
4.77 

to less than half its previous value. In the vicinity of their CURIE~points, 
nickel and iron evidently behave in a quite analogous manner with respect 
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to their electrical resistances, as weU as to their thermoelectrical properties 
towards copper. 

Groningen. Laboratory lor lnorganic and 
Physical Chemistry ol the University .. 

Physics. -- The most general photographic density~law. By A. VAN 
KREVELD and L. S. ORNSTEIN. Utrecht. (Communication of the 
Dutch Foundation for photographic and cinematographic research). 

(Communicated at the meeting of March 28, 1936) . 

I. Introduction. 

A photographic density~law is arelation between the intensity I of 
the light which faUs on the photographic plate. the time of exposure t 
and the effect Z. caused by the exposure. Z may by either the develo~ 
ped density or the number of developed grains or any other measure 
for the photographic effect. 

The following considerations are limited to the most important case 
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of exposures without intermittency effects. Then the general relation 
between I. tand Z can be written as follows: 

cp (I. t. Z) = 0 . (1) 

The flrst attempt to estimate this relation was that of BUNSEN and 
ROSCOE (I). who formulated the so-called reciprocity law: 

cp (I X t. Z) = 0 . (2) 

According to th is relation Z is a function of the product I X t (= the 
energy) only. 

SCHWARZSCHILD (2) formulated the following law. which fltted his ob­
servations more exactly: 

cp (I X tp • Z) = 0 (3) 

p being a constant of the emulsion. the so-called SCHWARZSCHILD-exponent. 
But neither law could be conflrmed by later investigators; p appeared 
to be a function of land t. Therefore. the relation (3) is merely the 
general relation (1). p being equal to 

_ (à!) X ~. (See (3)) . . ' ot z I 

Besides (2) and (3) a number of other relations have been formulated 
in the course of time. most of them being purely empirical and containing 
several arbitrary constants. A well-known example is KRON' s law: 

cp (I X t X V(log 1+ a)2 + 1. Z) = 0 . (4) 

which also failed to be conflrmed in general (1). 
In the last few years. however. some papers have been published. in 

which the relation (1) is compared for different wave-lengths and this 
comparison has led to some more fundamental relations. which. however. 
are less concrete than (2). (3) and (4). 

11. The three fundamental relations. 

Let ). be the wavelength. and let us denote the intensity of a mono­
chromatic radiation of wavelength )./ by Il' Further let us denote the 
intensity of a non-monochromatic radiation by IM. 

IE the mixture in question consists of the monochromatic radiations 
}.I. ~ •.•. ).i •. • ).k we may write: 

IM = IIM + 2IM + ... + JM + ... + nIM = I dM 
i 

JM being the intensity (in the mixture) of the monochromatic compo­
nent ,ti' 
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Then thefollowing three relations hold for the range of norm al ex­
posures: 

(I) 

(11) 

(111) 

The relations land 1,1 were discovered simultaneously. Relation I is 
the mathematical description of the fact (obtained by WEBB (5), and 
more generally deduced by VAN KREVELD (l») that the failure of the 
reciprocity law is equal for all wavelengths. 

Relation 11 (obtained by VAN KREVELD (3), (6), see also WEBB (1)) is 
the photographic addition-Iaw, which permits the computation of the 
density-curve of a mixed colour from the density-curves of ist components. 

Relation 111 (obtained by WEBB (1)) means that the logarithmic 
density-curves of different wavelengths with the same time of exposure 
have a ljneair relation to one another. 

111. Mathematical considerations. 

For the general case that gik =~= 1 (for gik == 1 : see concIusion d) we 
may resolve log 1/ from land 111: 

. (5) 

We define: 

so that: 

. . . (6) 

If we consider the relations land 111 for another pair of colours 
e.g. Ài and À/, we find in the same way: 

log Ii = Hil (t) - Gil (t) X ril (Z) . (7) 

From the comparison of (6) and (7) we conclude: 
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So the expression which is found for log. I does not depend on the 
second index and we may write: 

log Ii = Hi (t) - Gi (t) X ft (Z) . . . . . . (9) 

From I we know that ftk - -61; 
From (6) and (9) we know: ft - Ci k X ft k. 

