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DANTZIG. (Communicated by Prof. J. A. SCHOUTEN).

(Communicated at the meeting of May 23, 193€).

In this paper a short sketch is given of a general method for treating
differential geometric problems in function-spaces. On a later occasion I
hope to return upon the question in greater detail, and to give more
references to existing literature. Here I might only mention a recent
paper of KAWAGUCHI!), which contains a rather extensive list of older
literature, and in particular to the papers of A. D. MICHAL, mentioned
there. The main idea of our method consists in taking as contra-
variant functions (or vectorials) absolutely additive set functions instead
of ordinary functions. This allows to unify and to generalize the different
groups of functional transformations (“HILBERT'-, “FREDHOLM"- and
“PICARD"'-transformations) and to avoid the uninvariant d-symbols, used
by KAWAGUCHI.

§ 1. Algebra in function-space.

1. Let R be a separable topological space, x, y, z,...its elements
(“points”), X, Y, Z,...its BOREL's subsets?); P the set of all real or
complex numbers 4, u, v,...; 4, M, N the BOREL’s subsets 2 of P. We
call functions of the first kind all bounded measurable (in the sense of
BOREL) functions on R with values (called the coordinates or components
of the function) in P. These functions are denoted by f, g, h,...The
value which f takes in a point x of R is denoted by f.; the lim sRup
| f<|3) by | f|. A function of the second kind is an absolutely additive
set-function F, which determines a real or complex number F¥ with
respect to each BOREL's subset X of R; the values FX are called the
coordinates or the components of F. We define | F|=lim sup | FX'|,
where the X, form any dissection of R into disjoint subsets. Further EX
denotes the “characteristic function of the first kind”" of the set X, and

) A. KawacGucHI, Die Differentialgeometrie in den verschiedenen Funktionalraumen, L.
Vektorialen und Tensorialen, Jn. Fac. of Sc. Hokkaido Imp. Univ. (1) 3, 43—106 (1935).

2) Or more generally a closed family of subsets, 1.e. a family, which contains with
each subset X also its complement R — X and with each sequence of sets Xj, X5, ...
also its intersection. BOREL's subsets are all sets, obtained from open sets by application
of these two processes.

3) & means “belongs to” or “is an element of .
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E. the “characteristic function of the second kind” of the point x1%);
both are defined by their coordinates

Ex—g 1if xeX
* =00 if xeR—X '
2. If f and F are a function of the first and the second kind respec-
tively, the limit lim 3 FXif, exists, where the X, form a dissection of R,
such that the variation of f; on each X; is=¢(e¢>0), and that x; is

an arbitrary point in X, Moreover this limit is independent of the
choice of the X, and the x:. It is called the transvection of F and f,

and denoted by f Fd=f.5), or shortly by Ff.

(1)

We have | Ff|=|F||f|. In particular we note the relations

fE:f-"fyzfx 2
dey E,,X:FXS.

3. A functional of the first (second) kind is a law, which determines
a number L [f] (I[f]) with respect to each function of the first (second)
kind. After a well-known theorem of F. RIESZ, generalized by ]J. RADON,
each bounded linear>?) functional of the first kind determines a function of

the second kind, viz L¥ =L [EX], such that L[f] :f L% f.. An analo-

for any f or F.

gous theorem does not hold for functionals of the second kind.

4. Because of RIESZ' theorem each bounded linear transformation
of functions of the first kind f—> g =P f determines a set of compo-

nents PY, which for any fixed X (or x) are the coordinates of a

function of the first (or second) kind, such that g.= fP fy» with a
dx def;,
TFITF]

transformation has because of (2) the components EY, defined by (1).

finite value of | P | =1lim sup Evidently the identical

X . . . .
Moreover P: determines also a linear transformation for functions of

49 Hence EXis for each given X a function of the first kind with values Ef: E, is

for each given x a function of the second kind with the same values Ef.

5} Of course we could just as well drop the integral-sign and adopt the summation-
convention.

5a) “Linear” in the strong sense: also for infinite sums ¥ f, = f, and non-uniform

convergence L [f]=x=LI[f,].



787

the second kind, viz F— G = FP, with G* :‘J F% Pj(. The product

R=QP of two transformations has the components RY = f Q¥ P

We note the inequalities |Pf|=|P||f|; |[FP|=|F]||P|: |QP|=|Q]|P|.Q
is called a lefthanded or righthanded or unique inverse of P, if QP—=E
or PQ=E or QP =PQ =E respectiyely.

