
Physics. - The mechanism in the positive column of a discharge. 
By L. S. ORNSTEIN, H. BRINKMAN and T. HAMADA. (Communication 
from the Physical Institute of the University of Utrecht.) 

(Communicated at the meeting of February 29, 1936). 

SUMMARY. 

The measurements by HAMADA 1) of the temperature T of the gas along the diameter 
of a narrow tube, containing the positive column of a discharge in nitrogen, are discussed. 
The importanee of the determination of T for the mechanism of a gas--discharge is 
emphasized. It is shown that the velocitydistribution of the electrons, depending on the 
parameter Eo. À (Eo axial fieldstrength, ), electronic mean free path) varies along the 
tube-diameter; this variation is only due to the radial variation of T. 

For the discharge in nitrogen the fact is reported that EoÀ (= 0.066 Volt) is independent 
on the discharge conditions for pressures between 10 and 30 mm. At lower pressures Eo). 
increases, thus electrons with high energies become more probable. 

The different shape of the intensitycurves over the tube-diameter for N2 and Nt bands 
are discussed. It is proved qualitatively that the effect of the increase of the total 
excitationprobability of the N2 bands with temperature T (due to the excitation from 
N2 molecules in higher vibrational states) must be taken into account in order to explain 
the experimental facts. 

In an appendix an elementary deduction of the velocitydistribution of electrons in a 
gasdischarge is given. 

In a previous communication 1) one of us has given a survey of the 
main results of temperature-measurements in the positive column of a 
discharge in nitrogen. Together with the theoretical interpretation of these 
results, we will give in th is paper a more general description of the 
mechanism in the positive column of a discharge. 

§ 1. The temperature of the gas in a discharge. 

In a discharge one of the most important facts to be known is .the 
temperature T of the gas as a function of the place. If in a cylindrical tube 
the temperature has a maximum in the axis of the tube, the gasdensity 
has a minimum. The electrons and ions moving in axial direction, thus 
have the highest mobility in the axial regions of the tube. So the current-

1) T. HAMADA. Proc. Royal Acad. Amsterdam, 39. 50 (1936). Determination of the 
temperature in the column of a discharge from the intensity-measurement of rotational 
band spectra. - See this paper for experimental details. 
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density as a function of radius shows a still more prominent maximum than 
the radial electron distribution does. The radial temperature distribution is 
therefore strongly related with the so caIled radial "contraction" of the 
discharge, an effect that is easily noticed as the gaspressure increases. 

Besid~s in many otheraspects fhe temperature of the -gas -is of high 
interest. The phenomena -in the discharge in which the mean free pa th 
of the particles plays a röle (diffusion, velocitydistribution of the electrons 
and excitation of the gas by electrons) depend on the gastemperature; 
further in the eHects depending on the v.d. (velocitydistribution) of the 
gasparticles, as th ere are the effectivity for coIlisions of the second kind, 
the contribution to the luminosity by thermal excitation of the gas, the 
widths of spectral lines, etc. 

In the figs. 6-12 of T . HAMADA'S paper the temperature as a function 
of radius is shown for a number of pressures and total currents. These 

: functions can be considered as parabolae: 

T= To-{J r 2
• 

Near the waIl of the tube the measured temperatures may be too high. 
Por it is difficult to determine T as the N 2-bands have a low intensity 
compared with the intensity in the axis of the tube and further, due to the 
way in which the end-on observations have been performed and measured, 
the averaging over a certain reg ion of the tube-radius results in a systematic 
error. 

The determination of T from the intensity-distribution in bandspectra is 
in our case accurate within 5 %. Por th is reason, together with the fact 
that in some cases only a few points fix the curve, the values of {J , 
determining the shape of the radial temperature distribution, are inaccurate. 
They don't show a weIl defined dependence upon pressure, currentstrength 
and watt-input. We can only say that the observed values of {J increase 
with increasing wattinput per cm in the column, in accordance with the 
theoretical expectation from the energy-equation. 

