
Physics. - The use of charge~conjugated wave4unctions in the hole~ 
theory of the electron. By H. A. KRAMERS. 

(Communicated at the meetin9 of November 27, 1937.) 

From the i~component DIRAC wave~function 1pk (k = 1. 2. 3. 4) satisfying 

-+ -+ -+ . à1p I (a, p - e m) + e tI> + (3 mI 1p = ,ft at .. · (1) 

another 4~component wave~function 1pL can be derived, which satisfies 
the same equation. but with the sign. of e reversed: 

· (2) 

We caU tpL the charge~conjugated function of 1p. The relation between 
-+ 

tp and 1pL is a very simple one, when we choose for the matrices a, (3 
that particular representation, which causes the two components 1pI' 1p2 

to transform like a relativistic spin or u, v, and 1p3' 1p4 like a spin~conju~ 
gated spinor ut (= - V*). vt (= U*), wh en a LORENTz~transformation 
is applied I). In facto writing 

· (3) 

and defining the charge~conjugated wave~function by 

· (4) 

it is easily verified that 1pL satisfies (2) wh en tp satisfies (1). 
. In order to prove this, consider for a moment 1pk as a function of 
two variables s, r which each take only the values + 1/2 and - 1/2: 

I) Compare for instanee H. A. KRAMERS. Hand u. Jahrb. d. Chem. Physik. J, § 63,64. 
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~ 

If a (a", ay, az) and e", e1/' ez are the PAULI matrices operating on s and 
~ 

r, the representation of a, f3 under consideration takes the form: 

~ ~ 

a = ez a, f3 = e". . . . . . . . . (5) 

Now the following formulae are easily seen to hold for each of the 
three a~ and three e~operators: 

From this follows: 

~ ~ 

(a 'IjJ)L = a 1jJL 

Since we have furthermore: 

(;'IjJ)L=h(-{\}'IjJ)L=hi\}'ljJL=_;'ljJL, (ih à'IjJ)L =_ih0'IjJL ot ot 
(Ij) 'IjJ)L = Ij) 'ljJL 

we see that the charge~conjugated of the left and right side of (1) are 
equal to the left and right side of (2), both multiplied by - 1. 

~ 

Any other representation of the a, f3 matrices corresponds to a trans~ 
formation of the wave~function . 

'IjJ'=S'IjJ, 

where S is an arbitrary non~singular matrix and we have 

~ ~ 

a'=SaS- 1, f3' = S (3 S-I. 

In the particular case 

we find 

a~= a,,= ez a", a~ = az = ez az , a~ =-f3=-e", (3' = ay = e. 0y. 

~ 

The matrices a' are now purely real whereas (3' is purely imaginary. 
From (6) we find: 
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Thus. for this particular representation. charge~conjugation and complex~ 
conjugation are identical: 

'L '* '!p = '!p • (8) 

It is immediately seen that equation (2) in this case is the conjugate 
complex of eq. (1). 

The property (8) must be invariant with respect to LORENTz-trans~ 
formations ; this is directly verified. since - with the representation 
under consideration - the coefficients of the LORENTZ-transformation of 
'!p;. '!p;. '!p;. '!p~ are rea!. In facto an infinitesimal LORENTz-tranformation 
corresponds to the operator 

lop. =1- S(i d"ax+ i dy ay + idz az + I"eza" + Ig e,Og + I,e,a,) S-I. 

where dx • dg. d, (infinitesimal rotation) and 1".lg.l, (infinitesimal pure 
LORENTz-transformation) are all rea!. Inserting the value (7) for S. 
we find for lop. a purely rea I matrix. 

-+ 
A representation where a. if3 are real has been used by MAJORANA 1) 

in his recent work on the quantum theory of the negaton and the 
positon. The concept of charge conjugation is. however. independent 
of the particular choice of the representation. By its means we will in 
th is article represent some results of the MAJORANA~calculus (and. thereby. 
also of the DIRAC~HE[SENBERG formulation of the hole theory. with 
which it is practically equivalent) in a general form. which on account 
of its simplicity might be of some interest. 

The PAULl~principle is introduced in the usual way by promoting the 
wave~function '!p to a "matrix~operator" 1.~ satisfying 

~* (q) ~ (q') + ~ (q') ~* (q) = d (q. q') (9) 

where q stands for the complete set of positional and spin~coordinates. 

