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Mathematics. Electromagnetism. independent of metrical geometry. 
4. Momentum and energy; waves. By D. VAN DANTZIG I). 
(Communicated by Prof. J. A. SCHOUTEN). 

(Communicated at the meeting of November 24. 1934). 

§ 1. Introduction. 

A well~known difficulty 2) in general relativity is: which is the relation 

existing between the density 6; h of stress, momentum and energy. and 
the vector Pi of momentum and energy? This relation should be of a 

form somewhat like CPi = J 6; i d 6 or CPi = J 6/ d 6 j , integrated over 

a three~dimensional space. Neither of these integrals. bowever. is invariant. 

for integration of a vector S/ d 6 j presumes addition of vectors in 
different points. a process which has no meaning, except in Euc1idian 
spaces. Moreover. and apart from the special way in which Pi is to be 

expressed by 6; h, a vector like Pi cannot exist 28) at all in a consequent 

field-theory. Indeed: a vector must always be applied to a certain point 3), 

I) Cf. D. VAN DANTZIG. Electromagnetism. independent of metrical geometry. I. The 
foundations. 2. Variational principles and further generalisation of the theory. 3. Mass 
and motion. these Proceedings. 37 (1934) 521-525; 526-531; 643-652. abbreviated as 
EM 1. 2. 3. 

2) Cf. W. PAULI. A. S. EDDINGTON, l.c. EM 1. 523. note 3). 

2a) With "exist" we mean here : exist. independent of any choice of coordinates. 

3) Por the transformation-formu\ae Pi - Pi' = A{. PJ are on\y well-defined if it is 

known. in which point the A{. = di' ij are to be ca\cu\ated. 
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whereas Pi should be the total amount of momentum and energy. con~ 

tained in a finite volume and therefore would belong to this volume in~ 
stead of to a definite point. Hence total (= integrated) momentum and 
energy of a field is not a well-defined notion. 1) 

Nevertheless light~waves exist. in general relativity also. and 50 does 
the wave~vector XI. But how then can PLANCK's law E = h v and 
EINSTEIN'S extension Pi = h Xi have a meaning? It is this problem. which 

will be solved in this paper. 

The result is: for a plane~polarized monochromatic wave 5) 6; h dege~ 
nerates into a product 

(1) 

where 

m3h = {:jh
j q;. 

J 
(2) 

is the "action~.current". used in EM 2 (8). Hence. instead of first inte~ 

grating 6; hand then dividing by Xi (which should give hc). we must 
first divide by XI (which is possible because of (1)) and then integrate. 

50 that the law of PLANCK~EINSTEIN takes the invariant form J r;ISJhd6h=hc. 

In the special case of plane waves. where the Xi are constant numbers. 
both forms are equivalent. 

Moreover. it will be shown (§ 4) that relations (1) and (2) hold not 
only for light-waves. i. e. waves without current. but also for waves 
with current 6) (Cf. § 2). supposed that the latter is "vibrating" also. 

and that 6; h is replaced by a generalized quantity ~; h. in which terms 

containing the current anq the potentials are included (§ 3). Aside Si = O. 

i. e.light~waves (Cf. § 5). the other special cases F lj = 0 and 1) = y Hij {:jij =0 
are remarkable. In these latter cases )fii is proportional with the electric 

current 51. whereas in the former case )fil is because of (1) "Ic times the 

Pointing~vector. together with the energy density. Moreover. )fii satisfies 

the "equation of continuity" ai)fii = 0 for arbitrary single waves as a 

consequence of the equation of motion (Cf. EM 3. § 4). Apparently)fii 
can take entirely the place (but for a factor ''je) of the energy~current; 

1) Contrary to the density of momentum and energy (5 i 1 and also to the momentum 
and energy of a material point. 

5) Shortly: a single wave. The wave·front need not be plane. 
6) We do not ask here. what is the exact physical meaning of such waves. It may 

he sulficient that they are possible solutions of MAxwELL's equations. For a particle in 
rest, i.e. sa • O. the waves are stationary. i.e. Xi • O. 
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also for arbitrary single waves. It seems that in the general case. where 

5lW and Si are not proportional. intimate connections with the pheno
menon of spin exist. 

Finally it will be shown in § 8 that not only MAXWELL's equations. 
but also the equation of motion and the wave-equations can be brought 
into a very simple form. invariant under arbitrary transformations in 
five coordinates. but for the condition that the physical quantities are 
independent of the fifth coordinate. It cannot be decided yet. if this 
invariance has another than a merely formal meaning. 