The values of the temperature in the axis, T 0, are better defined. In 
fig. 5 of the cited communication of T. HAMADA the linear relation between 
temperature and the product p.i has been shown. More than th is curve 

the plot of Eo (Eo = fieldstrength in the axis of the tube) against ~o has 

a direct physical meaning (fig. 1). These curves show the relation between 

_ fieldstrength and gasdensity (Cf) ~J' It suggests the constancy of 

EoJ.. (J.. Cf) f, the mean free pa th of the electrons) with varying discharge 

conditions; only at low pressures EoJ.. increases. These results are not in 
_ accordance with the relation between Eo and }, given by GÜNTHER-

SCHULZE 2). 

2) A. GÜNTHERSCHULZE, Zs. f.Phys. 41, 718 (1927); 42, 763 -(1927) . 
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In fig . 2 (upper curve) we plotted the value of Eol in electron~ Volts as 
a function of gaspressure. Each value is the mean for all the currents at 
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currents at constant pressure deviates from the average less than 7 %, 
e~cept for- p = 3 mm, in which case Eol differs from the mean value 
+ 15.7 %, -8.7 %, -7.0 % for i=25, 50 and 75 mA. respectively. 

For the calculation of Eol we have used as a value for the mean free 
path of electrons in N 2 at 1 mmo pressure and 0° C 2.85 . 10-2 cm. This is 
a mean value for electrons moving in N 2 with velocities aequivalent with 
about 5 e.v. 3) 

§ 2. Canclusians abaut the velacitydistributian (v.d.) af the 
electrons at different discharge canditians. 

The value of Eol is the parameter which fix the v.d. of the electrons. In 
different ways 4) one can show that the number of electrons having 
energies between e and e + de is given by 

( 
ê )2 

n. (t) • de = C . Eli • . e -a Eo)· • dE 

[ a = ! ~2' m = mass of electron, M = mass of gasparticIe. 

e = electron ic Charge] 

(1) 

assuming only elastic collisions of the electrons with the gasparticles, very 
small kinetic energies of the gaspar'ticles compared with the energy of the 
electrons, small Eol values (Eol < 1 Volt), l independent on the electron 
velocities and no electrostatic interaction of the electrons among each other. 

With th is distributionfunction one can prove that the mobility ft of the 
electrons 4) is given by 

(c = constant) .. (2) 

If the excitation and ' ionisation of the gasparticles is taken into account 
the above mentioned simple form of the v.d. function alters in a way 
typical for the gas in question 5). But still the value of Eol is the most 
important parameter. Complications arise if the gastemperature T is so 

3) R. B. BRODE, Rev. Mod. Phys. 5. 257 (1933) (fig. 11). 
4) M. J. DRUYVESTEYN. Physica 1. 1003 (1934); Physica (old series) 10,61 (1930). 

A. M. CRAVATH, Phys. Rev. 46, 332 (1934). 
B. DAVYDOV, Sowj. Phys. 8, 59 (1935) . 
P . M. MORSE, W. P. AL LIS and E. S. LAMAR. Phys. Rev. 48, 412 (1935). 

For an elementary deduction of equation (1) see the appendix to this paper. 
5) M. J. DRUYVESTEYN, Physica 3, 65 (1936) (Neon). 

J; Ä. SMIT. to be published shortly in Physica (Helium). 
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high, that the kinetic energy of the gasatoms is not very small compared 
with the electronenergies 6) and if the mutual electrostatic interaction of 
the e1ectrons must be taken into account. In these cases Eol, Tand n. 
determine the v.d. In the nitrogen~tube which T . HAMADA used, we estimate 
the number of e1ectrons per cm3 in the axis of the tube to 1010 à 1011 • 

The electrostatic interaction may then be neglected and we assume that in 
our cases the temperature of the gas doesn't have an appreciabIe influence 
on the v.d. of the electrons. 