.
’

5. If R’ is a second topological space (with points x” etc. and subsets
X’ etc.), we can consider also linear transformations of functions on R into
functions on R’. We denote the components of such a transformation

by E and suppose it to have a unique inverse with the components EX:

fEiy’ » =EF; fEi?Ej":Ef'. N )

Then we can consider the coordinates f. (or FX) of any function f
(or F) of the first (or second) kind and those of its transformed, viz

fo= j EX f, (or F¥ = f FYES), . . . (@

as different sets of components of one single object, which is called a
covariant (or contravariant respectively) ¢) vectorial. Evidently the trans-
vection is an invariant:

Now we can define in the usual way general affinorials and tensorials,

Xy x . . . .
eg. G°°, hy, P: etc., Hermitean tensorials etc. A particular tensorial 7)
is obtained as soon as a volume-measurement in R is given, viz

G*Y=G"*=M*Y, . . . . . . . ()

where M” is the volume (“measure”) of X in the sens of LEBESGUE, and
X .Y is the intersection of X and Y. It is to be noted, that neither a Hermitean
nor an ordinary tensorial can have properties analogous to those of a

tensor of highest rank: for all G*¥ and h., fGXdy h,. * EX.

6) Evidently the words covariant and contravariant as well as the upper and lower
suffixes could have been interchanged; they have been defined such that the relation
with ordinary differential geometry which is discussed in Art. 15 becomes as simple as
possible. Cf.11),

7) It can also be considered as a Hermitean tensorial.
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6. An ordinary integral equation of the second kind has the form
(E+ K) f=g with K¥= GXdyKy,,, GoY =M,

If K., is symmetrical and completely continuous, the proper functions
form a complete orthogonal system. Writing ¢ instead of . (x) and

¥ instead of f @, (x) dx we have

X
fwi‘(p;":(’:',. i B W W B & ¥ W (6)

(m, n=1, 2, 3,...). Evidently we can consider also general systems

@7 wX with the property (6) and with X | p»dx; these are usually
'

called (without much reason) “bi-orthogonal systems”. The development

of functions of either kind (if possible at all) is given by

f=g:f. fn:fw;f’fx,. )

FX=F"y%, F":J Fdxtp:. e e ... (8)
Evidently the coefficients of the development f,, F* can be considered
as a new kind of components or coordinates of the vectorials f and F,
just like the f. and F*. The only difference is (apart from the irrelevant
fact that the f,, F" form a countable, the f, F* an uncountable set)
that the latter are not independent, whereas the former are. This however
is not so very important; for functions of the second kind we cannot
find (in general at least) any independent coordinates at all, so that we
are forced here to work always with superabundant coordinates.
If the number of functions ¢?, wX is finite, we can also form the sum

grX=DX; . . . . . . .. .09

if it is infinite however the series (9) is generally divergent.

. . . n X
Finally we remark that it would be more consequent to write Dy, D;
instead of ¢7, wX, as all these quantities are different components of

the same geometric object, viz the projection of all functions of either
kind on a definite linear subset.

. X @
Instead of a sequence of functions D; (or yX) we can also consider

an arbitrary set of functions of the second kind D, where & runs through
any topological space 3. If = runs through the BOREL's subsets of this
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space, the functions of the first kind D? (or ¢") have to be replaced by

n
X/

Df, and the relations (6), (7), (8), (9) become:

1if £e 5
dx = = /
st DI_—D;,_go“d e (6)

f,,:fof;, f;:fD‘é"f,,, N V4
F"zfpd‘fpgf, Fszfﬁd"pf N (-4

fD:’f’Dgfzoi‘. N 4
Here indeed non-trivial cases exist, where the integral (9’) is convergent.

7. If for any linear operator P (which we suppose to be bounded

and to have finite components PJ)the proper-value-problem can be solved
(e.g. if P is Hermitean with respect to a positive definite tensorial), it
can be written in the form?¥):

P:f/IE‘”', ie. P,,X:flE",':";",. ... .10

where 1 runs through the set P of all real numbers, and the components
Ef of the identity satisfy the conditions

Er EF =E&Y, . . . . . .. .11
)=+ oo
fE‘é":E.........uz)
A=—o0

Then for any polynomial ¢ (P) we have also ¢(P)X = | () E?"Z, or,

writing @p and ¢; instead of ¢ (P)and ¢ (4):

Pp :f(p;v Ea:', i.e. ‘Pp}i :f(p;_ E‘g'f. i w o« o« (13)

If ¢ is any measurable function of 4, (13) can be considered as the
definition of gp. If we take in particular p—=B", where

