Mathematics. - On the differential geometry of contact transformations. By Hwa-Chung Lee. (Communicated by Prof. J. A. Schouten).
(Communicated at the meeting of September 25, 1937.)

1. Introduction.

In two papers of these Proceedings Schouten ${ }^{1}$) has shown that a doubly homogeneous contact transformation in the $2 n+2$ variables $x^{\lambda}, p_{\lambda}(x, \lambda, \ldots, \tau=0,1, \ldots, n)$:

$$
\begin{equation*}
x^{\chi^{\prime}}=x^{x^{\prime}}\left(x^{\star}, p_{\lambda}\right), p_{\lambda^{\prime}}=p_{\lambda^{\prime}}\left(x^{x}, p_{\lambda}\right), . \tag{1}
\end{equation*}
$$

where $x^{\nu^{\prime}}$ and $p_{\lambda^{\prime}}$ are homogeneous functions of degrees $(1,0)$ and $(0,1)$ in x^{2}, p_{2} respectively, can always be modified (without changing the geometrical meaning) in such a way that these functions satisfy the equations

$$
\left.\begin{array}{ll}
p_{x^{\prime}} & \frac{\partial x^{x^{\prime}}}{\partial x^{\lambda}}=p_{\lambda}, \tag{2}\\
p_{x^{\prime}} \frac{\partial x^{x^{\prime}}}{\partial p_{x}}=0 \\
x^{\lambda^{\prime}} \frac{\partial p_{\lambda^{\prime}}}{\partial x^{\lambda}}=0, & x^{\lambda^{\prime}} \frac{\partial p_{\lambda^{\prime}}}{\partial p_{x}}=x^{x},
\end{array}\right\}
$$

for all values of x^{\star} and p_{λ}, though the latter only have a geometric meaning when they are bound by the relation

$$
\begin{equation*}
p_{\lambda} x^{\lambda}=0 \tag{3}
\end{equation*}
$$

Transformations of the form (1) with the mentioned homogeneity property and satisfying (2) evidently form a group ${ }^{2}$) which we call $\Omega_{2 n+2}$. Let us consider the $2 n+1$ dimensional manifold with the homogeneous coordinates x^{x}, p_{λ}, endowed with the group $\Omega_{2 n+2}$ of coordinate transformations and the group \mathfrak{F} of point transtormations

$$
\begin{equation*}
{ }^{\prime} x^{\star}=\varrho x^{\star}, \quad{ }^{\prime} p_{\lambda}=\varrho p_{\lambda} \tag{4}
\end{equation*}
$$

where ϱ is a homogeneous function of degree $(0,0)$ in x^{x}, p_{1}. A point ($x^{x} \cdot p_{\lambda}$) of this manifold is called an element if its coordinates satisfy the

[^0]relation (3). The totality of elements constitutes a $2 n$-dimensional space $K_{2 n}$ whose defining equation (3) is invariant under the group $\Omega_{2 n+2}$ and the group $\mathfrak{F} .^{\prime}$ It is only the elements of this space with which we shall be concerned, and the purpose of this paper is to establish a formalism for the invariant theory of the groups $\Re_{2 n+2}$ and \mathscr{F}^{\prime} by constructing certain fundamental projective tensors which we shall call contact projectors.

We may get a correspondence between the space $K_{2 n}$ and another space H_{n} if we regard x^{x}, p_{2} as two separate sets of homogeneous coordinates, the first being homogeneous coordinates of the points of $H_{n}{ }^{3}$) and the second being homogeneous coordinates of the hyperplanes in the local spaces of H_{n} with $\left\lfloor x^{*} 」^{4}\right.$) as points of contact. The elements of $K_{2 n}$ correspond to the hyperplanes in the local spaces of H_{n} passing through the points of contact, owing to the relation (3). The configuration formed by a point of H_{n} and a hyperplane through it is also called an element of H_{n}. Since the two identical elements (x^{x}, p_{λ}) and ($\varrho x^{x}, \sigma p_{\lambda}$) of H_{n} for $\sigma \neq \varrho$ are regarded as two distinct elements of $K_{2 n}$ because of (4), the elements of $K_{2 n}$ and those of H_{n} are then not in one-to-one correspondence.

