Mathematics. - On additive properties of squares of primes. I. By P. Erdös. (Communicated by Prof. J. G. van der Corput).
(Communicated at the meeting of November 27, 1937.)

Introduction.

In three papers, one of which is published ${ }^{1}$), and the other two of which will appear shortly. I proved the following results: The densities of the sets of integers $p^{2}+q^{2}-r^{2}\left(p, q, r\right.$, odd primes) and $p^{2}-q^{2}+2^{l}$ are positive. In the introduction of I, I stated the following conjecture: The density of the integers of the form $p^{2}+q^{2}+r^{2}$ is positive. Now I have succeeded in proving this conjecture and the present paper will contain proofs of the following 4 theorems ${ }^{2}$):

1. The number of integers not exceeding n, of the form $p^{2}+q^{2}$ is greater than $c_{1} \frac{n}{(\log n)^{2}}$.
2. There exists an infinity of integers m such that the equation $m=p^{2}+q^{2}$ has one and only one solution.
3. The density of the integers of the form $p^{2}+q^{2}+r^{2}$ is positive.
4. The density of the integers of the form $p^{2}+q^{2}+2^{t_{1}}+2^{l_{2}}$ is positive. It is clear that 1 . follows from 4. Nevertheless we give an independent proof of 1 , partly because it will help to make clear the method and partly because we shall be able to deduce 2. from it. From 3. and a well known result of Schnirelmann we immediately deduce that a constant c_{2} exists such that every integer is the sum of c_{2} or less positive squares of primes. The chief importance of 4 . lies in the fact that the number of integers of the form $p^{2}+q^{2}+2^{t_{1}}+2^{t_{4}}$ not exceeding n does not exceed $c_{3} n$.

Throughout this paper n denotes a sufficiently large integer, c_{1}, c_{2}, \ldots and γ positive absolute constants, γ will be used only as an exponent of n.
§ 1.
We require the following
Lemma 1. Let $e_{1}, e_{2}, \ldots, e_{k} ; f_{1}, f_{2}, \ldots, f_{k}$ be integers with $\left|e_{i}\right|,\left|f_{j}\right|<n^{c_{4}}$, and for no i and $j e_{i}=e_{j}, f_{i}=f_{j}$ at the same time, then the number A of pairs of positive integers x and y, not exceeding n, for which

$$
\begin{equation*}
e_{1} x+f_{1} y, e_{2} x+f_{2} y, \ldots, e_{k} x+f_{k} y \tag{1}
\end{equation*}
$$

are all primes, is less than $c_{5} \frac{n^{2}(\log \log n)^{k+1}}{(\log n)^{k}}$.

[^0]Proof. We first estimate for fixed y the number A_{y} of x not exceeding n, for which all the integers (1) are primes. We may evidently suppose $\left(e_{i}, f_{i}\right)=1, i=1,2, \ldots k$. Let p be any prime not exceeding n^{γ} with $p \dagger e_{1} e_{2} \ldots e_{k}$ and $\left|e_{i} x+f_{i} y\right|>n^{\nu}(i=1,2, \ldots, k)$, then

$$
x \neq-\frac{f_{1} y}{e_{1}},-\frac{f_{2} y}{e_{2}}, \ldots,-\frac{f_{k} y}{e_{k}}(\bmod p)
$$

since $e_{i} x+f_{i} y$ are all primes.
These k residues are all different if $p \dagger f(y)$, where

$$
f(y)=y e_{1} e_{2} \ldots e_{i<j \leqslant k} \prod_{i}\left(e_{i} f_{j}-e_{j} f_{i}\right) .
$$