1if Aed,
4 % if A¢ (14)

=00 if Ae P—A,

8) Cf. J. voN NEUMANN, Mathematische Grundlagen der Quantenmechanik, Berlin
(1932) Ch. 11, 6—9.
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we obtain
Bi =E¢, e EFX=(B&)X. . . . . . (15

Hence the Ef are definite functions of P (viz characteristic functions).
Evidently (13) is invariant if we perform on 4 a transformation of the
type considered in Art. 5. Then we obtain

(pP:f%,E:". A ¢ 1)

where 4 now runs through any topological space, which need not be a
set of real numbers. Of course now the form of the functions @p and
@i, need no longer be the same, as it was in (13), at least for polyno-
mials. At the other hand (16) can always be brought into the form (13)
by means of LEBESQUE’s definition of the integral, and is therefore not
really more general than (13).

§ 2. Analysis in function-space.

8. Let @ [f] be any functional of the first kind. The derivative of ¢
with respect to a set X is defined ?) as

X X

If this limit exists for some f and any X and is a bounded and
continuous functional of f£ it is (for a given f) a function of the second
kind 9. In that case the differential or “variation” ¢ of ¢ under any

variation df, defined by é @ = lim 4 O[f+edf] is equal to
e=—>0 dE

aqb_—_f(adxcp)afx. N O 1)

For analytic functionals

oi1=Z o [ [tk

1 n
o | Pt
1
u

with

=MN-

lim sup

n

u

9 Cf. D. vAN DANTZIG, La notion de dérivée d'une fonctionnelle, C.R. 201 (1935)
1008—1010, where the definition was given for functionals which need only be defined for
all continuous functions.

10)  Contrary to VOLTERRA's definition, our definition does not depend on the geometric
structure of R.
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and |f| < N the derivative (17) exists always and we have

QX Xn = (0%, ... 0% @ [flr=o0-

9. If @[F] is any functional of the second kind we can define the
derivative with respect to a point x by

a,qa[F]:(a_‘P):Ez,l)no"’[F“E*]“"’[F].. .9

oF €

In this case, however, we cannot generally prove, but must assume
d
explicitely, that the variation d¢, defined by dp = lim P [F+ ¢d F]
=0

is equal to

6<p:f(5Fd"axq0. .0

For analytic functionals of the second kind

(p[F]: 203 —l— P Fdx‘.anx"‘le...x
n=0 n.’ "

with lim sup | Q... = MN— and |F| <N the derivative (19) exists
always and we have

Per...v, = (0. .. 05, @ [F])r=o.

I

In this case also the relation (18) holds for every ¢ F.

10. In an analogous way we can define derivatives of more general
functionals. As an example we consider a functional ¢ [U], where U

has the components U X oI E,',;Z is the mixed affinorial with the
components (E;;?)*Y, = EX E; EZ, we define

.
a,;f(p[m:,,_-,),,O<P[U+eE,,y]—¢[U1, L@

&

. . . X
PFor functionals of linear operators P with components Py, we would
obtain in the same way

a’.‘,,qo[P]:limQ’[P“LEE)-("]_"“’[P]. N 7))

=30 €

11. In the last-mentioned case we can define another kind of
derivative, which is simply the spur of (22), viz

o P1= 92 = im PPEEZe Pl [y .. 29

dP —a—)o &
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Of course it can be used also if ¢ itself is (apart from being a

functional of P) a function of either kind. If ¢ itself is alinear operator
be

with components ¢X, ¢’ X becomes the derivative (%) which is usually

x

considered !%) in operational calculus. Writing again @, instead of ¢ [P]

and assuming ¢, to possess a development of the form (13) we find simply
' b d
(,,P:JT‘Q’E‘;‘ S .2

12. In an analogous way we could define an operational derivative
of ordinary functions @ (1) of a real variable, viz

¢ (A+eEH)—ep()

0¥ o = lim
:=>0

. do
This derivative, however, is not very important, as it is equal to d—f EX.

13. We can introduce now functional transformations of different
kinds. Let us consider as an example those which correspond with the
case treated in Art. 8. Therefore let ¢. [f] be a functional of the first
kind, and at the same time a function of the first kind on some set R’.
Moreover, let it possess a continuous derivative

1= [f), . . . . . . . . (25

and let the transformation f,— f» = @, [f] possess a unique inverse one. Then

EX and EX' satisfy (3) if the “same” function f (with coordinates f; or f.)
is substituted. Then we can extend the definitions of vectorials, tensorials
and affinorials to such quantities which are functionals of f, all trans-

formations being performed by means of EX [f] and EZ [f].

