 
negative roots for cp' or one positive root and a negative one for cp'. From 
th is it is plain that the spatial line cannot contain any points for which 
cp!, CP2 and CP3 all three have simultaneausly the same sign. Consequently, 
the line does not pass through the first and the seventh octant. 
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In the table 1 we indicated several values belonging together of C{J!. C{J2 

and C{Ja for the carbon six-ring. 

TABLE I. 

C{J\o C{J20 C{J30 

+ 0 + 63 - 63 

+ 10 + 57 - 67 

+ 20 + 49 - 73 

+ 30 + 40 -74 

+ 35 + 35 -74 

+ 40 + 30 -74 

+ 49 + 20 - 73 

+ 57 + 10 - 67 

+ 63 + 0 - 63 

+ 67 - 10 - 57 

+ 73 - 20 - 49 

+74 - 30 - iO 

+74 - 35 - 35 

+74 - 40 - 30 

Fig. 2 gives the graphical representation of formula ( 1 ) . 

2 

Fig. 2. 
36* 
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In the case of the carbon six-ring we have: 

k = tg ~ 'IjJ V3 = V6 = 2.45. 
N ot all the points common to the areas given by the equations (1), (2) 

and (3) are given by the spatial line, which is here considered. We get 
another particular solution of the three equations if we suppose that 

((i l = !P2 = !P3' We then get as solution : !PI = !P2 = !P3 = -+- arc. 
cos-1 /3 k and !P l =!P2=!P3 =-+-arc. cos - k. For the carbon si x-ring 
only the former solution is possible, for which we calculate: !PI = !P2 = 
= !P3 =-+-35° . 

According to the foregoing (viz. that the spatialline cannot contain any 
points for which !P I ' !P2 and !P3 have simultaneously the same sign) , the 
particuJar point which is found cannot lie on the spatial line. It is equally 
impossible that it forms part of another line, for only in the case of one of 
the equations being dependent on the two others, a line is at all possible. 
Hence, the particular point which is found is an isolated point in space, 
which symbolizes the fixed configuratian af the six-ring. 

Thus. along strictly mathematical lines, we have deduced the fixed as 
weIl as the mobile form from the carbon si x-ring . In the case of a diagram­
matical representation in a system of coördinates with !P I ' !P2 and !P3 as 
axes, the mobile form is symbolized by a spatial line passing through all 
the octants, with the exception of the first and the seventh octant, and the 
fixed form is symbolized by a point in the first octant and a point in the 
seventh octant. 

In order to gain some insight in the various possibilities of motion of the 
six-ring , we shall now deduce and make a drawing of some particular 
positions. 

The fixed canfiguratian. 
Of th is only one formation is naturally possible. 

!P I =!P2 = !P3 = arc. cas 1/3 k = -+- 35° . 

If we number the vertices of the six-ring (see fig. 3) from 1 up to 6 
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Pig . 3. Fig. i. 

inclusive and project the si x-ring on a plane which bisects the line 1-4 
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perpendicularly and if we denote what lies before the plane by means of 
drawn lines and what lies behind the plane by means of dotted lines, then 
we get what is easy to see : fig. 4. 

At the same time it can be demonstrated very simply that the opposite 
sides run parallel in pairs. 

Symmetry elements: m III' 311 (3 I') 3 S ! ). 

Classification : ditrigonal skalenoedric. 

The mobile configuration. 
In order to calculate various particular positions of this configuration, we 

again recall farm (5), viz . 

. , -b+Vb2=~ 
sm rp = 2a 

(5) 

wh ere a , band c, indicated elsewhere, represent functions of rp ! . 

5 8 

Fig. 5. Fig . ó. 

Pl=O. 
For rp! = 0 we calculate f!J2 = -+- 63° f!J3 = =F 63°. 
Elements of symmetry: 11 11 II. (see fig. 5 and 6, projection in fig. 6 

as in fig. 4). 
Thus classification : Rhombic~bisfenoidic. 