The same relation will hold for the charge~conjugated function: 

(10) 

In these expressions. the asterie means hermitie conjugation. 
In ordinary. non~relativistic. quantummechanics an operator Ftotal. 

which is symmetrieal with respect to the electrons and whieh consists 
simply of a sum of identical hermitie operators F (i) 

Ftotal = I F (i) 
i 

(F (i) operates on the coordinates of the ith electron). is promoted to a 
matrix operator F by the weIl known formula: 

where f means integration over the three space coordinates and summa~ 

1) Nuovo Cimento. April. p. 171 (1937). 
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tion over the spin coordinates. With DIRAC'S equation (1) and its charge~ 
conjugated equation (2). we would have the choice between the two 
completely analogous hermitic expressions 

J tp* F tp and J tpL* FL tpL. • (11) 

where F is obtained from F by changing the quantity erepresenting 
the electric charge (and which in general may occur in F) into - e: 

FL (e) = F (-e) ( 12) 

MAJORANA'S calculus can now be simply expressed by stating that the 
arithmetic mean of the two expressions (11) has to be taken: 

. (13) 

A particular representation of tp is obtained by developing tp in terms 
of the eigenfunctions of tbe free electron. Those corresponding to 
"positive" energies will be denoted by rp!. : those corresponding to 
"negative" energies by rpf. For the latter we may indeed take the 

charge~conjugated of the former. The rpi. may be taken to correspond 
-+ -+ 

to definite values of the impuls~vector p: for each p there will still be 
two rpi. '5. which may be taken to correspond to spin parallel (rpf) and 

-+ 
antiparallel (rpi) to p. Taking for simplicity the eigenfunctions to be 

normalized eigenfunctions in a big cubical space (volume,Q) with periodic 
boundary conditions. and using the representation (5). we may write for 

-+ 
every possible impuls~vector p i. with components h ,Q_l/, k". h ,Q-'/, kg. 
h Q-'/. kz (k". kg. kz integers) 1) 

(

c a) i(;~ 
1 CP -

mP=-- e h 
Tl. V,Q Sa 

Sp (
-SP*) i(;~ 1 Sa· -h-

rpi. = V ,Q - C P* e 
Ca· 

( 

S R* -+-+ 
f' i (p r) 

1 -Sa* ---
rpfL = V,Q -C p*) eh, 

Ca· 
( 

ca) i(;~ 1 Cp--rpsL - __ e h 
i. - V,Q -Sa 

-Sp 

where C, S. a, pare defined by 

C = cos t x. S = sin t X. ctg X=J!..... 
m 

(14) 

pz =p cos {}, p" + ipg = P sin {} ei '!' , 

p = sin ~ e i '!' /2 
2 

. . (15) 

a = cos ~ e-i VJ /2, 
2 

1) Compare H. A. KRAMERS. loc. cito p. 292. 



8t8 

The representation in question can now be defined as 

. (16) 

To it corresponds the following representation for ..pL 

(17) 

In these formulae the summation over 1 includes summation over the 
two opposite spin~directions. The ai.. h l. and their hermitic con ju gates 
a~. h~ are WIGNER~JORDAN matrices satisfying 

h r h i. + h i. h r = 1. 
(all other pairs anticommute). 

In a continuous description (16) and (17) have to be replaced by 
integrals. Such a description is particularly appropriate to the discussion 
of the LORENTZ~invariance of the calculus, but we will not enter upon 
it here. 

We will now discuss some particular examples of the application of (13). 
Consider first the case of free electrons. i. e. electrons in the absence 
of external fields and without interaction. We compute theenergy 
operator HO 

where 

-+-+ 
HO = HOL = (a p) + fJ m. 

Now. since 

we find 

HO CPl = Ei. cpl . 

HO cpf = - Ei. cpf. 

HO = t I Ei. (ar a l - h i. h r ) + t I E l (hr h l - al ar ) 
Á À 

= t I El. 1 (ar a i. - a i. a r ) + (hr h i. - h l h r ) I 
l 

= I El I ar al + h1 h l - 1 I. 
l 

. (18) 

wh ere the - 1 corresponds to the weil known infinite negative zero point 
energy of the hole~theory. Generalising the a and h to time~dependent 
matrices a (t) . h (t). which for t = 0 become equal to a and h. we find 
immediately from 



the weil known time~dependence 

iEd 

a l. (t) = a J. e h 
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iEd 

b;.(t) = b I. e h 

Promoting also tf' to a time~dependent operator tfJ(t). the formula (16) 
takes the form: 

wh ere cP~ and cp~L are the va lues of CPI. and cpf at the origin. It is of 

interest to compare this formula with the analogous formula for the 
quantized radiation field of vacuum~electrodynamics 1). wh ere a similar 
formalism imposes itself automatically and ensures positive energy~values 
for the light~quanta. 