We may suppose $f(y) \neq 0$ for evidently $\left.e_{i} f_{j}-e_{j} f_{i} \neq 0\right)$.
Thus, by Lemma 2. of I and by the fact that there are at most $2 k n^{\gamma}$, values of x for which one of the inequalities $\left|e_{i} x+f_{i} y\right|>n^{\gamma}(i=1,2 \ldots k)$ is not true, we obtain

$$
\begin{equation*}
A_{y}<c_{6} n \prod_{\substack{p<n^{\gamma} \\ p \nmid f(y)}}\left(1-\frac{k}{p}\right)+2 k n^{\gamma} \tag{2}
\end{equation*}
$$

By applying the inequality

$$
1<\left(1-\frac{k}{p}\right)\left(1+\frac{k+1}{p}\right), \quad p>k(k+1)
$$

for the primes $p>k(k+1)$ dividing $f(y)$ we obtain from (2)

$$
\begin{equation*}
A_{y}<c_{6} n \prod_{k(k+1)<p<n^{\gamma}}\left(1-\frac{k}{p}\right) \prod_{p / f(y)}\left(1+\frac{k+1}{p}\right)+2 k n^{\gamma}<c_{5} \frac{n(\log \log n)^{k+1}}{(\log n)^{k}} \tag{3}
\end{equation*}
$$

since

$$
\prod_{k(k+1)<p<n^{y}}\left(1-\frac{k}{p}\right)<\frac{\mathrm{c}_{7}}{(\log n)^{k}}
$$

and

$$
\prod_{p / f(y)}\left(1+\frac{k+1}{p}\right)<c_{8}(\log \log f(y))^{k+1}<c_{9}(\log \log n)^{k+1}
$$

Thus, from (3),

$$
A=\sum_{y=1}^{n} A_{y}<c_{5} \frac{n^{2}(\log \log n)^{k+1}}{(\log n)^{k}}
$$

which proves the lemma.
Theorem I. The number B of integers m, not exceeding n, of the form $p^{2}+q^{2}$ is greater then $c_{1} \frac{n}{(\log n)^{2}}$.

We prove a more general result containing at the same time Theorem II. namely:

The number B^{\prime} of integers m not exceeding n for which the equation

$$
m=p^{2}+q^{2} \text { with } p \geqslant q
$$

has one and only one solution is greater than $c_{10} \frac{n}{(\log n)^{2}}$.
Proof. Denote by $\varphi(m)$ the number of solutions of the equation

$$
m=p^{2}+q^{2} \text { with } p \geqslant q
$$

we then have

$$
\begin{equation*}
B^{\prime}=\sum_{m=1}^{n} \varphi(m)-\sum_{\substack{m=1 \\ \gamma(m) \geqslant 2}}^{n} \varphi(m) \geqslant \sum_{m=1}^{n} \varphi(m)-\sum_{m=1}^{n}\left([\varphi(m)]^{2}-\varphi(m)\right) . \tag{4}
\end{equation*}
$$

Evidently

$$
\begin{equation*}
\sum_{m=1}^{n} \varphi(m)>\frac{1}{2}\left[\pi\left(1 / 2 n^{1 / 2}\right)\right]^{2}>c_{11} \frac{n}{(\log n)^{2}} . \tag{5}
\end{equation*}
$$

Next we prove

$$
\begin{equation*}
\sum_{m=1}^{n}\left([\varphi(m)]^{2}-\varphi(m)\right)<\frac{n}{(\log n)^{T / 2}} . \tag{6}
\end{equation*}
$$

Denote by C the number of solutions of

$$
\begin{equation*}
p^{2}+q^{2}=r^{2}+s^{2} \quad\left(p^{2}+q^{2} \leqslant n, p<r\right) \tag{7}
\end{equation*}
$$

then

$$
\sum_{m=1}^{n}\left([\varphi(m)]^{2}-\varphi(m)\right)=2 C,
$$

so that it will suffice to estimate C.
$\mathrm{W}^{T} \mathrm{e}$ write (7) in the form

