In the same way we get

$$
\begin{aligned}
N_{2}= & q \\
\int_{0}^{\varepsilon_{0}} d \varepsilon_{2} & \int_{\varepsilon_{2}}^{\varepsilon_{0}} \frac{d \varepsilon_{1}}{\varepsilon_{1}} \\
& \cdot \int_{-\infty}^{t} d \xi \mathrm{e}^{-\alpha\left(\xi_{0}\right)\left(t_{1}-\xi\right)} \alpha\left(\varepsilon_{0}\right) v\left(\varepsilon_{0}\right) d t_{1} e^{-\alpha\left(\xi_{1}\right)\left(t_{2}-t_{1}\right)} \alpha\left(\varepsilon_{1}\right) v\left(\varepsilon_{1}\right) d t_{2} \cdot \mathrm{e}^{-\alpha\left(\varepsilon_{2}\right)\left(t-t_{2}\right)}
\end{aligned}
$$

which integrated gives for N_{2} the same expression as we have found with the first method.

Mathematics. - Generalization of an inequality of Knopp. By J. G. van der Corput.
(Communicated at the meeting of October 31, 1936).
In this note a_{0}, a_{1}, \ldots are supposed to be $\geqq 0$, not all zero, $q>0$ and $0<u \leqq 1$ and I write

$$
F(u)=\sum_{n=0}^{\infty} u^{n}\left(a_{0}\binom{n}{0} q^{n} a_{1}\binom{n}{1} q^{n-1} \ldots a_{n}\binom{n}{n} q^{0}\right)^{\frac{1}{(q+1)^{n}}}
$$

Knopp ${ }^{1}$) has deduced the inequality

$$
\begin{equation*}
F(1)<(q+1) \sum_{n=0}^{\infty} a_{n} \tag{1}
\end{equation*}
$$

provided that the last series converges; for any fixed q the constant $q+1$ is the best possible.

As $(q+1) v^{q}-q v^{q+1}$ is in the interval $0 \leqq v \leqq 1$ a continuous monotonic increasing function of v, assuming for $v=0$ and $v=1$ the values 0 and 1 , there is one and only one $v(0 \leqq v \leqq 1)$ such that

$$
\begin{equation*}
(q+1) v^{q}-q v^{q+1}=u^{q+1} \tag{2}
\end{equation*}
$$

In this paper I will prove:

$$
\begin{equation*}
F(u) \leqq \frac{(q+1) v^{q}}{u^{q+1}} \sum_{n=0}^{\infty} a_{n} \tag{3}
\end{equation*}
$$

provided that the last series converges; for any fixed u und q the constant $\frac{(q+1) v^{q}}{u^{q+1}}$ is the best possible.

[^0]For $u=1$ relation (3) is always valid with the sign of inequality. If $0<u<1$, the sign of equality in (3) holds when and only when

$$
a_{n}=p \frac{v^{(q+1) n}}{u^{(q+1) n}} \quad(p>0)
$$

In the special case $q=1$ relation (2) takes the form $2 v-v^{2}=u^{2}$,

$$
v=1-V \overline{1-u^{2}}=\frac{u^{2}}{1+\sqrt{1-u^{2}}} \text { and } \frac{(q+1) v^{q}}{u^{q+1}}=\frac{2}{1+\sqrt{1-u^{2}}}
$$

hence

$$
\begin{equation*}
\sum_{n=0}^{\infty} u^{n}\left(a_{0}\binom{n}{0} a_{1}\binom{n}{1} \ldots a_{n}\binom{n}{n}\right)^{\frac{1}{2^{n}}} \leqq \frac{2}{1+\sqrt{1-u^{2}}} \sum_{n=0}^{\infty} a_{n} . \tag{4}
\end{equation*}
$$

and the constant $\frac{2}{1+\sqrt{1-u^{2}}}$ is the best possible. If $u=1$ relation (4) is true with the sign of inequality. If $u<1$ the sign of inequality holds when and only when