Hence: 

ç _ ç ç _ Cik ç 
ti = Clklik - - Ciklki = - - tk 

Ck i 
. . . . . (10) 

Ci k and Ck i being constants. 
From (10) we learn that: ft (Z) - Cl X F (Z). 
F (Z) being independent of the wavelength. Thus. we find Erom (9): 

In the same way : 

log Ik = HIc - GIc X Cic X F . . . . . . (12) 

We subtract (12) from (11) and get: 

logIi-logh=HI(t)-Hk(t)+IGk(t) X ck-Gi(t)Xcll XF(z) . (13) 

IE we compare (13) with I we find: 

Hl (t) - Hk (t) + di k _ H (t) + di 

Gi (t) XCi G k (t) X Ck + ei Ic == G (t) + ei 

50 that finally we get following relation (replacing i by Ä) : 

log 11 = H (t) + I G (t) + el i F (Z) + dJ. . . (IV) 

IV. Conclusions. 

a. Relation IV is deduced from I. 11 and 111 purely mathematically: 
50 it describes the observations without any hypo thesis. 

b . Only the two constants el and dJ. are dependent on the wave~ 
length. So the Eunctions H. G and F are characteristic of the emulsion. 

c. Relation IV can also be written in a non~logarithmic form : 

IE we substitute this expression in relation 11 we get a more general 
addition~law : 

"'7 dl X I~(z)e I = {} (t) X cp (Z)G (t) • • • • • (Ua) 
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Or. if we con si der a continuous mixture of monochromatic radiations 
(e.g. sunlight) of the spectral intensity distribution dM. dl. we obtain the 
following form : 

(Ub) 

In the case of Ha we may put JM = q/ X IM and we find for the 
total intensity IM the following law: 

. (14) 

This form is only equivalent with 1 Va when c is constant. or in 
other words when the logarithmic density-curves of all wavelengths are 
parallel. In general this is not the case and th en the form (14) is not 
equivalent to IVa. 

We may draw the following conclusion : 
The density-Iaw {or mixed colours is essentially different {rom that 

{or monochromatic colours and has more complex mathematical properties. 
Only in the case that the logarithmic density-curves for all monochro~ 

matic radiations are parallel to one another. the density~curves of all 
mixed colours are also parallel to them. This was al ready proved in an 
earlier paper (8). It is ho wever. a degenerate case (see conclusion d). 

d. The proof of 1 V was only correct for gik =1= 1. When g ik = 1. 
the relation 111 is replaced by: 

log L = log h + hi k • . (15) 

Combining this with I we obtain : 

(Sik being a constant). 

And IV is replaced by: 

log IJ. = K (Z. t) + di, . (16) 

It is probable. however. though it cannot be proved from I. 11 and 111. 
that in this case the following law holds: 

log IJ, = H (t) + G (t) X F (Z) + dj, (17) 

e. It may be of some interest to compare relation IV with former 
density~laws . The reciprocity law (2) implies that: 

H (t) - - log t; G (t) _ O. 
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SCHWARZSCHILD'S law (3) implies: 

H(t) - -plogt; G(t) = O. 

KRON'S law (ti) is not consistent with relation IV. At all events it 
is clear that G (t) will be small and merely a correction-term. 

V. The most general density-law. 

We shall now consider monochromatic radiations only and emulsions 
for which gik =1= 1. 

Then then general relation IV holds : 

log 11. = H (t) + I G (t) + e l. I F (Z) + di. 

We may ask now af ter the meaning of the individual terms of th is 
expression. 

The most simple term is dl .. It has the dimensions of log I and is a 
wavelength-function which indicates the colour sensitivity of the emulsion . 
By choosing individual measures for the intensities of each wavelength, 
it may be cancelled. 

The only function in IV which contains the photographic effect Z is 
F. It may be considered as the inverse of the logarithmic density-curve 
Z = cp (log I) . The explicit form of the function F is not essentially 
important, as it can be altered arbitrarily by changing the measure of 
the photographic effect Z (e.g. density or opacity or number of developed 
grains or weight of the developed silver, etc.). 

The wavelength-function el. is more important. It indicates how the 
steepness of the logarithmic density-curve depends on the wavelength 
and is independent of Zand t . On the other hand it is known that the 
wavelength-dependence of the steepness is caused by a combination of 
three essentiallY independent factors (9), so that we cannot expect a 
simple analytic form for the function e l .. 