§ 2. General single waves. 

A single (i. e. plane-polarized and monochromatic) wave is usually 
represented by equations of the form 

o • .rfi. 7). CPi = CPi sm 'P. (3) 

where the phase q, is a linear form in the coordinates ~i if the waves 

are pJane. whereas the "amplitudes" ;Pi are constant numbers. Both con

ditions can only hold for special (e. g. CARTEsian) coordinates. We will 
drop the first condition altogether. i. e. we allow cp to be an arbitrary 
function of the coordinates. Then the wave-vector is 

(4) 

so that k * (Xl' X2. X 3) 8) is the ordinary (three-dimensional) wave-vector. 

Xi • - ''jc = à (/>jàct. 9) The condition of constancy of the ;PI cannot be 

omitted entirely. because (3) would become trivial (e. g. with q, = constant). 
We replace it by 

(5) 

which eVidently is satisfied if the ;Pi are constant. but is more general 

and independent of the choice of coordinates. From MAXWELL's equation 

7) h •. ... , m = I, 2, 3. -1; a, ..... g = I, 2. 3. 
8) In order to compare casily our results with the usualones, we split up some 

equations into their spacelike and timelike parts with respect to Cartesian coordinates. 
The symbol * denotes that the equations are not generally invariant. In space the ordinary 
vector-symbolism will be used . Vectors wil! be denoted by fat letters. We must. 
however, keep in mind that E, H, A, k are really covariant vectors, i.e . pairs of 
planes, whereas B. D, I, Ware covariant bivectot's, i.e. tubes (or contravariant vector 
densities, i.e . ordinary vectors per volume) . 

9) We measure phases in radians, not in circonferences. Hence our v is usuaJly called 
2 :u'. We use also DIRAC's h. i. e. PLANCK's h, divided by 2" . 
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Fij = 2 0[1 epj) (Cf. EM 2 (1) 11) and (3) follows Fij = 2 (O[i q;j) sin cp + 
+ 2 X[I q;j ) cos CP. Hence (5) expresses the condition th at the bivector Ftj 

is entirely a consequence of the wave~character of the field only. 
In a part of space~time, where is nothing but light, we have 

51 = O. It seems however natura!. because of the fargoing analogy of 

MAXWELL'S equation Si=Oj .pi
j (Cf. EM2 (1)1) with II (see above), to 

consider also the more general case, where Si and .pi j shall also be 
"waving" functions : 

.pij = i>i
j sin cP • (6) 

where the condition analogous to (5) will be 

o . . 
Oj:Ql} = O . (7) 

Hence such a generalized wave is characterized by 

ep i = q;i sin CP; .pI j = ~ij sin CP; ! 
o o . 

Fij = Fij cos CP; 51 = Si cos cP ; 

(8) 

(9) 

Splitting up (9) into space~ and time~components, we get 

B ~ k X A E ~ - k ep + "Ic ' A 

I/cl~kXH+ ·/cD e~k . D ~ . (10) 

Hence the direction of B is parallel with the intersection of E and 
the wave~front k. 11) 

The equation of motion Fij s j = 0 (Cf. EM 3 (36)) becomes here (by 
exclusion of the trivial case Xi = 0, i. e. cP = constant) by means of (9): 

(11) 

10) We use the symbol '" to indicate that only the amplitudes of both members are 
equal. The phases in both members of (10) differ by :t/2. 

11) In the metrica) theory the relations E. B = 0 and k . B = 0 would be interpreted 
by saying that E and k (i.e. the contra variant vectors orthogonal to the planes of E and 
of k respectively) were orthogonal to B. Scalar products are built with + -signs. 
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Now the "action-current" (2) becomes here 

. 0 . . 0 

m3' = f;>'J cp . sin 2 tP 
J 

(12) 

or. if W • (m3 1
• m32

• m3 3
) and Q • m34 are the space- and time-compo

nents of m3i
: 

From (12) follows by (5) and (7): 

. 0 i ' 0 

Oi m3' = 2 Xi f;> J cp. sin tP cos tP 
J 

(13) 

(14) 

Hence the equation of motion (11) takes the form of a conservation-law: 

(15) 

We shall see later (§ 5. 6) that (IS) is the invariant form of the law of 
conservation of momentum and energy 12). It expresses the fact that the 
integral 

(16) 

extended over any space-like section through space-time. is constant. 
This holds also if the section is taken through a part of space-time. 
bounded by a three-dimensional tube (e.g. a moving box). such th at at 
its boundary 

(17) 

This condition will surely be satisfied if f;>i
j d 6 j = O. Then we have 

also Si d 6 i = O. i. e. the walls of the box are impenetrable for charges 13). 