14. Also linear connections can be introduced, which in this case

belong to confravariant derivation. Indeed, if I'X ¥ = I'X"[f] are defined
with respect to each system of coordinates f* [, etc., such that the
law of transformation is

r¥y — f j J EXEY r™=%EF + f EFOYEY, . . . (26)

the contravariant derivatives of e.g. vectorials v, and V¥, viz.
Y Y Yd
v Ux:a Uy —*—fpx zvzr 2

VYVX:aYVX—szYXVdZ, S

10a) In particular if ¢ is a function (not merely a functional) of P.
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are evidently affinorials. For the affinorials of torsion and of curvature
we find in the usual way

S?Y,=2r'29, . . . . . . .. (28
RZ.’,”.‘wzzo[ZFi”‘+2fr‘f'°‘"'r§”‘,. ... (29

and

297 o= [ RPT% 02 [ (V40 S71.,
(30)
2VE VI vi= f RZT, V¥ —2 f (Vv ST,

Hence the whole theory of linear connections, of parallel displacement,

etc. can be extended, except of course the theory of Riemannian and
. . Xy :

conformal connections, as no tensorial G°" or g., has a reciprocal one. To

generalize these theories also we must consider the case in ordinary

differential geometry, where tensors of lower rank are given. If we have

e.g. two tensorials G*7, Ay, such that

f G*% p,, = D¥

is idempotent: D?—=D, then we can define a Riemannian connection
for such functions only, which are invariant under the transformation D:
Df=/f or FD=D.

Evidently analogous definitions can be given for functional transfor-
mations of the second kind F* = @ [F], for transformations of opera-
tors P2 = @2 [P], etc. where the derivatives, defined in Art. 9 and 10
are used.

15. The theory which is represented here shows a twofold relation
with ordinary differential geometry. First, the latter is a special case of
the former. Indeed, if we take for R a finite set, the functions of the
first and second kind can be identified with co- and contravariant vectors
or reciprocally.

A second and more interesting relation is obtained, if we take R to
be an ordinary differentiable manifold of n dimensions (an X,). A
scalarfield p in R becomes now a function p. of the first kind. A cova-
riant vectorfield w; must be written w,,. If x' are the coordinates of the
point x and y'= x' -+ dx' those of a neighbouring point, w,; determines
the differential form w,;dx?, which is, but for quantities of the second
order, equal to } (w.i+ wy)dx’ or to § (w. + wy) (y' — x'). Denoting
the latter quantity by w,, we see that w,, is an alternating two-point-
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function. In the same way, if Wi, i, = Wai,. i, is a k-vectorfield, and if
x;=xj+d x' (r=1,..,k), are k neighboring points of x{ = x', w;_ ;,
determines the differential form

) 1 k ) .
wxil...i‘.dl xh ... dk x"""ﬁ(wxil...ik‘}‘ > wxrll...ik)dl X, de xie~
+ r=1
1 k k
~——— 3 Ws .. iy —1yxh. .. xfe xt+1...x%,
k+1 ' Xy b g r{O( ) 0 o1 Tert k

Hence a covariant k-vector corresponds with an alternating (k 4 1)-
point-function, or rather with a class of such functions, which differ
only by quantities of the (k + 1) order of smallness, if the mutual distances
of the k+ 1 points are small of the first order. If in particular the k-
vector is the exterior derivative of a (k—1)-vector:

wxfl....-kzk[b[fl L ) [P (31)

we find that the relation between w.... and v, ... corresponding
with (31), is

wxxx...xk:(k—{— 1)[ l[x v-”lu‘xk]’ . . . . . . (32)

where 1. is the function (corresponding with the scalar 1), which takes
the value 1 in each point of R. Hence we see that the operation of
derivation in X, corresponds with the purely algebraical operation (32)
in the corresponding alternating function-space!!). Analogous relations

exist between (k- 1)-fold alternating set-functions F*'** and contra-

varient k-vector-densities of weight 1 §"%; with 9, §" ' corresponds

hereflx FdxXI...Xk.

The analogy considered here is of importance for the abstract theory
of differentiation and integration'?) and for the foundations of topology.

1) This is the reason why we have written the point-functions with lower suffixes. Cf 6).
12) Cf. J. W. ALEXANDER, On the chains of a complex and their duals; On the
ring of a compact metric space , Proc. Nat. Ac. Sc. 21 509—511; 511512 (1935).