Now only the functions H (t) and G (t) remain . They depend neither 
on the wavelength nor on the density and must have a fundamental 
meaning. It is possible and even probable that they have a simple analytic 
form and further there is a possibility that they are independent of the 
individual photographic emulsion, that means that they are characteristic 
of the photographic process in general. The experimental data known 
to us. however. do not permit more concrete conclusions to be drawn. 

For practical purposes we can plot log I against log t (at constant 
density) and obtain a set of curves log 1= R (log t) with Z as parameter. 
Such sets have been published by several authors (10) . Now relation IV 
expresses that such a set must be a linear set. which means that all 
specimens of the set may be expressed as linear combinations of two 
of them. Hence: 

R (log t) = a RI (log t) + (I-a) R2 (log t) . (18) 
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We tested this relation by the very extensive data of JONES. HUSE 
and HALL (10). They had investigated four different emulsions in a range 
of intensity of about 1 : 107• From their tables 5-8 the log I-log t~curves 
can be easily calculated. The result of our test of relation (18) ist: 

Range of densities Maximum deviation from 
Emulsion considered in our relation (18) in % of 

calculation intensity 

W. and W . panchomatic . 0.6-2.8 iO/o 

Eastman Orthochromatic 0 .i-2.8 iO/o 

Eastman Slow lantern 0.2-3 .0 13% 

Process 0.2-2.8 7% 

The numbers given in this table are the maximum deviations; the mean 
deviations are much smaller. so that we may say that relation (18) is 
fitted rigidly by the data of JONES. HUSE and HALL. while their own 
catenary~formula shows deviations up to a factor 10. We must acknow~ 
ledge. however. that our relation (18) is not such an explicit form as the 
catenary~formula. so that it can be satisfied more easily. Further }ONES. 
HUSE and HALL exposed with white light. while relation (18) was proved 
only for monochromatic light. 

We also examined the data of ARENS and EOOERT (10). The general 
form of their sets of curves agrees with the supposition of a linear set 
(18) but. as the numerical data are not given. we could not make an 
exact comparison. 

If we now consider the practical influence of the wavelength. relation 
IV expresses that the linear set (18) must be the same for all wavelengths. 

A change of the wavelength only causes a shift of the individual cur~ 
ves of the set towards one another in the log l~direction. 

* * 

In conclusion we may say that. if the functions H (t) and G (t) are 
known explicitly. then relation IV (or IVa) is the mostgeneral density~ 
law for monochromatic radiations and Ha (or Ub) is the most general 
density~law for arbitrary radiations. 

All known laws (namely I . Il and 111) and all laws yet to be formu~ 
lated must follow from lIa (or IIb) by specialization. In th is way we 
have obtained the photographic analogon of the fundamental laws of 
thermodynamics. which indeed imply all special laws. 

Finally we wish to make aremark about the function F (2). We al~ 
ready pointed out that this function has no fundamental meaning. on 
account of the latitude possible in choosing a measure for the photo~ 

graphic effect. 
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If it we re possible. ho wever. to choose a measure of fundamental 
significance - and th is can only be the amount of silver of the latent image 
F (Z) would obtain a physical meaning. So the methods EOOERT and 
NODDACK (11). which determine the amount of silver formed directly by 
the action of light. are important in this connection. The difBculty is 
that these methods can only be applied to exposures in the range of 
solarization, so that they are of no use for our problem. which refers 
to the range of normal exposures. 
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Physics. - Remark to the paper: The mechanism in the positive 
column of a discharge (by L. S. ORNSTEIN. H. BRINKMAN and 
T. HAMADA). By L. S. ORNSTEIN and H. BRINKMAN. (Commu~ 

nication from the Physical Laboratory of the University of Utrecht). 

(Communicated at the meeting of March 28. 1936) . 

In an appendix to the paper cited in the title (Cf. the Proceedings 
Febr. 1936) we have given an elementary deduction of the v. d. of 
electrons moving in a gas discharge with constant gradient. This deduction 
only holds true for the case that no excitation or ionization occurs. 
Now it is easy to generalize our deduction. so that also excitation and 
ionization are included. 

Let us assume that above an energy ea the electron can excite the 
atom. losing in this process the energy Ea' If now E is the energy of 
the electron, the probability of excitation will be a function of e-ea -

y (e-ea ). 