Also (17) wiJl be satisfied if CP[i d 6 j ] =0. Then we have also ~Ij d6j = 0. 14
) 

which means in the case of light-waves that the walls are perfect mir
rors 15). Generally we may interpret (17) as impenetrability of the 
boundary against energy. 

12) It is remarkable that also the equation oE motion oE point-mechanics (EM3 (14)) Is 
equivalent with the conservation-Iaw EM3 (18). 

13) However. the condition Si d CS i = 0 is not sufficient. except IE ®i and Si are pro

portional. 
14) Indices are always raised and lowered by means of the quadrivector-densities 

Q:hljk. Q:'hijk' introduced in EMI. p. 524. CE. also my paper The Eundamental equations 

oE electromagnetism. independent oE metrical geometry. Proceedings Cambridge Phil. Soc. 30 
(1934) 421-427. cited as P E . 

15) At the boundary both ~ij d CS} and ~ij d CS} must be the same Eor both media. In the 

walls oE the box ~Ij must be zero. ~ij must not. because of Si -f=. 0 in matter. 

55 
Proceedings Royal Acad. Amsterdam. Vol. XXXVII. 1934. 
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As wlc has the dimensions of an action, the condition 

(18) 

is of exactly the same nature as the condition 

(19) 

Whereas (19) expresses the fact that the box contains a finite number 
of indivisible charges (electrons, etc.), (18) will express the fact that it 
contains a finite number of indivisible "atoms of action". Indeed, we shall 
see in § 4 that (18) is equivalent with the law of PLANCK-EINSTEIN. 

§ 3. Generalized stress, momentum and energy. 

The ordinary stress-momentum-energy-affinor-density is 

Because of the analogy between MAXWELL'S equations land 11 it seems 

natural to extend it with terms Cl qJj ?,h + C2 A7 qJj sj. In order to obtain 

the right value for the energy-demiity (time-time-component) we must 
take Cl = I, C2 = - t . Then instead of (20) we get: 

In particular we have 

(22) 

Hence to the ordinary terms - 6i 4, which belong to the energy contained 
in empty space come two new terms which constitute the part of the 
energy, contained in the charges, viz. the electrostatic energy-density 
te qJ and the density of the "self-potential" of the current 1J2 c. I . A. Also 
we have from (21): 

(23) 

Here I Ic 0 X Band '"Ic A are the well-known expressions for the density 
of the momentum of the field and of the charges respectively. In 

(24) 

16) n and n' Bre arbitrary integers. 

17) A7 is the unity-affinor ; its components are = 1 for i = h. and = 0 for i i=. h. 
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the first term is POINTINO'S vector, whereas the second is e qJ v/c 18), 
i.e. the energy, transported by the charges. Finally. we see that the 
charges exert stresses, analogous to the MAxwELLian ones. 

Because of the identity 19) 

F ç;..hk + H ~hk - I Ah F ç;..jk - I Ah H C7:;jk 
ik 'hl ik 0 -"2 i jk'hl -"2 i jk 0 •• (25) 

holding for two arbitrary bivectors E j • Hij 20) we can write st; h also in 
the form 

c:- .h _ H ~hk + ;;> h + I Ah (I H ~jk ;;>j) 
~I - - ik 0 qJi'" Y i "2 jk 0 - qJj '" • (26) 

wh ere the coefficient of A~ is equal to ®. 21) 

§ 4. The law of PLANCK~EINSTEIN. 
Now let us consider a single wave as defined in § 2. Substitution of 

(8), (9) in (26) gives at once by (12): 

(27) 

Hence in the special case wh en the wave is plane (with respect to 
certain, e. g. CARTESian. coordinates). i. e. if the "i are constants. we can 
write the condition (18) in the form 

~JCl-.h d'2::: ~ JClDh de:::. - h ePi - .>!.i v::Jh - "i = Oh - n "i (28) 

which is the law of PLANCK~EINSTEIN. However. it is to be noted that 

®i = 5ID' sin 2qJ. whereas st/= i ;hsin qJ cos qJ. Hence the general con~ 
dition (18) may only be brought into the special form (28). if the phase~ 

factor in st; h is changed from sin qJ cos qJ into sin 2 qJ. This now is 

exactly what is done in the usual theory. where only the part 6; h of 

st; h is considered and where the ~ij are replaced by gik gjl Fkl which have 

with ~iJ a difference in phase of t n. 

