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which reduce in the particular case (29) to 

'Vy xa. = 2 flya. • 

'Vy qa. = 0 

'Vy x" = 2 Ey ;3. 

'Vy q;3 = 0 

'VyXa.=-flya.. 'VyX ;3= - Ey [3, 

'VyPa.=+flya. . 'Vy P /3= + Ey [3. 

(31) 

In conclusion the author wishes to thank Dr. J. HAANTJES and 
Professor J. A. SCHOUTEN whose criticisms on this note have led to 
several improvements 
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Introduction. 

It is welIknown that every real conformal point transformation in an 
n-dimensional (n > 2) euclidean space (Rn) with a definite fundamental 
quadratic form can be brought about by amotion and an inversion or 
a dilatation I). This theorem. which for n = 3 is due to LIOUVILLE and 
is called LIOUVILLE's theorem. does not hold in a euclidean space with 
a fundamental form which is not definite. 

The problem with which we are here concerned is to find the ex ten­
sion of the above theorem to a euclidean manifold. the fundamental 
form of which is not definite. This leads to a new c1ass of conformal 
transformations (formula (26)). If ill1 denotes this class. then. as we shall 
see. the extension of LIOUVILLE' s theorem may he formulated as follows . 
Every real conformal point transformation in an Rn (n > 2) is composed 
of a motion and a transformation T. where T is either a dilatation 
or an inversion or a transformation belonging to the c1ass ill1. 

It will appear that every transformation helonging to ill1 is the product 
of two inversions. Thus the following theorem . holds in any euclidean 
space. The inversions and motions in an Rn define together the conformal 
group of point transformations. 

§ 1. Conformal transformations of the fundamental tensor. 

Let ah be the fundamental tensor in an n-dimensional RIEMANNian 
space Vn o A transformation of the form 

I a i.z = (} a i. z . (1) 

I) s. LIE, Ueber Komplexe. insbesondere Linien- und Kugelkomplexe. mit Anwendung 
auf die Theorie partielIer Dilferentialgleichungen, Math. Ann .• 5 (1872) p. 184. 
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wh ere a is a function of the coordinates X X. which leads to another 
fundamental tensor 'al'. is called a conformal transformation of the 
fundamental tensor. It is cIear from the angle definition that the trans~ 
formation (1) preserves angles. 

We shall first show that these transformations are cIosely connected 
with the conformal point transformatioDs. Let 

yX=f' (Xi') 

be a real conformal point transformation. Thus we have 

ày' ayl _ 
a l x (y) àx,u axv - a a" v (x) . 

(2) 

(3) 

Such a transformation defines a 1-1 point correspondence. Hence we 
can solve the equations (2) for x ' in terms of yi. 

x ' = F' (y). (4) 

We now pass to another coordinate system (x') by the transformation 

x" = F" (x) . (5) 

where the functións F" are identical with the functions Fz. Then the 
coordinates of the point y' with respect to the system (x' ) are 

(6) 

and the components of the fundamental tensor at the point y' with 
respect to (x') are. as follows from (3). 

(7) 

Thus. given a conformal point transformation (2). there exists always a 
coordinate system (x') so that with respect to (x') the point y has the 
same coordinates as the corresponding point x with respect to the system 
(xJ. whereas the components of the fundamental tensor at the new point 
y with respect to (x' ) are obtained from the components with respect 
to (x) at the point x by multiplying with a factor a. This means. however. 
that every conformal point transformation corresponds to a conformal 
transformation of the fundamental tensor. 

IE the Vn is a euclidean space. Rn . the curvature affinor defined by 

(8) 

vanishes at every point. It is zero at the point y as weIl as at the 
point x . from which it follows in consequence of (7). that the curvature 
afHnor belonging to the tensor a ai. X also vanishes. A conform al trans~ 
formation in Rn corresponds. therefore. to a conformal transformation 
of the fundamental tensor 

, ai., = a ai., (9) 

l) The sign * means th at the equation holds with respect to the coordinate system 
or systems used in the equation itself ; it needs not to hold with respect to ot her systems. 
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50 that the curvature tensor I K~~/ belonging to the fundamental tensor 
I ai., vanishes. In the next section these conformal transformations of the 
fundamental tensor will be investigated. 

§ 2. Conformal transformations of the fundamental tensor in Rn . 
which lead again to euclidean spaces. 

Let us consider the transformation (9). The CHRISTOFFEL symbols 
computed from the tensor I ah are 

(10) 

where A~ is the unit afHnor and 

SI. = al. log (J (11 ) 

Prom this it follows that the curvature afHnor I K~;J: belonging to the 

tensor I ai., is related with K~~/ by the following equation 

(12) 

where 

Sl"i. = 2 'V I" Si. - SI" Si. + t al"i. SI! sI!. (13) 

We now suppose the space to be euclidean with respect to the 
fundamental tensor ah as weIl as , with respect to the . tensor I ah . Then 

both K~~{ and I K~~/ vanish aod. wh en n > 2. it follows from (12) that 

S .UÀ = 0 . . (14) 

which equation is equivalent to 

2 'VI"' Si. = SI" Si, - t al" i. SI! sI! . (15) 

Every solution SI. of this ' differential equation is a gradient. as is easily­
shown by aiternating both sides of (15). and gives a conformal transfor­
mation of the fundamental tensor. which leads again to a euclidean space. 