2. Contact projectors.

Besides the index-type x, we introduce the bracketed index-type (x) defined by $(x)=(n+1)+x$, so that when x takes the range $0,1, \ldots, n$, (x) will take the continuation range $n+1, \ldots, 2 n+1$. We shall write $x^{(\lambda)}$ for p_{λ} so that the $2 n+2$ variables x^{x}, p_{λ} can be written as $x^{x}, x^{(\lambda)}$ or x^{α}, where $\alpha, \beta, \ldots, \iota$ take the two ranges of $x,(\varkappa)$ successively, that is to say, $\alpha, \beta, \ldots, \iota=0,1, \ldots, 2 n+1$.

Equations (1) and (4) may now be written

$$
\begin{align*}
\Omega_{2 n+2} & : x^{\alpha^{\prime}}=x^{\alpha^{\prime}}\left(x^{\alpha}\right), \tag{5}\\
\mathfrak{F}^{\prime} & : \tag{6}\\
& x^{\alpha}=\varrho x^{\alpha},
\end{align*}
$$

where $x^{\alpha^{\prime}}$ are homogeneous functions of degree one in x^{α} and ϱ is a homogeneous function of degree zero in \boldsymbol{x}^{α}.

The transformations (5) being supposed to be non-singular, we define contact projectors with the aid of the quantities

$$
\left.\begin{array}{l}
\mathscr{\gamma}_{\beta}^{\alpha^{\prime}}=\partial_{\beta} x^{\alpha^{\prime}}, \partial_{\beta}=\frac{\partial}{\partial x^{\beta}}, \tag{7}\\
\mathscr{H}_{\beta^{\prime}}^{\alpha}=\partial_{\beta^{\prime}} x^{\alpha}, \partial_{\beta^{\prime}}=\frac{\partial}{\partial x^{\beta^{\prime}}},
\end{array}\right\} .
$$

[^1]For example a contra- or covariant (projective) contact vector v^{α} or w_{β} of degree r is defined by the laws

$$
\Omega_{2 n+2}:\left\{\begin{array}{l}
v^{\alpha^{\prime}}=\mathscr{\gamma}_{\alpha}^{\alpha^{\prime}} v^{\alpha}, \tag{8}\\
w_{\beta^{\prime}}=\mathscr{\gamma}_{\beta^{\prime}}^{\beta} w_{\beta},
\end{array} \quad \mathscr{F}^{\prime}:\left\{\begin{array}{l}
v^{\alpha}=\varrho^{r} v^{\alpha}, \\
\prime \quad w_{\beta}=\varrho^{r} w_{\beta} .
\end{array}\right\}\right.
$$

Let us now write equations (2) in the form

$$
\left.\begin{array}{l}
p_{\beta}=P_{\beta^{\prime}} \mathscr{X}_{\beta}^{\beta^{\prime}}, \tag{9}\\
X_{\beta}=X_{\beta^{\prime}} \mathscr{X}_{\beta}^{\beta^{\prime}},
\end{array}\right\}
$$

where X_{β} and P_{β} are defined in each coordinate system by

$$
\left.\begin{array}{l}
X_{\lambda}=0, X_{(x)}=x^{x} \tag{10}\\
P_{\lambda}=p_{\lambda}, P_{(x)}=0,
\end{array}\right\}
$$

i. e. the components of X_{β} only involve x^{2}, and those of P_{β} only involve p_{λ}. Then according to the definition (8), X_{β} and P_{β} are covariant contact vectors of degree one.

From (9) we have by differentiation

$$
\left.\begin{array}{l}
\partial_{[\gamma} P_{\beta]}=\partial_{\left[\gamma^{\prime}\right.} P_{\left.\beta^{\prime}\right]} \mathscr{X}_{\gamma}^{\gamma^{\prime}} \mathscr{\gamma}_{\beta}^{\beta^{\prime}}, \tag{11}\\
\partial_{[\gamma} X_{\beta]}=\partial_{\left[\gamma^{\prime}\right.} X_{\left.\beta^{\prime}\right]} \mathscr{\sim}_{\gamma}^{\gamma^{\prime}} \mathscr{\gamma}_{\beta}^{\beta^{\prime}} ;
\end{array}\right\}
$$

and from (10) we find by actual calculation

$$
\begin{equation*}
-2 \partial_{[\beta} X_{\alpha]}=\epsilon_{\beta \alpha}=+2 \partial_{[\beta} P_{\alpha]}, \tag{12}
\end{equation*}
$$

where $\epsilon_{\beta \alpha}$ is defined in each coordinate system by

$$
\begin{equation*}
\epsilon_{\lambda x}=0, \epsilon_{2(x)}=-\delta_{\lambda,}^{\prime}, \epsilon_{(\lambda) x}=\delta_{x}^{2}, \epsilon_{(\lambda)(x)}=0 . \tag{13}
\end{equation*}
$$

