Chemistry. - The Crystalforms of Some Complex Salts of Triaminopropane with trivalent Cobaltum and Rhodium. By P. Terpstra and J. ter Berg. (Communicated by Prof. F. M. Jaeger).

(Communicated at the meeting of June 26, 1937).
§ 1. In the following we communicate the results of the crystallographical study of a series of complex salts of triaminopropane: $\mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right) . \mathrm{CH}\left(\mathrm{NH}_{2}\right) . \mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right)$ of the general type $\left\{\mathrm{Me}(\mathrm{tpn})_{2}\right\} \mathrm{X}_{3}$, in which $M e=C o^{\cdots}$ or $R h^{\cdots}$, whilst $X=C l, B r, J$ or $S C N$. Salts of this type were first prepared by Pope and Mann ${ }^{1}$). Besides the salts mentioned, which all could be obtained in beautiful crystals, we also studied the crystalform of the hydrochloride of triaminopropane itself, which crystallizes with $1 \mathrm{H}_{2} \mathrm{O}$.

In general these salts were prepared after the method indicated by Mann and Pope (loco cit.) by dissolving 5 grammes of the hydrochloride: $\mathrm{C}_{3} \mathrm{H}_{11} \mathrm{~N}_{3}, 3 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}$ in a solution of 2 grammes of NaOH in $25 \mathrm{~cm}^{3}$ of water and heating this at a reflux-cooler on the waterbath during 10 hours with 2 grammes of monochloro-pentammino-cobaltic-chloride or with the corresponding quantity of monochloro-pentammino-thodium-chloride ${ }^{2}$). The solution obtained then was filtered off and left standing for crystallisation: after some days small crystals were deposited which, on analysis, proved to have the composition: $\left\{\mathrm{Co}(t p n)_{2}\right\} \mathrm{Cl}_{3}$ or $\left\{R h(t p n)_{2}\right\} \mathrm{Cl}_{3}$ respectively. The corresponding bromides, iodides and rhodanides were prepared by treating the chlorides with a concentrated solution of $\mathrm{NaBr}, \mathrm{NaI}$ or $K C N S$. After recrystallisation from water, the salts mentioned all proved to be deposited in measurable crystals of the anhydrous compounds.
§ 2. Triaminopropane-hydrochloride-monohydrate crystallizes over sulphuric acid from its

Fig. 1. Crystalform of Triaminopropane-hydrochloride $\left(+1 \mathrm{H}_{2} \mathrm{O}\right)$. aqueous solution in colourless, flattened needles or prisms (Fig. 1).

[^0]
Rhombic-bipyramidal.

$$
a: b: c=0,510: 1: 0,488
$$

Forms observed: $m=\{110\}$ and $b=\{010\}$, large; $q=\{011\}$, well developed; $o=\{111\}$ and $r=\{101\}$ small, commonly present with only a part of their planes. The crystals are flattened parallel to $\{010\}$ and elongated in the direction of the c-axis.

Optically biaxial, with $\{001\}$ as the plane of the optical axes and the b-axis as first bissectrix of negative character. The apparent axial angle 2 V is 77°. No piezo-electricity was observed.
§ 3. Cobaltic Salts.

1. Di-triaminopropane-cobaltic-chloride crystallizes from its aqueous solutions in rhombohedrally-shaped crystals (Fig. 2).

> Monoclinic-prismatic.

$$
\begin{gathered}
a: b: c=1,522: 1: 1,819 ; \\
\beta=63^{\circ} 9^{\prime} .
\end{gathered}
$$

Fig. 2. Crystalform of $\left\{\mathrm{Co}(\mathrm{tpn})_{2}\right\} \mathrm{Cl}_{3}$.

Forms observed: $m=\{110\}$ and $c=\{001\}$, about equally large; $R=\{101\}$, rarely present and only very small.

Angular Values: Observed: Calculated:

$$
\begin{array}{rl}
m: m & =(110):(1 \overline{1} 0)={ }^{\star} 107^{\circ} \\
14^{\prime} & - \\
m: c=(110):(001)={ }^{\star} 74 & 28 \\
c: R=(001):(\overline{1} 01)={ }^{\star} 66 & 38 \\
m: R & =(110):(\overline{1} 01)=\begin{array}{ll}
112 & 24
\end{array} \\
112^{\circ} 28^{\prime}
\end{array}
$$

Geometrically the crystals are pseudo-rhombohedral.
Optically biaxial, with $\{010\}$ as the axial plane; one optical axis strongly excentrically emerges on $\{001\}$. The optical character is negative. The crystals melt at $310^{\circ} \mathrm{C}$. under decomposition; their specific gravity is: 1.680 .