P2=Pl. 
For f!J2 = f!J3' we find from form. (3) and also from farm. (5) 

f!J2 = f!J3 = -+- 35°. 

From form. (5) it follows for f!J2 = f!J3 : Vb2 - 4 ac = O. 
Let the value belonging to f!J!' be f!Jm. In case of f!J! becoming greater than 

rpm' (b 2 - 4 ac) would become negative. Since this would yield imaginary 
values for f!J2 and f!J3' f!Jm represents the maximal value of f!J!. 

We calculate : (Pm = =F 74° 15'. 

1) m = centre of symmetry; 111 = axis of threefold symmetry; 11 = axis of binary 
symmetry. S = plane of symmetry; lIl' = axis of sixfold complex symmetry; I' = axis 
of binary complex symmetry. 
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Elements of symmetry IIp SS 1). Classification : Rhombic~pyramidal. 

It is easy to demonstrate th at 2 - 3 runs parallel to 5 - 6 (see fig. 7 
and 8). 

6 

2 

7 

Fil!. 7. 

I 
.i­
j 

~ 
I 

1-
I 

Fig. 8. 

The case CP2 = - CP3 can be transferred to the case: cp! = O. The case 
cp! = maximal up to the case CP2 = CP3' 

In the general case. wh en cp! i= CP2 i= CP3 is true. the six~ring has only one 
element of symmetry. namely apolar axis of binary symmetry. 

E We can demonstrate this as follows: (see 

11 

Fig. 9. 

fig. 9). 
IE we project ED and BC on a plane perpen~ 

dicular to DC and call the angle between these 
projections p (see fig. 12). we can deduce a 
relation between cp!. being the angle between 
the plane of 6. ABC and the plane of 6. ACE 
and p. (The deduction is given later on. see 
form (8)). 

The same relation we Eind for cp!'. being the 
angle between the plane of 6. PED and the 
plane of 6. PBD. 

Thus cp! = cp'! (only for the fixed configuration we have: cp! = - cp'!) 
and also CP2 = cp' 2' CP3 = cp' 3' 

Now. the reader can easily understand that apolar axis of binary sym­
metry must be possible; th is axis standing perpendicular on aplane. which 
bisects the angle between the planes of 6. ACE and 6. PBD. 

We find thus in the case cp! i:. CP2 i:. CP3 one element of symmetry. 
namely: lip. 

Classification : sfenoidic. 

In the literature the fixed configuration is being constantly denoted by 
"chair position" and the mobile configuration by "bed position". These 
names are very characteristic and clear and can therefore safely be 
preserved. It is. however. to be borne in mind that the "bed position" is 

1) With p we denote that the axis is a po)ar axis of symmetry. 
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only one of the possible formations to which the mobile configuration is 
liable (viz. the formation for which CP2 = CP3 and cp ! = maximal ) and that 
therefore "bed-position" and "mobile configuration" are not to be identified 
(as is of ten done) . 

In many cases the so-called "bed-position" is even the most improbable 
of all possible formations of the mobile configuration (e.g . in the case of 
molecules with equal atoms in the 1.4 places) . BÖESEKEN, who introduced 
the here-mentioned names had a clear concept ion about this . To quote 
him: ! ) "Es kommt darauf an, dass diese Ringsysteme fortwährend in 
Bewegung sind, verschiedene Lagerungen im Raum einnehmen, symme­
trische und unsymmetrische, aber immer so, dass der Winkel zwischen den 
Affinitäten 109° 28' bleibt" . 

It only remains for us to invent a characteristic name for the particular 
formation, wh ere cp! = 0 and CP2 = - CP 3' For lack of better we shall 
designate this formation for the present as "crossed formation" . 

In table 11 we give a survey of the various configurations and formations 
of the single six-ring . 

TABLE 11 . 
The single six-ring . 