From fig . 2 we may thus conclude that the v.d. in the positive column 
of the nitrogen~discharge in the axis of the tube is independent on the 
dischargeconditions at pressures between 10 and 30 mmo At lower pressures 
the distribution varies in such a way that higher electron~energies become 
more probable. 

In the tube~axis the v.d. seems to be for a certain pressure rather 
independent on the currentstrength. In the case of 10 mm pressure Eol is 
observed for a large number of currents. In fig . 2 (lower curve, enlarged 
scale!) is shown that there exists in the tube axis a small variation of the 
v.d. with current. 

§ 3. The variatian of the electron ic v.d . along the diameter 
of the cylindrical discharge. 

As the temperature of the gas falls down towards the wall of the tube 
we see that Eol decreases along the tube~radius prop ort ion al to T. Thus 
the v.d. of the e1ectrons differs for the various cylindric zones of the tube 
in such a way that high velocities are more probable in the axis of the tube 
than in the layers near the wall. 

On the first sight against th is conclusion may be objected that outside 
the tube~axis a radial component of the field Er exists and the total field 

E = V E~ + E; > Eo. Qualitatively we shall show, however, that for the 
electron ic v .d. Eol is the determining parameter and not EL 

According to SCHOTTKY 7) the radial field Er has such a value that the 
mean driftvelocity of the electrons in radial direction, due to the combined 
influences of diffusion towards the wall and radial field action, equals the 
mean radial driftvelocity of the positive ions. 

The radial force acting on the e1ectrons is therefore: 

-Er e _ !i dn. 7a) 
n. dr 

the two components of the force acting in opposite directions. 

C) B. DAVY DOV, l.c. and SMIT's paper. 
7) W . SCHOTTKY, Phys. Z .S. 25, 342, 635 (1924) . 

M . J. DRUYVESTEYN, ZS. f . Phys. 8t. 571 (1933). 
7a) d( :) B ol can be calculated Erom equation (1). 

(3), 
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Between two successive collisions the electron moves in a field of strength 

E= VE~ + E;. However, the stationary v.d. is determined af ter a great 
number of collisions, that means, depends on the balance of energy~yields 
and energy~losses . This balancing differs strongly from the case in which 
no radial diffusion, caused by the radial variation of the electronconcen~ 
tration, exists and only an electric field is present. For in 'our case, due to 
the radial diffusion, the number of energy~losses is larger than the number 
of energy~yields and the effect of an E larger than Eo is compensated. 

Quantitatively the influence of the radial field and electron diffusion 
on the v.d. may be calculated on the basis of the fundamental equation of 
LORENTZ 8), extended by the work of MORSE, ALLIS and LÀMAR 4). 'From 
LORENTZ ' s equation 8) one directly sees that the variation of the electron 
v.d. depends on the value of the force acting on an electron (see our 
expres sion (3)) and the value of Er is just so th at this force is very small 
compared with e. Eo. 

A simpIl' and more general prooL that the v.d. of electrons is the same 
if Eo}" remains constant, is as follows. Assuming that the electrical energy~ 
input per element of volume is totally given to the gas by the collisions of 
electrons with gasparticles, we can write: 

Eo . 1= y. ne n 

[l =current density, y is a function of the v.d . of the electrons, n = number 
of gasparticles per cm3 ]. 

Now we know: 

( e = electronic charge) 

1= ne . e . ft . E 

c . }" 

ft= VEo). 

1 
},,=-Q n . 

(Q = total crosssection of the gasparticles for collisions with electrons )" 
Thus we have: 

(Eo ).)'/. = y • 
Q . e . c 

IE the v.d. doesn't vary, then we find Eo)" is constant. 

Conclusion: The temperature variation over the tube~diameter is the only 
reason for the radial variation of the velocity . distribution of the electrons. 

8) H . A. LORENTZ. Theory of Electrons (1909, Teubner) page 266--274; see 
equation (65). 
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§ 4. The excitation of the molecular spectra in the discharge. 