2. Di-triaminopropane-cobaltic-bromide.

Also this salt crystallizes in small, red-brown crystals, which are perfectly isomorphous with those of the chloride. The form $R=\{\overline{101}\}$ was here, however, well developed and the habitus was elongated in the direction of the c-axis (Fig. 3).

Monoclinic-prismatic.

$$
\begin{gathered}
a: b: c=1.522: 1: 1.780 \\
\beta=61^{\circ} 36^{\prime} .
\end{gathered}
$$

Forms observed: $m=\{110\}, c=\{001\}$ and $R=\{\overline{1} 01\}$.
Angular Values: Observed: Calculated: $m: m=(110):(1 \overline{1} 0)={ }^{\star} 106^{\circ} 30^{\prime} \quad-$ $m: c=(110):(001)={ }^{*} 7328 \quad$ $\begin{array}{rl}c: R & =(001):(\overline{1} 01)={ }^{\star} 66 \\ 39 & 39 \\ m: R & =(110):(\overline{1} 01)=111\end{array} \quad 48 \quad 111^{\circ} 52^{\prime}$
Optically biaxial, with $\{010\}$ as the axial plane; one axis very excentrically emerges on \{001\}. The double refraction is negative. The crystals melt, under decomposition, at $322^{\circ} \mathrm{C}$.; their specific gravity is: 2.165 .

Fig. 3. Crystalform of $\left\{C o(t p n)_{2}\right\} B r_{3}$.

3. Di-triaminopropane-cobaltic-iodide.

Whilst the chloride and bromide mentioned obviously manifested a pseudo-trigonal form, the iodide is really rhombohedral and truly uniaxial.

On slow evaporation ditrigonal cry-

Fig. 4. Crystalform of $\left\{\mathrm{Co}(\mathrm{tpn})_{2}\right\} I_{3}$. stals are deposited, having the form of Fig. 4, which closely resemble flattened octahedra. The crystals are badly measurable because of they having cracked planes and often being aggregated in big, star-like clusters. Better crystals were obtained by cooling a hot, saturated solution: they then look as thin, hexagonal tables parallel to $\{0001\}$.
A LaUE-pattern perpendicular to $\{0001\}$ showed a trigonal axis and three planes of symmetry passing through this axis. The possible space-groups are: $C_{3 V}, D_{3} m$ or $D_{3 D}$ (Schoenflies).

As no piezo-electricity nor an optical rotation were observed, they most probably belong to the group $D_{3 D}$.

Ditrigonal-scalenohedral.

$$
a: c=1: 2.962 .\left(a=51^{\circ} 52^{\prime}\right)
$$

Forms observed: $o=\{111\}$ (trigonal axes) $=\{0001\}$ and $r=\{100\}$ $=\{10 \overline{1} 1\}$.

Angular Values: Observed: Calculated:

$$
\begin{array}{rlc}
o: r & =(111):(100)={ }^{*} 73^{\circ} 42^{\prime} & - \\
r: r & =(100):(010)=112 & 24
\end{array} 112^{\circ} 26^{\prime} .
$$

The crystals are uniaxial, positive.
They melt at $332^{\circ} \mathrm{C}$. under decomposition; their specific gravity is; 2.552 .
4. Di-triaminopropane-cobaltic-rhodanide.

The salt crystallizes from its aqueous solutions in red-brown, strongly pleochroitic crystals with rather oscillating angular values.

Triclinic-pinacoidal.

$a: b: c=1.882: 1: 1.691$;

$$
\begin{aligned}
& A=93^{\circ} 44 \frac{2}{3} \prime ; \alpha=93^{\circ} 59^{\prime} . \\
& B=12342 \frac{2}{3} ; \beta=12344 . \\
& C=9046 \frac{2}{3}: \gamma=8826 .
\end{aligned}
$$

Fig. 5. Crystalform of $\left\{\mathrm{Co}(\mathrm{tpn})_{2}\right\}(\mathrm{SCN})_{3}$.

Forms observed: $R=\{101\} ; a=\{100\}$ and $c=\{001\}$, all about equally well developed; $M=\{1 \overrightarrow{10}\}$ and $O=\{111\}$, rather large: $m=\{110\}$, small. The crystals are prismatic with an elongation in the direction of the b-axis (Fig. 5).