Hence we have proved th at the ordinary quantum~condition (28) is a 
special form of our condition (18) which is of a much more general 
nature and. moreover. invariant under arbitrary transformations of 
coordinates. 

18) v = 1/,= I is the velocity of the charges. 
19) Cf. li). It is easily verified by means of the identities. given in FE. p. 425. footnote. 
20) A special case of (25) is: 

H' k ,"\hk - I Ah H . ç;..jk 
I 'hl -"4 I ,k 'hl 

21) Cf. EM2 (7). In (21) the corresponding coefficient was equal to -.p. Cf. EM3 (40). 
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§ 5. The case ~F = 0 (light). 

From equations (9). (11) follow some identities which will of ten be used: 

5ffi1 " i = O. 

~ij fPj = O. Si "i = O. Si fP i = O. E j f)i
j = O. ! 

. . ~- . 
5ffi' fP i = O. Flj 5ffi' = O. Flj 51 = O. Fij ~ - O. 

· (29) 

~I' 
o} "j = O. 

Now let us consider a light~wave. determined by 

"' I ç..ii - 0 
:;, '" 'hl "j - • . . . . . (30) 

In particular we have by (1): 

· (31) 

i. e. the action~current is proportional with the combination of the 

POIr'HING~vector S = E X H. and the energy~density sr = - 6 i1
• Hence 

in this case (15) is equivalent with the law of conservation of momentum 
and energy. By splitting up (30) and (31) we find with the aid of (9) 
and (11): 

k. D ~ O. W ~ - cl. S = cl. E X H.! 
• (32) 

Q ~ cl. sr = - ·Ic k. (H X A). 

With respect to the geometrical representation. mentioned in 8) we 
remark that the initial plane of k is the wave~front. the initial plane 
of E . is the polarization~plane . the intersection of the initial planes of E 
and H is the light~ray W. The vibrating electric and magnetic vector 
which are usually considered are Band D (and not Band E. or H 
and D); their directions are contained in k . In the special case of empty 
space the three planes of k. E and H form an orthogonal system. 

§ 6. The cases F i j = 0 and 1) = O. 

A second special case is given by 

Then a scalar À. exists. such that 

Then from (9) and (11) follows: 

5ffih = À. Sh. 

· (33) 

. . (34) 

· (35) 
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i. e. the action-current is proportional with the electric current. As the 
lat ter in this case is proportional with the energy-current. (15) again is 
equivalent with the law of conservation of energy and momentum. Sub
stitution of (35) in (18). (19) shows (taking the case n = n' = 1) that the 

mean value ), of ), is 

I = hele. . (36) 

Hence we see that 

. (37) 

mag be eonsidered as the probabilitg-current. Note. however. that both 
sides of (37) differ by a phase-factor sin2 lP/cos lP, the period of vi-

bration of 5illh being twice that of Sh. 

H. according to EM3 (33). PI = <Ic . epi is interpreted as the momentum 

and energy of the particle in the sense of point-mechanics. we find 
from (34). (36). supposing "i to be approximately constant: 

(38) 

From (9). (11) follows by the aid of (25). (29): 

2 S[h 5illil = ~hj ~ik Fjk = _ ~hj o:ik Hjk = ~ o:hi • (39) 

where 

'h - 1 H ""ij ~ H D "J - - "4 ij 'è' - • • (40) 

Hence an equation of the form (35) holds not only in the case Fij = O. 
but also in the case 

~= 0 . (41) 

(and in no other one). From (41) follows easily (Cf. 20) and (9)) 

(42) 

Hence a contravariant vector Ui exists. such that 

~Ij = 2 U[i sjl . (43) 

22) For Fij -i=. 0 the Pi of point-mechanics will not he proportional with Xi' This seems 

to contradict (28). However. it is to he noted th at a single wave will not have the 
character of a material point. even if It bears charge. so that it is not to be expected 
that it will have analogous properties. The consistency of (28) and (38) shows that for 
F

'j 
= 0 th is may he the case. 
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As we may without 1055 of generality assume u4 • O. (43) gives by 
splitting up: 

o · -eu. (44) 

i.e. - 0 and H have the character of an electrie and magnetie moment 23). 

Of course the conclusions (36). (37) drawn from (35) remain also valid 
in the case ~ = O. 

§ 7. The genera 1 case. 