$$
a_{n}=p\left(\frac{u}{1+\sqrt{1-u^{2}}}\right)^{2 n} \quad(p>0)
$$

Relation (4) involves many inequalities, for instance integration gives

$$
\sum_{n=0}^{\infty} \frac{1}{n+1}\left(a_{0}\binom{n}{0} a_{1}\binom{n}{1} \ldots a_{n}\binom{n}{n}\right)^{\frac{1}{2^{n}}} \ll(\pi-2) \sum_{n=0}^{\infty} a_{n}
$$

but $\pi-2$ is not the best possible constant.
The proof runs as follows:
Putting $w=\frac{v}{u}$ we obtain

$$
\begin{aligned}
F(u) & =\sum_{n=0}^{\infty} u^{n} \prod_{m=0}^{n} a_{m}\binom{n}{m} \frac{q^{n-m}}{(q+1)^{n}} \\
& =\sum_{n=0}^{\infty} u^{n} w^{-n q} \prod_{m=0}^{n}\left(a_{m} w^{(n-m)(q+1)}\right)\binom{n}{m} \frac{q^{n-m}}{(q+1)^{n}}
\end{aligned}
$$

in virtue of

$$
\sum_{m=0}^{n}(n-m)\binom{n}{m} q^{n-m}=n q(q+1)^{n-1}
$$

The theorem of the arithmetic and geometric means gives

$$
\begin{equation*}
F(u)<\sum_{n=0}^{\infty} u^{n} w^{-n q} \sum_{m=0}^{n}\binom{n}{m} \frac{q^{n-m}}{(q+1)^{n}} a_{m} w^{(n-m)(q+1)} \tag{5}
\end{equation*}
$$

unless the $n+1$ numbers $a_{m} w^{(n-m)(a+1)}(m=0,1, \ldots, n)$ are equal to one another; in this last case the sign of inequality has to be replaced by the sign of equality. The right side of (5) is

$$
\begin{aligned}
\sum_{m=0}^{\infty} u^{m} w^{-m q}(q+1)^{-m} a_{m} \sum_{n=m}^{\infty} & \binom{n}{m}\left(\frac{q u w}{q+1}\right)^{n-m} \\
& =\sum_{m=0}^{\infty} u^{m} w^{-m q}(q+1)^{-m} a_{m}\left(1-\frac{q u w}{q+1}\right)^{-m-1}
\end{aligned}
$$

for (2) implies

$$
1-\frac{q u w}{q+1}=1-\frac{q v}{q+1}=\frac{u^{q+1}}{v^{q}}>0
$$

hence $\frac{q u w}{q+1}<1$. Consequently

$$
F(u)<\frac{(q+1) w^{q}}{u} \sum_{m=0}^{\infty} a_{m}=\frac{(q+1) v^{q}}{u^{q+1}} \sum_{n=0}^{\infty} a_{n}
$$

unless $a_{m}=p w^{(q+1) m}(p>0)$; in this last case the sign of inequality is to be replaced by the sign of equality. If $u<1$, the left side of (2) has for $v=u$ the value

$$
(q+1) u^{q}-q u^{q+1}>(q+1) u^{q+1}-q u^{q+1}=u^{q+1}
$$

so that $v<u, w<1$ and the case $a_{m}=p w^{(q+1) m}$ is possible. If $u=1$, we have $w=1$, the case $a_{m}=p \boldsymbol{w}^{(q+1) m}$ is excluded and (1) is true; if we choose $a_{m}=s^{m(q+1)}(0<s<1)$,

$$
F(1)=\sum_{n=0}^{\infty} s^{n}=\frac{1}{1-s}
$$

and the right side of (1) is

$$
(q+1) \sum_{n=0}^{\infty} s^{n(q+1)}=\frac{q+1}{1-s^{q+1}}
$$

If $s \rightarrow 1$

$$
\frac{1-s^{q+1}}{(q+1)(1-s)} \rightarrow 1
$$

hence it follows that $q+1$ is in (1) the best possible constant.

[^0]: ${ }^{1}$) K. Knopp, Ueber Reihen mit positiven Gliedern (Zweite Mitteilung), Journal Lond. Math. Soc. 5 13-21, (1930).