The operator e of the total charge of the electrons will be given by 
chosing in (13) : 

F=-FL=e. 
and we find : 

e = 2
e
f(tfJ* tfJ - tfJL* tfJL) = ~2 ~ (ar a l. + b J. b r ) - -2

e ~ (br b J. + al. ar ) l 
J. I. (19) 

=e I (ai. a l. - b i. b J.)=- eI (br b l. - ar al.) 
I. I. 

This leads us to consider a r a l. as the operator of the number of electrons 
with charge e in the state À. (we will call them negatons) and br b I. as 
that of the electrons with charge - e in this state (positons). This 
interpretation is in accordance with the usual interpretation of the formulae 
to which one is led wh en external fields are taken into consideration 
and when the non relativistic limiting case is discussed. It must. however. 
be remarked that the total number of electrons 

N = I (ar a l. + b i. b J.) . (20) 
I. 

is not given by (13) wh en we put F= FL = 1 ; we find indeed for 
F = 1 formally a constant: 

1= I 1. 
I. 

On the other hand. the simple but non~analytical operator 

HO 
F=FL=/Ho/ 

1) H. A. KRAMERS. loc. cito p . 434. Eq. (103) . 
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would give 

The last sum might be called the negative zero~point number of electrons; 
it corresponds to the negative zero-point energy in (18). 

The operator of the charge~density in space is given by 

. • (21) 

If necessary it can be expressed explicitly in terms of the a. b. a·. b· . . 
It is a particular case of the more general operator: 

p (q'. t'; q. t) = ; (1f'. (q. t) 1f' (q'. t')_1f'L* (q. t) 1f'L (q' . t')) . (22) 

where q and q' stand for two arbitrary. different choices of the space 
coordinates x. y. zand the spin coordinate k. The meaning of P is of 
course only weil defined wh en the HAMIL TONian H of the system is 
known. which governs the time dependenee of all operators. In the par~ 
ticular case where the electrons are free. we have H = HO. The corres~ 
ponding P~operator will be denoted by po. It is c10sely related to 

( 
i E J. (t-t') i El. (t-t')) 

Ro ( , '.)- • fi L· 'L fi (23) q.t .q.t -e I f{J l. f{J l. e -f{JJ. f{J l. e . . 
l. 

This function is identical with the density matrix, which has been computed 
in DIRAC' s paper on the hole-theory of 1934 I). P in (22) may be called 
the general operator of the matrix density of the electric charge. 

-+ 
If the electrons are subject to an external field with potentials IR. W. 

we introduce in (13) for F. F L the operators: 

-+-+ 
H = HO + e (W-(a IR)) 

and we find for the energy~operator of the system: 

H=HO+HI 

I) Proc. Cambr. Philos. Soc., 30, 150 (1934). 
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-+-+ 
If the action of the operator cp - (a %t) is described by means of the 

two~point operator~function Q (q . q' ) : 

-+-+ 
(CP-(a %t)) f(q) = IQ (q. q') f(q'), 

q ' 

(24) can also be written in the form 

Hl = 1 l P (q', q) Q (q. q') . (25) 
q q ' 

wh ere P (q'. q) is obtained from (22) by putting tand t' equal to zero. 
The Hl in (24) or (25) corresponds to the prescription of the DIRAC~ 
HEISENBERG hole~theory ; expressed in the a l. and b i. it contains on one 
hand the terms 

2
e 

I (QU! + Qi l! ) (ai a l! - bi b i! )! 
1.1.' 

-+-+ 
QI.I! = I lPi (CP-(a %t)) IPI.' 

(26) 

which commute with N , and on the other hand the terms 

; 3" (QI.;:< + Q;';) (a;' b;', + bI.' al.) l. 
-+ -+ 

Qü' = I IP~ (CP-(a %t)) IPf, 
(27) 

The terms (27) do not commute with N; they correspond to pair~ 
formation (a* b*) and to pair~annihilation (b a). 