Now let us suppose Si -::t- O. F ij -::t- O. ~ -::t- O. Putting for some arbitrary 
value of À. 

(45) 

we get from (39): 

Without 1059 of generality we may assume Z4 • O. By extending the 

integrals (18), (19) over a space t = constant we then find J ~ Zi d 6 i = 0 

hence À. = hele. i. e. (36). Splitting up (46) we get 

B " ez. (47) 

Hence B has the character of an electric. E that of a magnetic moment 
(not inversely!) 23). The vector z does not bear a phase~factor. From (39) 
follows also 

where yh • - cl vJ. • Zh. so that Band E have also the character of a 
statie moment and of a moment of momentum respective\y 23). 

Evidently the physieal meaning of these waves, except in the cases 

Si = 0 and Fij = 0 is still very mysterious and rather doubtful. 

§ 8. Five~dimensional formalism. 

If we write 

rij5 = E j ~ • 

J(;~ - epi' \ 
(49) 

23) I renounce here trying to interpret these relations and to con neet them with the 
spin of electrons. as such an interpretation would be rat her haphazard In this stadium. 

21) An equation of the form (46) exists always as a consequence of the equation of 

motion Fij sj = O. For 1) = O. however. zi cannot be expressed in the form (45). 
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MAXWELL' s equations EM2 (1 I. 11) may be subsumed into one set, viz. 

(50) 

t, x, À, ft, ... , = I, 2, 3, i,S), if, moreover, we put 

· (51) 

On the other hand the relation (50) between a bivector and a trivector 
in five-dimensional space, together with condition (51) leads to a set of 
equations of the MAXWELL-form. 25) Raising and lowering indices with the 

five-vector-densities ft"i. f'v, ft'" i. f' v , defined by ftl2315 = 1. ft'12315 = 1. we 
have 

jfij = o:i j
, jfi5 = - Si i 

~ijk = _ cpijk, ~ljS = ~ij, • 
· (52) 

The equation of motion takes the very simple form 

jflzi. jf'l.lv] = 0 . (53) 

or also jfzi. rû,« = 0 (which is equivalent with (53)). Indeed (53) splits up 

into E j sj = 0 which is the equation of motion, and F
lij 

Fk I] = 0, which 

is a consequence of it. 
The action-density is 

__ 1 .v jfi.p. _ cm 
~ - 4" ""lf' - oU) (54) 

The generalized affinor-density st; h of stress, momentum and energy 
is the space-time part of 

(55) 

The components are 

J/ = st;"h, Tl = o:h
j 

cp., ~ 

Ji s = - HIJ sj, Tl = + t Ej~/j +)t CPi S/ = -~. ~. · (56) 

25) Another five-dimensional formalism which is possible is obtained by putting f. i. 

rij = gj , riS = - CPi ' as E j = Fij 

J(,jk = Sijk J(,jS = Hij , as Sijk = - Sijk. 

Then MAXWELL'! equations become 
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In the case of waves, determined by 

o 0 

.i(l,. = .i(l,. sin cp, Fd,. = Fxll' cos cp 

o[v )(,..) = 0, à[v II')x) = 0 
. (57 

it becomes always 

(58) 

with 

D Z = t ~ ,)1' .7(i.1' ( 

cro i = ?ll?lli"i, ?ll?lli"5 _ .1. ç...ij H - 2 "h 
:.(.U - _ - 4 'hl ij - - <J 

. (59) 

(60) 

The theory treated in § 2-7 belongs to the special case k5 = 0, in 
accordance with (51). 

Though the physical meaning of the fifth coordinate is not yet quite 
c1ear 26), the formal simplification to which it leads is striking, 

26) Though of course it may be interpreted in one of the well-known ways. Cf. the 
references. given in EMI. p. 522. note 2). 
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If the radius of the spheres is made 30 cm then the values of f(y) 
for various values of rare 

r • f(y) 
0 cm 2.00000 
0.1 .. 1.99476 
0.5 .. 1.97384 

1.94764 

It is easy to make the radius r of the pendular body smaller than 
0.5 cm. but even when it has th is value. neglecting r eaus es a djfference 
of only 

2.00000-1.97384 X 100 = 1.30J0. 

If water is used at a temperature of 17° centigrade. th en the force 
becomes 

p= 30 n f{y) X 0.07434 = 7.02 f(y) grammes. 

So for various values of the radius r the force becomes 

r 

o cm 
0.1 .. 
0.5 .. 

1 " 

P 
14.014 grammes 
14.003 
13.856 
13.672 