Hence equations (11) reduce to

$$
\begin{equation*}
\left.\epsilon_{\beta \alpha}=\epsilon_{\beta^{\prime} \alpha^{\prime}} \mathcal{X}_{\beta}^{\beta^{\prime}} \mathcal{H}_{\alpha}^{\alpha^{\prime}}{ }^{5}\right) \tag{14}
\end{equation*}
$$

from which it follows that $\epsilon_{\beta \alpha}$ is a covariant contact bivector of degree zero.

The determinant of $\epsilon_{\beta \alpha}$ being unity, we can define a contravariant contact bivector $\epsilon^{\alpha \beta}$ of degree zero by the relation

$$
\epsilon^{\alpha \gamma} \epsilon_{\beta \gamma}=\mathscr{X}_{\beta}^{\alpha}\left\{\begin{array}{l}
=1 \text { for } \alpha=\beta, \tag{15}\\
=0 \text { for } \alpha \neq \beta .
\end{array}\right\} .
$$

[^2]From this we find that the components of $\epsilon^{\alpha \beta}$ are

$$
\begin{equation*}
\epsilon^{\times \lambda}=0, \epsilon^{\times(\lambda)}=-\delta_{\lambda,}^{x}, \epsilon^{(x) \lambda}=+\delta_{x}^{\lambda}, \epsilon^{(x)(\lambda)}=0 . \tag{16}
\end{equation*}
$$

We shall use the two ϵ 's to raise and lower indices, convening that in lowering indices we sum with respect to the left index of $\epsilon_{\beta \alpha}$, while in raising indices we sum with respect to the right index of $\epsilon^{\alpha \beta}$, and shall identify those objects which are obtained from one another by raising and lowering indices.

With this understanding we obtain from (10) two contravariant contact vectors of degree one:

$$
\begin{align*}
X^{\star} & =-x^{\star}, & X^{(\lambda)} & =0, \tag{17}\\
P^{\star} & =0, & & P^{(\lambda)}
\end{align*}=+p_{\star},
$$

whose laws of transformation

$$
\left.\begin{array}{rl}
X^{\alpha^{\prime}} & =X^{\alpha} \mathscr{H}_{\alpha}^{\alpha^{\prime}}, \tag{18}\\
P^{\alpha^{\prime}} & =P^{\alpha} \mathscr{H}_{\alpha}^{\alpha^{\prime}} .
\end{array}\right\}
$$

express analytically the fact that $x^{x^{\prime}}$ and $p_{\lambda^{\prime}}$ are homogeneous of degrees $(1,0)$ and $(0,1)$ in x^{x}, p_{λ} respectively. Thus the homogeneity property of the group $\Omega_{2 n+2}$ is merely a consequence of (9), that is to say, a consequence of (2).

From (17) the two contact vectors X^{α}, P^{α} are connected by the relation

$$
\begin{equation*}
x^{\alpha}=P^{\alpha}-X^{\alpha} \tag{19}
\end{equation*}
$$

and hence the coordinates x^{α} themselves are the components of a contravariant contact vector of degree one whose law of transformation simply expresses that the $x^{\alpha^{\prime}}$ are homogeneous of degree one in the x^{α}.

From (10) the contact vector defined by

$$
\begin{equation*}
q_{\beta}=p_{\beta}+X_{\beta}, \quad\left(q_{\lambda}=p_{\lambda}, q_{(x)}=x^{\chi}\right) . \tag{20}
\end{equation*}
$$

is seen to be the gradient of the contact scalar $q=p_{\mu} x^{\mu}$:

$$
\begin{equation*}
q_{\beta}=\partial_{\beta} q \tag{21}
\end{equation*}
$$

Corresponding to the relations (19), (20) we have by raising and lowering suffices,

$$
\left.\begin{array}{l}
x_{\beta}=P_{\beta}-X_{\beta}, \tag{22}\\
q^{\alpha}=P^{\alpha}+X^{\alpha} .
\end{array}\right\}
$$

It may be remarked that by taking the determinant on both sides of (14) we have $\operatorname{Det}\left(\mathcal{X}_{\alpha}^{\alpha^{\prime}}\right)= \pm 1$ and hence if we confine ourselves to the subgroup of $\Omega_{2 n+2}$ for which $\operatorname{Det}\left(\mathcal{X}_{\alpha}^{\alpha^{\prime}}\right)=+1$, the difference between contact projectors and projector-densities vanishes.