Configu-
Formations 

Element. of 
Classification 

ration CPI CP2 CP3 symmetry 

fixed chair ± 35° ± 35° ± 35° m III' 3 11 ~ ditrigonal skalenoedric 
(3 I') 3 5 

mobile irregular HP sfenoidic 

crossed 0 ± 63° =+= 630 11 11 11 rhombic-bisfenoidic 

bed ± 74° =+= 35° =+= 35° HP S S rhomblc-pyramidal 

Let the mobile configuration of the six-ring occupy successively all 
possible formations , then the angle cp! moves between its maximum (with 
the carbon-ring + 74° ) and its minimum (with the carbon-ring - 74° ). 
Hence, if we let the ring carry out a continuous mot ion and if we set oH 
CP I on the one axis, and the time on the other axis, we obtain the motion 
of the ring diagrammatically represented as a wave-line. 

The wave-line, however, can take up various possible forms , for we are 
at liberty to let cp! move according to whatever equation of motion we want. 
The angles CP2 and CP3 will describe some wave line or other, just as cp !. H, 
however, we want to class CP I' CP2 and CP3 in one diagrammatical represent­
ation, it will be good, for the sake of surveyability, to choose the equation 
of motion of cp! in such a manner as to ren der CP2 and CP3 capable of satis­
fying the same equation of motion, in other words such that cp! , CP2 and CP3 

describe th ree equal and similar wave-lines, which, however, don't coincide. 

1) B. 58, 1472 (1925) ; see also : B. 56, 2411-2413 (1923). 
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This will only be possible in the case of one particular equation of motion. 
which can be found as follows : 

As we have already discussed. the spatial line denoting the relat.ion 
between the CfJl. CfJ2 and CfJ3 projects itself as a circle on a plane cutting oH 
equal pieces from the X-. Y- and Z-axes. Now. if we let a radius vector 
revolve in th is circle with uniform velocity. we are able to find for each 
angle of deflection of the radius vector : a an accessory value for CfJl' 

Thus. we can express CfJl in terms of the angle a which the radius vector 
makes with a fixed radius of the circle. It is now easy to see that for CfJ'2 

and CfJ3 the same function must be found. on the understanding that for 
a: (a + 120°) and (a + 240°) are to be written respectively. 

Consequently. the diagrammatical representation of the motion of the 
six-ring is given by three wave lines with mutual phase differences of 120C

• 

Complicated higher exponents appear to be found for the functions; it 

+ 71f· 
+ 63· 

+ 35· 

-35· 

-63· 
-74· 

Fig. 10. 

is no use indicating these and working them out in th is place; we prefer to 
give a rough representation like that drawn in fig. 10. which will suffice. 

The double six-ring. 
Now that we have ascertained all the possibilities of the single six-ring. 

we shall deduce from these what combinations of formations are possible 
for two six-rings. which have two carbon atoms in common. 

For this purpose we shall project the valences of the carbon atoms A and 
B (see fig. 11) on a plane perpendicular to the line AB (see fig. 12). The 
three valences of A. not being perpendicular to the plane of projection. will 
project themselves as three lines making angles of 120° with one another. 
This is equally true for B. We shall denote the valences of A by 1. 2 and 3 
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and the valences of B by I', 2' and 3'. Now we shall first consider the 
general case that 1 makes any angle p « 60° ) with I'. Let us suppose 

\ ........ . 
\ ........ ............ 

· · · 3 \3' 

.. 
Fig. 11. Fig . 12. 

that we fix 1 and I' in ring I, then we have the following valence pairs for 
ring 11 at our disposal: (see fig. 12) 22' and 33' (cis) and 32' and 
23' (trans) 1). 

Let us first consider the cis-combinations. As it is easy to see, case 22' 
yields the same as case 33'. Hence we must construct ring I on the valences 
1 and I' and ring 11 on the valences 2 and 2' ; and we must ascertain how 
many possibilities present themselves with a given position of 1 and I'. 

Of ring 1 (see fig. 11) AB, AC and BD are fixed , hence the distance 
DC is given. This means that the angle cp !, which the plane of /::,. ACE 
makes with the plane of /::,. EAD is determined. 

