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would give 

The last sum might be called the negative �z�e�r�o�~�p�o�i�n�t� number of electrons; 
it corresponds to the negative zero-point energy in (18). 

The operator of the �c�h�a�r�g�e�~�d�e�n�s�i�t�y� in space is given by 

. • (21) 

If necessary it can be expressed explicitly in terms of the a. b. a·. b· . . 
It is a particular case of the more general operator: 

p (q'. t'; q. t) = ; (1f'. (q. t) 1f' (q'. t')_1f'L* (q. t) 1f'L (q' . t')) . (22) 

where q and q' stand for two arbitrary. different choices of the space 
coordinates x. y. zand the spin coordinate k. The meaning of P is of 
course only weil defined wh en the HAMIL TONian H of the system is 
known. which governs the time dependenee of all operators. In the �p�a�r�~� 

ticular case where the electrons are free. we have H = HO. The �c�o�r�r�e�s�~� 

ponding �P�~�o�p�e�r�a�t�o�r� will be denoted by po. It is c10sely related to 

( 
i E J. (t-t') i El. (t-t')) 

Ro ( , '.)- • fi L· 'L fi (23) q.t .q.t -e I f{J l. f{J l. e -f{JJ. f{J l. e . . 
l. 

This function is identical with the density matrix, which has been computed 
in DIRAC' s paper on the hole-theory of 1934 I). P in (22) may be called 
the general operator of the matrix density of the electric charge. 

-+ 
If the electrons are subject to an external field with potentials IR. W. 

we introduce in (13) for F. F L the operators: 

-+-+ 
H = HO + e (W-(a IR)) 

and we find for the �e�n�e�r�g�y�~�o�p�e�r�a�t�o�r� of the system: 

H=HO+HI 

I) Proc. Cambr. Philos. Soc., 30, 150 (1934). 
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-+-+ 
If the action of the operator cp - (a %t) is described by means of the 

two~point operator~function Q (q . q' ) : 

-+-+ 
(CP-(a %t)) f(q) = IQ (q. q') f(q'), 

q ' 

(24) can also be written in the form 

Hl = 1 l P (q', q) Q (q. q') . (25) 
q q ' 

wh ere P (q'. q) is obtained from (22) by putting tand t' equal to zero. 
The Hl in (24) or (25) corresponds to the prescription of the DIRAC~ 
HEISENBERG hole~theory ; expressed in the a l. and b i. it contains on one 
hand the terms 

2
e 

I (QU! + Qi l! ) (ai a l! - bi b i! )! 
1.1.' 

-+-+ 
QI.I! = I lPi (CP-(a %t)) IPI.' 

(26) 

which commute with N , and on the other hand the terms 

; 3" (QI.;:< + Q;';) (a;' b;', + bI.' al.) l. 
-+ -+ 

Qü' = I IP~ (CP-(a %t)) IPf, 
(27) 

The terms (27) do not commute with N; they correspond to pair~ 
formation (a* b*) and to pair~annihilation (b a). 

If the potentials of the external Beid are time~independent. the operator 
-+ -+ 

H = HO + e (CP - (a %t)) will have eigenfunctions Xe and corresponding 
eigenvalues E e . The question arises if. and in what way. they correspond 
to stationary states of the one~electron problem in the field in question. 
It seems very difficult to give any definite answer at all to this question 

-+ 
if no specification of the %t, cp field is given. This difficulty is related to 
the unsatisfactory and preliminary character of the hole~theory in its 
present condition. 

In the particular case. where the external field is due to a positive 
electric charge. smaller than 137 1 e I. fixed at some point in spa ce 
(hydrogen~like atom). the Xe and E e can be naturally divided into two 
groups. The first of these corresponds to positive values of Ee , which 
we will denote by Em (eigenfunctions Xn). For the second group the 

E;s are negative; we denote them by -En (eigenfunctions X~). From 

comparison with the non~relativistic treatment. we expect that if e is 
taken to be negative. the first group corresponds to one negative electron, 
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in the field of the nucleus (ordinary hydrogen atom), whereas the second 
group corresponds to one positive electron in this field.When the 
nuclear charge continuously decreases to zero, the set of Xm~functions 
merges continuously into the set of cpl ~functions defined by (14), whereas 
the set of x~~functions merges into the cpf~functions. In this case we 

are therefore led to introduce the following representation of 1fJ and 1fJ L: 

+ d * -L I 1fJ = I Cm Xm I n Xn 
m n 

L ~d-+~*L 1fJ = ~ n Xn -:: Cm Xm C 
C: Cm + Cm C: = 1. d: dn + dn d: = 1 ) 

. (28) 

(all other pairs anticommutel. 

Comparing (28) with (16), we see that the Cm and d~ can be expressed 

in terms of the a l and b~, and reversely. 

The energy operator wil now be given by 

The total charge is given by 

e = e (I c:cm - I d: d n ). 
m n 

Looking apart form the zero~point energy in (29). all stationary states 
have positive energy. Their SCHRÖDINGER~functions, in the m, n repre~ 
sentation, are given by functions 

(Nm , N n = 1 or 0) . (30) 

which are zero for all N m• N n combinations with the exception of one 

particular combination N~, N~, for which A equals 1. Every one of 
these states can also be interpreted in terms of "free electrons", but it 

appears not to be quite easy to determine how the A ( ... N m ... ; ••• N n ... )~ 

description is transformed into the A ( ... Nl ... ; ... N l .. . )~description, 
which would refer to free electrons. 

One of the ordinary discrete states. say state mo, of the hydrogen~ 

like atom with one electron would correspond to A( . .. Nm ... ; ... N n ... ) 
being different from zero only for that particular N~, N~ combination 

for which all the N~ are zero, and for which also all N~ are zero with 

the exception of N~o ' In the description in terms of free electrons, the 
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number of electrons in this state is of course not well~defined. there being 
a probability of finding only one (negative) electron. a probability of 
finding three e1ectrons (two negative. one positive). and 50 on. 

Now. the e1ectrons have up to this point been considered as independent. 
whereas in reality they act on each other through the medium of the 
electromagnetic field. It is of course possible to describe this interaction 
in a formal way. by introducing a quantized E. H~field by the methods 
of quantum~electrodynamies. In view of the unsatisfactory nature of these 
methods we might. as an approximation. try to introduce directly the 
COULOMB interaction between the electrons. in order to improve our 
scheme of cakulating stationary states. 

Now. in non~relativistie quantum mechanies. this COULOMB interaction 
would be represented by a matrix~operator: 

H 2 = ~2 f f tp- (q) tp- (q') ~ tp (q') tp (q) r=I;(q)-;(q')I . (31) 

q q' 

The simplest but perhaps not correct way of generalizing this formalism 
in the hole theory would be: 

For large atomie number this energy might be considered as a perturbation. 
lts inBuence on the energy of the stationary states would be given by its 
expectancy value; this value does not vanish automatically in the case 
of the hydrogen-like atom (with one electron). in contrast to the result 
of applying (31) to such a state in non~relativistie quantum~mechanies. 
One might say this is due to the fact that. in the hole theory. it can 
no long er be said that precisely one electron is present in the stationary 
states in question. As a result we expect th at a correction must be applied 
to the energy va lues of the stationary states of the hydrogen atom. as 
given by the DIRAC theory of 1928. 

In a later paper we will discuss more c10sely the possibility of actually 
computing this correction. 