We shall try to give the interpretation of the curves, giving the intensity 
of a negative and a positive band of N 2 as a function of the radius. In 
fig . 13 of HAMADA'S paper such curves are given. The intensity scale for 
these curves, obtained with various currents, must be adjusted in such a 
way that (- as has been proved by further experiments -) the intensity 
in the tube~axis is proportional to the current. This holds as weIl for 
the Nt 0-0 band (Ä. 3914 A) as for the bands 0-3 (,1.4059) and 1-4 
0 .3998) of the second positive bandsystem of N 2 ' Prom fig . 2 we have 
seen the small variation of the electronic v.d. in the tube~axis with current. 
Thus the currentdensity in the axis is practically proportional with the 
number of electrons. It is not exact to conclude that thus the intensity is 
proportional to n" for the function giving the currentdensity at various 
radiï may differ for different currents. The latter may occur, as the 
temperatures along the radius are different for different currents (see fig . 9 
in HAMADA'S paper). However, probably the conclusion that the intensity 
is proportional to the number of electrons is correct. 

Prom the detailed study of the excitation conditions in a discharge 9) , 
one can predict that for the rather high pressures with which we are 
dealing, the intensity of N 2 and Nt bands (assuming excitation directly 
from the fundamental level of N 2) is independent on the pressure (as has 
been checked experimentally by T . HAMADA) and proportional to the 
number of electrons. Using the notation giving in the cited articles 9) the 
number of excited particles 

a. j v. q (t·) . f(v) . dv and 

oe 

fJ J V' . Q' (V'). F(V'). dV' 

t'· m 

o 

E. = energy of the excited state, 
f (v) is the distribution function for the electronvelocities, 
q( v) the excitation function of the nitrogen bands 10) in question, 

F ( V') is the distribution function for the relative velocities of the gas~ 
particles, 

Q' (V') the crosssection of the molecules for a colli sion of the second kind. 
We see that {3 depends on the temperature of the gas. 

9) L. S. ORNSTEIN and H . BRINKMAN, Physica I, 797 (1934) . 
P. J. HARINGHUIZEN, Thesis, Utrecht (1935) . 

10) L. S. ORNSTEIN u. G. O. LANGSTROTH, Proc. Royal Acad. Amsterdam, 36, 
384 (1933) . 

G. O . LANGSTROTH, Proc. Roy. Soc. London, 146, 166 (1934) ; 150,371 (1935) . 
O . HERRMANN, Ann. d. Phys. 25, 166 (1936) . 
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In molecular spectra the intensity of one band is the total intensity of 
all rotationallines together. 

In the investigation of the excitation of molecular spectra we must 
account for the following effect. If the temperature of the gas rises, the 
population of the higher vibrational states of the N 2 molecule (in the 
fundamental l.2-state) increases. At 1500° K the ratio of the number of 
molecules in the vibrational state with quantumnumber 0 to the number of 
molecules in the vibrational state with quantumnumber 1 evaluates Tij' IE 
the excitationprobability from the O-state is small compared with the 
excitationprobability from the I-state the total excitationprobability turns 
out to increase with the temperature of the gas! This is the case for the 
bands of the second positive bandsystem of N 2' That can be seen directly 
from the relative position of the molecular-potential curves on the nuclear
di stance scale 11 ), together with the application of the FRANCK-CONDON
principle for excitation 10). For the Nt band this effect does not occur. 
In both cases no calculations of excitationprobabilities from higher vibra
tional states have been carried out; so we cannot calculate the magnitude 
of this effect. It is very probable th at the relation between intensity and 
current for the positive bands is affected by the reported phenomena. 