, , , , 

I 

, 

Fig. 13. 

, 
\ , 

We can now submit the question to 
ourselves which values of cp! belong to 
a fixed value of p. For this purpose we 
must express cp! in terms of p. We can 
do th is by ex pressing the distance DC 
(see fig . 11) which we shall call : s, in 
terms of pand also in terms of cp! . By 
eliminating s from the two equations 
thus obtained, we find the required 
relation between cp! and p. 

In order to express s in terms of p, 
we introduce a system of coordinates, in 

13 which the Z -axis coincides with the line 
AB (see fig . 11) . This is represented 
by fig . 13. 

'Ijl represents the tetrahedron angle. On working out analytically, we get : 

41 16 
S 2 = - p2 - - p2 cos P 

9 9 
(6) 

1) The names cis- and trans- may be understood by considering the plane bisecting 
the angle between the projected valenees 1 and 1' ; with the cis- both valenees which 
are in consideration are at the same side of the plane, with the trans- they are each on 
one side (see fig . 12) . 
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Now we still have to express s in terms of CfJt. If we make a section 
perpendicular to the plane of drawing. according to DC (see fig. 11) we 
get fig. 14. 

With the aid of fig. 14. we easily find 

7 2 V -S2 = - p2 + _ p2 6 cos CfJl 
3 3 

Throug h combination of form (6) and (7) we find : 

10 - 8 cos (3 = 3 V6 cos fPl . 

Hence if . diagrammatically. we plot (3 against CfJ!. we get fig. 15. 

o 

z
~c 

_!!.---- : 
_ ... '" I 

~~ 

D F 6 

Fig. H. Fig. 15. 

(7) 

(8) 

15 

To each value of (3 thus belong two equal values of CfJt. but of opposite 
sign. To each CfJ! value belong two CfJ2 and two CfJ3 values. viz . 

. b ± V b2 - 4 ac b =F V b2 - 4 ac 
CfJ2 = arc. sm 2a and CfJ3 = arc. sin 2a 

(See formula 5). 
If. however. (3 as weil as CfJ! are fixed. only one CfJ2 and one CfJ3 value will 

satisfy. 

For CfJ! = 0 CfJ2 = -+- 63° and CfJ3 = =F 63° holds true. 
Now, if CfJ2 is the angle which plane ABD makes with plane ADE 

( fig. 11), th en CfJ2 = + 63° and CfJ3 = - 63° can only satisfy for a positive 
angle (3. For a negative angle (3 only CfJ2 = - 63° and CfJ3 = + 63° can 
satisfy. 

From the foregoing it is clear that for a definite value of (3 only one 
formation of the ring is possible; that. however. when AB. AC and DB 
(see fig. 11) are fixed with respect to a spatial system of coordinates. this 
ring can occupy two different positions with regard to the system of 
coordinates (viz. the position in which CfJt = positive and the position in 
which CfJ! = negative). 

If one position is denoted by l' and the other by {} we have the following 
possibilities. wh en combining the two six~rings: l'l', l'{}' {}y and {}{}. 
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Now. y# is identical with #y. for from the one we can get the other by 
reflecting with respect to a plane perpendicular to the plane of drawing and 
bisecting the angle between 3 and 3' (see fig . 12). 

rr and .of) are not identicaI. for they cannot be obtained from each other 
by reflection. 

Thus. we have only three different possibilities : 

yy. y# and o.o.. 

Symmetry elements of yy and 0.0.: (I') S (S is the plane bisecting the 
angle between 3 and 3'; see fig . 12) ; thus the classification is: Domatic. 

The y# formation has no elements of symmetry. belongs thus to the 
asymmetrical class. 