3. The contact connection.

Let a symmetric projective connection $\Pi_{\gamma \beta}^{\alpha}$ of degree -1 be introduced in the $K_{2 n}$ in such a way that we have

$$
\begin{equation*}
\nabla_{\gamma} \epsilon_{\beta \alpha}=\partial_{\gamma} \epsilon_{\beta \alpha}-\Pi_{\gamma \beta}^{\delta} \epsilon_{\partial \alpha}-\Pi_{\gamma \alpha}^{\delta} \epsilon_{\beta \delta}=0 \tag{23}
\end{equation*}
$$

If we multiple this by $\epsilon^{\beta \alpha}$, we obtain, on account of (15) and of the constancy of $\epsilon_{\beta \alpha}$,

$$
\begin{equation*}
\Pi_{\gamma \alpha}^{\alpha}=0 \tag{24}
\end{equation*}
$$

Hence there is no difference between the covariant differentiation of a contact projector and that of a projector-density.

From (15) and (23) we also have

$$
\begin{equation*}
\nabla_{\gamma} \epsilon^{\alpha \beta}=0 \tag{25}
\end{equation*}
$$

The contact connection $\Pi_{\gamma \beta}^{\alpha}$ may be further particularized in the following way. The quantities x^{α} and q_{β} may be regarded as fundamental in the sense that in terms of them the two other quantities X^{α}, P^{α} (and also X_{β}, P_{β}) can be expressed owing to the relations (19), (20) and (22). We have then only to consider the two contact projectors

$$
\begin{equation*}
Q_{\gamma}^{\alpha}=\nabla_{\gamma} x^{\alpha}, \quad R_{\gamma \beta}=\nabla_{\gamma} q_{\beta} . \tag{26}
\end{equation*}
$$

Since $q=p_{\lambda} x^{2}$ is a quadratic function of x^{α}, we have by (21) the condition of homogeneity

$$
\begin{equation*}
x^{\alpha} q_{\alpha}=2 q \tag{27}
\end{equation*}
$$

from which a relation between the quantities defined by (26) may be obtained by covariant differentiation,

$$
\begin{equation*}
Q_{\gamma}^{\alpha} q_{\alpha}+R_{\gamma \alpha} x^{\alpha}=2 q_{\gamma} \tag{28}
\end{equation*}
$$

The simplest solution of this equation is

$$
\begin{equation*}
\mathrm{Q}_{\gamma}^{\alpha}=2 \not \gamma_{\gamma}^{\alpha} . \quad R_{\gamma \beta}=0, \tag{29}
\end{equation*}
$$

which means that the connection $\Pi_{\gamma \beta}^{\alpha}$ is a point displacement. ${ }^{6}$)
In terms of the two quantities $Q_{\beta}{ }^{\alpha}, R_{\beta \alpha}$, the derivatives of the four vectors x, q, X, P are

$$
\left.\begin{array}{ll}
\nabla_{\gamma} x^{\alpha}=Q_{\gamma}^{\alpha}, & \nabla_{\gamma} x_{\beta}=Q_{\gamma \beta}, \tag{30}\\
\nabla_{\gamma} q^{\alpha}=R_{\gamma}^{\alpha}, & \nabla_{\gamma} q_{\beta}=R_{\gamma \beta}, \\
\nabla_{\gamma} X^{\alpha}=\frac{1}{2}\left(R_{\gamma}^{\cdot \alpha}-Q_{\gamma}^{\cdot \alpha}\right), & \nabla_{\gamma} X_{\beta}=\frac{1}{2}\left(R_{\gamma \beta}-Q_{\gamma \beta}\right), \\
\nabla_{\gamma} P^{\alpha}=\frac{1}{2}\left(R_{\gamma}^{\cdot \alpha}+Q_{\gamma}^{\cdot \alpha}\right), & \nabla_{\gamma} P_{\beta}=\frac{1}{2}\left(R_{\gamma \beta}+Q_{\gamma \beta}\right),
\end{array}\right\}
$$