Angular Values: Observed: Calculated:

$$
\begin{aligned}
& a: c=(100):(001)={ }^{*} 56^{\circ} 17 \frac{1}{3}^{\prime} \quad \text { - } \\
& \text { c }: R=(001):(\overline{101})={ }^{*} 57 \quad 1 \quad- \\
& \text { a }: ~ O=(100):(111)={ }^{*} 4814 \quad- \\
& {\left[z_{c}\right]:\left[z_{b}\right]=[001]:[010]={ }^{\star} 9359 \quad-} \\
& {\left[z_{b}\right]:\left[z_{q}\right]=[010]:[0 \overline{1} 1]={ }^{*} 55 \quad 23-} \\
& \text { a : } m=(100):(110)=5625 \quad 56^{\circ} 20^{\prime} \\
& \text { a }: M=(100):(1 \overline{1} 0)=5450 \quad 5446 \\
& R: M=(101):(1 \overline{1} 0)=106 \quad 23 \quad 10631 \\
& {\left[z_{b}\right]:\left[z_{o}\right]=[010]:[111]=57 \quad 55 \quad 5812}
\end{aligned}
$$

§ 4. Rhodiumsalts.

1. Di-triaminopropane-rhodium-chloride.

Although this salt and the other rhodiumsalts do not crystallize as well as the corresponding cobaltic salts, yet they could fairly well be measured. Their habitus is exactly the same as that of the cobaltic salts; they are with the latter perfectly isomorphous.

The chloride is monoclinic-prismatic, with: $a: b: c=1.512: 1: 1.840$ and $\beta=64^{\circ} 6^{\prime}$. The forms observed are: $m=\{110\}, c=\{001\}$ and $R=\{101\}$. The crystals are quite analogous to those in Fig. 3.

Angular Values: Observed: Calculated:

$$
\begin{aligned}
& m: m=(110):(1 \overline{1} 0)={ }^{*} 107^{\circ} 20^{\prime} \quad \text { - } \\
& m: c=(110):(001)=\begin{array}{ll}
* 75 & 0
\end{array} \\
& c: R=(001):(\overline{101})={ }^{*} 6651 \quad \text { - } \\
& m: R=(110):(\overline{101})=11240 \quad 112^{\circ} 51^{\prime}
\end{aligned}
$$

Optically biaxial, with $\{010\}$ as the axial plane; the optical character is negative.

2. Ditriaminopropane-thodium-bromide.

The crystals are monoclinic-prismatic, with: $a: b: c=1.518: 1: 1.786$ and $\beta=61^{\circ} 58^{\prime}$.

Forms observed: $m=\{110\}, c=\{001\}$ and $R=\{\overline{1} 01\} ;$ the habitus is that of Fig. 3.

$$
\left.\begin{array}{rlc}
\text { Angular } \text { Values: } & \text { Observed: } & \text { Calculated: } \\
m: m=(110):(1 \overline{1} 0)={ }^{\star} 106^{\circ} 30^{\prime} & - \\
m: c=(110):(001)= & \star 73 & 40
\end{array}\right]-
$$

Optically biaxial; $\{010\}$ is the plane of the optical axes; the double refraction is negative.
3. Di-triaminopropane-thodium-iodide.

Only very small crystals proved to be sufficiently well measurable: on further growth they get dull and rough, so that they no longer yield good reflections. The crystals are rigorously isomorphous with those of the corresponding cobaltic salt (Fig. 4).

Ditrigonal-scalenohedral.

$$
a: c=1: 3,004 . \quad\left(\alpha=51^{\circ} 16^{\prime}\right)
$$

Forms observed: $\mathrm{o}=\{111\}=\{0001\} ; r=\{100\}=\{10 \overline{1} 1\}$.
Angular Values: Observed: Calculated:

$$
\begin{gathered}
\circ: r=(111):(100)={ }^{\star} 73^{\circ} 55^{\prime} \\
r: r=(100):(010)=11230
\end{gathered}
$$

Optically uniaxial, positive.
The specific gravity is: 2,680 .
An X-ray-investigation of the salts described will soon be published.

> Groningen, Laboratory for Inorganic and Physical Chemistry of the University.

[^0]: ${ }^{1}$) F. G. Mann and W. J. Pope, Proceed. R. Soc. London, A, 107, 80, (1925) ; Journ. Chem. Soc. (1926) 2675.
 ${ }^{2}$) S. M. JÖrgensen, Zeits. f. anorg. Chem., 5, 369, (1894); C. Claus, Journ. f. Prakt. Chem., 63, 99, (1854).