Por peculiarities of particular formations see table 111. 
We get a special case if one of the rings occurs in the fixed form . Then 

ep I = ep2 = ep3 = arc . cos 1/3 V6 = -+- 35° holds true. 
Prom form . (8) it then follows: p = 60°. 
Ring 11 can now likewlse occur in the fixed form; in projection we get 

then fig. 22; so ep4 = ep5 = ep6 = -+- 35°. 
Ring 11. however. can also have the mobile configuration. thus the 

formation in which ep4 = + 35°. ep5 = - 74°. ep6 = + 35° and ep4 = - 35°. 
ep5=+35° . ep6 =-74°. 

We have ascertained all the possibilities presenting themselves in the 
case of two six~rings which have been coupled in cis~position. We shall 
now try to find what possibilities present themselves in the case of two 
six~rings being coupled in trans~position . 

, , , , 
3 \3' , 

Fig. 16. 
AB 

If we project in the same way as in fig. 11. we 
get fig. 16. 

We must now build ring I on 1 and l' and ring 
II on 2 and 3'. If we call the projection of the 
angle between 2 and 3' : p'. then p' = 120° - P 
holds true. 

Now. it follows from formula (8) that pand p' 
may not become greater than 70° (so for ep I = 0) . 
If P = 50° th en p' = 70° and vice versa. Conse~ 
quently. pand p' can only move between the limits 

50° and 70°. Hence. we can never build a ring on 2' and 3. unless p is 
negative (if the angle p which is drawn is taken as positive) ; but in th is 
case a ring on 2 and 3' is impossible. 

In analogy to the discussions about the six~rings with cis~coupling . in 
this case we have the following possibilities : 

In the case of cis~coupling of two rings with mobile configuration. both 
rings have. each considered on its own. the same formation. This does not 
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hold in the case of trans-coupling. therefore we designate the various 
positions of ring I with )11. and {f1' and the various positions of ring 11 with 
)'2 and {f2; while in the case of cis-coupling we did not use indices. 

In the last-mentioned case )l1{f2 is not identical with )l2{f1; for they 
cannot be obtained from one another by reflection. All formations in the 
case of trans-coupling of two rings with mobile configurations have no 
elements of symmetry. they are thus asymmetrieal. 

We get a special case if one of the rings occurs in the fixed configuration. 
Then p = 60°. hence p' = 60°. Ring 11 can now either occur in the fixed 
configuration or in a particular formation of the mobile configuration (the 
formation for which: fP4 = + 35°. fP5 = + 35°. fPs = - 74°. 

If both rings occur in the fixed configuration. we get in projection fig. 23. 
Elements of symmetry: m 11 (I' I') S . Classification : prismatic. 

If we plot fP! against fP4 (see fig. 11) we get the diagrammatical repre­
sentation of fig . 17a in the case of two six-rings with cis-coupling. Two 
lines making angles of 45° with the fPj. and the fP4 axis represent the 
geometrical place of all possible values of fPl and fP4 which belong together. 

~ 

J ... -------- -------

a 

Fig. 17. 

, 
'1'+. 

47 

For two six-rings in trans-coupling we get the condition of fig. 17b. 
By expressing p in terms of fP!. and p' = (120 - p) in terms of fP4 

through form. (8) and then eliminating p. we obtain the relation between 
fPl and fP4. of which the diagrammatical representation has been drawn in 
fig. 17b. 

This relation is as follows: 

3 (cos 2 fPl + cos2 fPi) - 5 V6 (cos fPl + cos fPi) + 3 co~ fPl cos fPi + 14 = O. 

From the diagrammatical representation it is obvious that the mobility 
of two six-rings in trans-coupling is much slighter than of two six-rings in 
cis-coupling. 
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In table 111 we give a summary of the configurations and formations of 
the double six~rings deducted here. 