[^3]which reduce in the particular case (29) to
\[

\left.$$
\begin{array}{ll}
\nabla_{\gamma} x^{\alpha}=2 \not \gamma_{\gamma}^{\alpha}, & \nabla_{\gamma} x_{\beta}=2 \epsilon_{\gamma \beta}, \tag{31}\\
\nabla_{\gamma} q^{\alpha}=0, & \nabla_{\gamma} q_{\beta}=0 \\
\nabla_{\gamma} X^{\alpha}=-\not \gamma_{\gamma}^{\alpha}, & \nabla_{\gamma} X_{\beta}=-\epsilon_{\gamma \beta}, \\
\nabla_{\gamma} P^{\alpha}=+\not \gamma_{\gamma}^{\alpha}, & \nabla_{\gamma} P_{\beta}=+\epsilon_{\gamma \beta} .
\end{array}
$$\right\}
\]

In conclusion the author wishes to thank Dr. J. HaAntjes and Professor J. A. Schouten whose criticisms on this note have led to several improvements

Mathematics. - Conformal representations of an n-dimensional euclidean space with a non-definite fundamental form on itself. By J. Hanntjes. (Communicated by Prof. W. v. D. Woude).
(Communicated at the meeting of September 25, 1937.)

Introduction.

It is wellknown that every real conformal point transformation in an n-dimensional $(n>2)$ euclidean space $\left(R_{n}\right)$ with a definite fundamental quadratic form can be brought about by a motion and an inversion or a dilatation ${ }^{1}$). This theorem, which for $n=3$ is due to Liouville and is called Liouville's theorem, does not hold in a euclidean space with a fundamental form which is not definite.

The problem with which we are here concerned is to find the extension of the above theorem to a euclidean manifold, the fundamental form of which is not definite. This leads to a new class of conformal transformations (formula (26)). If \mathfrak{M} denotes this class, then, as we shall see, the extension of LIOUVILLE's theorem may be formulated as follows. Every real conformal point transformation in an $R_{n}(n>2)$ is composed of a motion and a transformation T, where T is either a dilatation or an inversion or a transformation belonging to the class \mathfrak{M}.

It will appear that every transformation belonging to \mathfrak{M} is the product of two inversions. Thus the following theorem holds in any euclidean space. The inversions and motions in an R_{n} define together the conformal group of point transformations.

§ 1. Conformal transformations of the fundamental tensor.

Let $a_{\lambda x}$ be the fundamental tensor in an n-dimensional RiEmanNian space V_{n}. A transformation of the form

$$
\begin{equation*}
' a_{k x}=\sigma a_{i x} \tag{1}
\end{equation*}
$$

${ }^{1}$) S. Lie, Ueber Komplexe, insbesondere Linien- und Kugelkomplexe, mit Anwendung auf die Theorie partieller Differentialgleichungen, Math. Ann., 5 (1872) p. 184.

[^0]: ${ }^{1}$) J. A. Schouten: Zur Differentialgeometrie der Gruppe der Berührungstransformationen. Vol. 40 (1937), 100-107, 236-245.
 ${ }^{2}$) Strictly speaking this is a pseudogroup. Cf. O. Veblen and J. H. C. Whitehead : The Foundations of Differential Geometry, Cambr. Tracts, p. 38.

[^1]: ${ }^{3}$) H_{n} is the generalized projective space with VAN DANTZIGs homogeneous coordinates. Cf. D. van Dantzig: Theorie des projektiven Zusammenhangs n-dimensionaler Räume. Math. Ann. 106 (1932), 400.
 ${ }^{4}$) $\left\lfloor x^{x}\right\rfloor$ means x^{x} determined up to an arbitrary factor.

[^2]: ${ }^{5}$) This is equivalent to the LAGRANGE parenthesis condition for contact transformations. Similarly the transformation law of $\epsilon^{\alpha \beta}$ defined by (15) is the equivalent of the Poisson parenthesis condition.

[^3]: ${ }^{6}$) J. A. Schouten und J. HaAntjes: Zur allgemeinen projektiven Differentialgeometrie. Compositio Math. 3 (1936), p. 23.