In the case of 10 mm pressure the intensitydistribution along the dia
meter of the tube has been measured for the band À 3914 of Nt as weIl as 
for the band À 3998 of N 2 ' The ratio of the intensity of the N 2 band and 
of the Nt band shows a maximum near the tube axis (see fig. 3; computed 

3 

N2 ~ =1 pm rn 
I 2 

V r---.. ........... r--r-

Il. DIL 5 

5 4 3 2 012345 

Fig. 3. Fig. 4. 

from fig. 13 in HAMADA's paper). As we have seen the v.d. of the electrons . . 

shifts to the lower velocities if we go from the axis towards the wal!. Thus 

11) W. JEVONS, Report on Bandspectra (1932). 
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the remarkable way in which the intensity ratio of positive and negative 
bands va ri es with the radius can only be understood if the effect of the 
variation of the v.d . is more than compensated by the effect of the increase 
of the total excitationprobability with increasing gastemperature. 

For the very low pressure of about lo-l! mm (À. about 4 cm; in th is case 
SCHOTTKY' s theory is not valid). the experimental facts are quite different 
from the case stated above. It has been found by HAMADA (see fig . 12 of 
his paper) th at the temperature is practically constant over the tube~ 
diameter. The small temperature variation in radial direction is shown on 
larger scale in our fig. 4 ( •• T derived from Nt band. ++ T derived 
from N 2 band). Thus there will be a radial variation of the v.d. of the 
electrons. As the temperatures are low the total excitationprobability for 
the N 2 band is the same at different radiï. The intensity ratio of N 2 and 
Nt bands has in this case a minimum at the tube~axis and increases with 
70 % near the wall of the tube. indicating the variation of the electron v.d. 
along the diameter. 

APPENDIX. 

Eiementary deduction of the v.d. of electrons moving in a 
gasdischarge with a constant gradient. 

The following elementary deduction of the velocitydistribution law is 
perhaps of some interest as this law is of utmost importance for the 
investigation of the discharge. 

We assume that the mass M of the atoms (or molecules) is very' large 

in comparison to that of the electrons. so that .Zr may be considered as 

small compared to unity. Further we assume th at the velocity of the atoms 
is small (low temperature of the gas). The electrons move in an electric 
field of strength E. Under these assumption the energy of the electrons is 
changed by the field between the collisions with the atoms in positive or 
negative sense. and this energy is changed af ter each collision in the 

average with the factor 1 - Z;;; = l-f3 = a. 

As a first approximation the distribution law shows a spherical symmetry. 
Let us now followan electron on its way during n free paths (n - 1 

collisions ) and let i l • i2 • .... ... in be the successive paths between the 
collisions. which form angles {}l ' {}2 ..... .. . {}n with the direction of E. Let 
the energy at the beginning of the path be eo. than we have: 

en = ( .. . [I (eo + E e I. cos {}.) a + E e 12 cos &21 a + E e 13 COS *3] a + ... 
. . . ) a + Eeln 'cos *n 

or 
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The mean value of En will therefore be: 

as the mean value cos {} = O. Af ter a very large number of collisions the 
particle, with initial energy EO' has the energy O. 

_eo 
Let us now determine 132 : for this quantity we get: 

n 

as 

(p -=t- q). 

212 

Now li cos2 {fl = 3' where 1 means' the mean free pa th of the elec~ 

trons. Thus we get: 

2 E 2 2 '2 1 2" 2 _ 2 2(n - 1 + e A -~ 
En - EO a) 3' 1 _ a2 

for very large values of n we find: 

- E'e2 12 M .2 _ _ _ :;--_ _ 
~ - 6m . 

Now the change of the energy distribution of the electrons is given by a 

generalised diffusion equation (PLANCK~FoKKER) in which f3 E~ (n ~ v:>} 
is the diffusion constant. This can be proved taking (I) as an EINSTEIN~ 
LANGEVIN equation of the form 

and deriving the diffusion equation in the common way. The distribution 

in energy is then a GAussian distribution with modulus 2e2: however, 
taking into account that for a given energy the velocity can have any 
direction with the same probability, we find for the velocitydistribution 
equation (1) of this paper. 

*) Compare: G. E. UHLENBECK and L. S. ORNSTEIN, On the theory-of the BR()WNian 
Motion, Phys. Rev. 36, 823 (1930). See especially §§ 5 and 6. 