TABLE III. 
The double six-ring . 

configu- conngu- configuration elements 
ration ration Formations of c1assincation 

ring I ring 11 I + 11 symmetry 

I 
mobile mobile very mobile irregular y y , y3o, 3030 none asymmetrical 

~ 
y y HP (I' 1') S S rhombic pyramidal 

bed-bed y30 S domatic 
3030 HP (I' I' ) SS rhombic pyramidal 

crossed-crossed m 11 (I' I') S prisma tic 

nxed mobile fixed bed-chair none asymmetrical 

nxed nxed fixed chair-chair HP sfenoidic 

mobile mobile slightly mobile irregular ;' 1 ;'1, )'1 9-2. :t1)'2. :tI :J-2 none . .. asymmetrical 

fixed mobile nxed bed-chair none asymmetrical 

nxed fixed nxed chalr-chair m 11 (I ' I' ) S prismatic 
I 

In order to make a correct survey possible, we shall draw the symmetrical 
formations together. 

1 
~ 
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I 
1" 
i 

els-bod-bod 1''1 

Fig. 18. 

HP (I' n S S 
rhombic pyramidal 

(rhombic) 

- .... 

els-bod-bod 41' 

18 

F ig. 19. 

S 
domatic (monoklin) 

cls-ero •• od-cro ••• d 

Fig . 21. 
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21 
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, 
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\ ' ......... 

\ 
\ 
\ 

.~ 

cls- chalr-cha(r 

Fig. 22. 

\ 

uP sfenoidic (monoklin) 

trallS-chalr-chalr 

Fig. 23. 

22 

._ ...... -

m II (I' I') S prismatic (monoklin) 

Summary. 

In the foregoing we have systematically investigated all the possibilities 
which present themselves in the single and double carbon six-rings. 

The only farces which we allowed to carry weight with our investigation 
were the "farces of affinity" and the "directing farces" . We have assumed 
the directing farces to be great enough to prevent somewhat important 
changes of valence angles and on th is basis we have founded our in­
vestigation. 

On this basis we deduced on strictly mathematical grounds that two 
configurations are possible for the carbon six-rings. One of these con­
figurations shows an infinite number of formations continuously passing 
into one another, with the other only one formation is possible ; hence the 
names" mobile configuration" and " fixed configuration" . We have indicated 
in what way the characterizing magnitudes for each formation are to be 
computed and have indicated the symmetry elements for the formations 
which receive consideration. 
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Quite analogically, we have extended the discussions on the single six~ 
ring to the double six~ring. 

We have, however, entirely neglected the ster ic forces and the dipole 
forces. If we could consider these, we should be able to point out which of 
the configurations and formations found here are the most probable ones. 
N ext time we hope to come back on th is question. 

Anticipating the facts which we shall have to state then, we only wish 
to point out th at the spatial format ion which is always being given for the 
cis~dekalin, the cis~bed~bed yy format ion (see fig. 18) is certainly not the 
most probable one; we shall rather have to choose the cis~chair~chair 
configuration (see fig . 22). 

We equally want to point to the fact that perhaps some of the isomerism 
cases of the six~rings, which are being recorded as cis~trans~isomerism, 
must be reduced to the configuration isomerisms which we have traced 
here ; for there is still too little attention being paid to the latter isomerism 
possibilities. 

In connection with these problems of isomerism, we want to draw 
attention to a systematical classification of isomerism given by Ir. F . 
TELLEGEN in Part IV of his dissertation. Delft 1934 (yet to appear) . 

Lastly I want to express my thanks to Prof. BÖESEKEN, Prof. ZWIKKER 
and Ir. TELLEGEN for the discussions which I might have with them about 
the questions treated in th is paper. 

Delft, April 1934. 

Physical Laboratory of the Technical High School Delft. 

Botany. On the pea test method [or auxin, the plant growth 
hormone. By F. W. WENT. (From the WILLlAM G. KERCKHOFF 
Laboratories of the Biological Sciences, California Institute of 
Technology, Pasadena, California). 

(Communicated at the meeting of September 29, (934). 

Introduction . 

. For experiments on auxin the test method which has been used almost 
exclusively is the Avena method, described by me (1928) and modi6ed 
by VAN DER WEY (1931). This test is quantitative and relatively easy, 
but it requires a constant and high humidity and constant temperature. 
while all operations have to be carried out in red or orange light. To 