In this paper we consider the case that ai .• dxi. dx' is a non~definite 

q~adratic form. Then the real solutions Si. may be divided into three 
groups : 

1. . The 'solution ' s À =0 
2. The real solutions Si. for which SI! sI! ~ 0 
3. The real solutions Si .• different from zero. for which ah Si. s' = O. 
The solution Si. = 0 gives (J = constant. 
If S i. is a solution of the second kind. then a cartesian coordinate 

system can be chosen in such a way that 

(16) 

I) Cf. J. A. SCHOUTEN und D . J. STRUIK. Einführung in die neueren Methoden der 
Differentialgeometrie I. Groningen. p. 129. 
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C being an arbitrarily chosen constant. For the proof we refer to the 
literature 1). 

In the present paper we shall examine the solutions belonging to the 
third group. Such a solution satisBes the differential equation 

2 \l ,. Sl = S,. Slo · (17) 

Hence we have according to (11) 

2 \lp. a-i Sl = 2 a- i \l,. Sl - a-i Sl \l ,.log a = a-i s,. Sl - a-i s,. Sl = 0, (18) 

which means that the vector 

· (19) 

is covariant constant, hence it is constant with respect to a cartesian 
coordinate system. In the following we suppose the coordinate system 
to be an orthogonal cartesian one. From (19) we obtain by integration 

So we have 

a-i = c - bl xl; C = constant . 

2bl 
Sl=--b x' c- xX 

• (20) 

(21) 

where bl is a constant null~vector (bl bl = 0). By the orthogonal coor~ 

dinate transformation XXl = c)~' x x+ax l 
, where the ,,~' denote the generalized 

KRONECKER symbols and the a" are constants, c alters. It is, of course, 
always possible to Bnd a coordinate system for which c = J. 

§ 3. The corr'esponding confor'mal point transformations. 

As we have seen, to every conformal point transformation corresponds 
a conformal transformation of the fundamental tensor. 

A conformal transformation corresponding to the transformation 
I ah = a ah with a = constant is the dilatation 

yX= Va xx, . 

as is easily seen by substituting this expression in (3). 
Furthermore the inversion 

X X 
yx = C -- (C = constant) 

X l Xl 

· (22) 

. . (23) 

corresponds to a conformal transformation ot the fundamental tensor 
which belongs to the second group. Indeed from (23) follows 

dyX dy, = a dxx dxx ,. • (24) 

1) J. A. SCHOUTBN. Der Ricci-Kalkül. p. 173. 
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wh ere (J stands for the expres sion (16) . . Every other conformal transfor~ 
mation, which corresponds to the same transformation of the fundamental 
tensor, is the product of the inversion (23) and a motion. 

Let us now consider the conformal transformation of the fundamental 
tensor (9) with (comp. (20)) 

(25) 

hence a transformation which belongs to the third group. We shall now 
show that one of the corresponding conformal point transformations is 
given by 

(26) 

From (26) we have by differentiation 

z _ dxZ - (x l. dxl.) bz (b f' dx,u) (xx - t xl. XI. bZ
) 

dg - I-bI. XJ. + (1- bI. XI.)2 , (27) 

from which it follows af ter some calculation 

I. z _ al. z dxl. dx z _ I. z 
aJ,z dg dg - (1 _ be x e )2 - aa).z dx dx, . (28) 

where a stands for the expression (25). Consequently the conformal 
representation (26) of the space upon itself corresponds indeed to the 
transformation 

I - (1 b 1.)-2 aJ,z - - I. X aJ,z. (29) 

and every other conformal point transformation which corresponds to 
the transformation (29) is the product of the transformation (26) and a 
motion. In consequence of these results we have the following extension 
of LIOUVILLE' s theorem: 

Ang real conformal representation of an n~dimensional (n > 2) euclidean 
space with a non-definite fundamental form up on itself can be brought 
about bg the product of one of the transformations (22) (dilata tion) , 
(23) (inversion) or (26) with a motion. 

In a euclidean space with a definite fundamental form a rea 1 solution 
SJ" for which SJ. sI. = O. does not exist . In th is case, therefore, we do not 
find real conformal representations of the form (26). 

In an R2 with a non-definite fundamental form the representations 
mentioned in the above theorem are the conformal representations with 
the property that "circles" remain "circles". As an example let us write 
in fuIl one of these transformations. The coordinate system may be chosen 
in such a way that 

. (30) 
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Taking bi = 1. b2 = O. we obtain the following representation 

x 2 

y2= _-- 2' 
I-x 

(31) 

The system of "circles" Xl (x 2 - 1) = k transforms into the system 
yl + k (y2 + 1) = O. as is represented in the figure. 
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It is interesting to note that we may look upon the transformation 
(26) as the product of two inversions. one with the centre in X X = 0 and 
one with the centre X X = t bx : 

a) 
X Z 

z' = -.­
x '· X i. 

b) X - Z Z - t b' bi. bi, = 0 
y - (Zi. - t bi,) (Zi, - t bi.)' 

So we ha ve the following theorem : 

(32) 

The inversions and motions in an Rn together define the conformal 
group. 

This theorem holds both in an Rn with a non~definite fundamental 
form and in an Rn with a definite form. 