If the potentials of the external Beid are time~independent. the operator 
-+ -+ 

H = HO + e (CP - (a %t)) will have eigenfunctions Xe and corresponding 
eigenvalues E e . The question arises if. and in what way. they correspond 
to stationary states of the one~electron problem in the field in question. 
It seems very difficult to give any definite answer at all to this question 

-+ 
if no specification of the %t, cp field is given. This difficulty is related to 
the unsatisfactory and preliminary character of the hole~theory in its 
present condition. 

In the particular case. where the external field is due to a positive 
electric charge. smaller than 137 1 e I. fixed at some point in spa ce 
(hydrogen~like atom). the Xe and E e can be naturally divided into two 
groups. The first of these corresponds to positive values of Ee , which 
we will denote by Em (eigenfunctions Xn). For the second group the 

E;s are negative; we denote them by -En (eigenfunctions X~). From 

comparison with the non~relativistic treatment. we expect that if e is 
taken to be negative. the first group corresponds to one negative electron, 
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in the field of the nucleus (ordinary hydrogen atom), whereas the second 
group corresponds to one positive electron in this field.When the 
nuclear charge continuously decreases to zero, the set of Xm~functions 
merges continuously into the set of cpl ~functions defined by (14), whereas 
the set of x~~functions merges into the cpf~functions. In this case we 

are therefore led to introduce the following representation of 1fJ and 1fJ L: 

+ d * -L I 1fJ = I Cm Xm I n Xn 
m n 

L ~d-+~*L 1fJ = ~ n Xn -:: Cm Xm C 
C: Cm + Cm C: = 1. d: dn + dn d: = 1 ) 

. (28) 

(all other pairs anticommutel. 

Comparing (28) with (16), we see that the Cm and d~ can be expressed 

in terms of the a l and b~, and reversely. 

The energy operator wil now be given by 

The total charge is given by 

e = e (I c:cm - I d: d n ). 
m n 

Looking apart form the zero~point energy in (29). all stationary states 
have positive energy. Their SCHRÖDINGER~functions, in the m, n repre~ 
sentation, are given by functions 

(Nm , N n = 1 or 0) . (30) 

which are zero for all N m• N n combinations with the exception of one 

particular combination N~, N~, for which A equals 1. Every one of 
these states can also be interpreted in terms of "free electrons", but it 

appears not to be quite easy to determine how the A ( ... N m ... ; ••• N n ... )~ 

description is transformed into the A ( ... Nl ... ; ... N l .. . )~description, 
which would refer to free electrons. 

One of the ordinary discrete states. say state mo, of the hydrogen~ 

like atom with one electron would correspond to A( . .. Nm ... ; ... N n ... ) 
being different from zero only for that particular N~, N~ combination 

for which all the N~ are zero, and for which also all N~ are zero with 

the exception of N~o ' In the description in terms of free electrons, the 
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number of electrons in this state is of course not well~defined. there being 
a probability of finding only one (negative) electron. a probability of 
finding three e1ectrons (two negative. one positive). and 50 on. 

Now. the e1ectrons have up to this point been considered as independent. 
whereas in reality they act on each other through the medium of the 
electromagnetic field. It is of course possible to describe this interaction 
in a formal way. by introducing a quantized E. H~field by the methods 
of quantum~electrodynamies. In view of the unsatisfactory nature of these 
methods we might. as an approximation. try to introduce directly the 
COULOMB interaction between the electrons. in order to improve our 
scheme of cakulating stationary states. 

Now. in non~relativistie quantum mechanies. this COULOMB interaction 
would be represented by a matrix~operator: 

H 2 = ~2 f f tp- (q) tp- (q') ~ tp (q') tp (q) r=I;(q)-;(q')I . (31) 

q q' 

The simplest but perhaps not correct way of generalizing this formalism 
in the hole theory would be: 

For large atomie number this energy might be considered as a perturbation. 
lts inBuence on the energy of the stationary states would be given by its 
expectancy value; this value does not vanish automatically in the case 
of the hydrogen-like atom (with one electron). in contrast to the result 
of applying (31) to such a state in non~relativistie quantum~mechanies. 
One might say this is due to the fact that. in the hole theory. it can 
no long er be said that precisely one electron is present in the stationary 
states in question. As a result we expect th at a correction must be applied 
to the energy va lues of the stationary states of the hydrogen atom. as 
given by the DIRAC theory of 1928. 

In a later paper we will discuss more c10sely the possibility of actually 
computing this correction. 