$$
\begin{equation*}
r^{2}-p^{2}=q^{2}-s^{2} \tag{8}
\end{equation*}
$$

and put

$$
\begin{equation*}
r-p=2 a, \quad q-s=2 b \tag{9}
\end{equation*}
$$

Evidently $a, b<n^{1 / 2}$. We may suppose $a>b>0$.
By (8) and (9),

$$
a p-b s=b^{2}-a^{2}
$$

or

$$
p=\frac{b(s+b)}{a}-a
$$

Put $(a, b)=d, \frac{a}{d}=a^{\prime}, \frac{b}{d}=b^{\prime}$, then

$$
\begin{equation*}
p=\frac{b^{\prime}\left(s+b^{\prime} d\right)}{a^{\prime}}-a^{\prime} d \tag{10}
\end{equation*}
$$

From (10) we obtain

$$
s \equiv-b^{\prime} d\left(\bmod a^{\prime}\right)
$$

which means

$$
\begin{equation*}
s=-b^{\prime} d+a^{\prime} x \tag{11}
\end{equation*}
$$

From (11), (10) and (9) we have

$$
\left.\begin{array}{l}
p=-a^{\prime} d+b^{\prime} x \tag{12}\\
r=a^{\prime} d+b^{\prime} x \\
q=b^{\prime} d+a^{\prime} x
\end{array}\right\}
$$

Denote now by D the number of solutions of (11) and (12) with

$$
\begin{equation*}
1 \leqslant a^{\prime} d \leqslant n^{1 / 2}, \quad 1 \leqslant a^{\prime} x \leqslant n^{\prime \prime} \leqslant \quad\left(a^{\prime}>b^{\prime}>0\right) \tag{13}
\end{equation*}
$$

then evidently

$$
D \geqslant C
$$

(for if a^{\prime}, d, x do not satisfy (13) then at least one of the primes p, q, r, s is greater than $n^{1 / 2}$).

Hence it will be sufficient to estimate D.
Now we write

$$
D=D^{\prime}+D^{\prime \prime}
$$

where D^{\prime} denotes the number of solutions of (11) and (12) with $d \leqslant n^{1 / 4}$, and $D^{\prime \prime}$ the number of solutions of (11) and (12) with $n^{1 / 4}<d \leqslant n^{1 / 2}$.

First we estimate D^{\prime}. Denote by $D_{d, x}^{\prime}$ the number of solutions in a^{\prime}, b^{\prime} of (11), and (12) for fixed d and x.

From Lemma 1. by putting
$e_{1}=-d, e_{2}=e_{3}=x, e_{4}=d, f_{1}=f_{4}=x, f_{2}=-d, f_{3}=d, b^{\prime}=x, \quad a^{\prime}=y$
and replacing n by $\frac{n^{1 / 2}}{\max (x, d)}$, we obtain

$$
\begin{equation*}
D_{d, x}^{\prime}<\frac{c_{12} n(\log \log n)^{5}}{[\max (x, d)]^{2}(\log n)^{4}} \text { for } x \leqslant n^{3 / x} . \tag{14}
\end{equation*}
$$

For $\boldsymbol{x}>\boldsymbol{n}^{3 / x}$ we evidently have

$$
\begin{equation*}
D_{d, x}^{\prime}<\frac{n}{x^{2}} \tag{15}
\end{equation*}
$$

From (14) and (15) we obtain

$$
\begin{align*}
D_{d}^{\prime}=\sum_{x=1}^{n^{1 / z}} D_{d, x}^{\prime}= & \sum_{x=1}^{d} D_{d, x}^{\prime}+\sum_{x>d}^{n^{3 / / x}} D_{d, x}^{\prime}+\sum_{x=n^{4 / x}}^{n^{1 / x}} D_{d, x}^{\prime} \\
& <\frac{c_{12} n(\log \log n)^{5}}{d(\log n)^{4}}+\frac{c_{13} n(\log \log n)^{5}}{d(\log n)^{4}}+2 n^{5 / x} \tag{16}
\end{align*}
$$

Finally from (16)
$D^{\prime}=\sum_{d=1}^{n^{1 / 4}} D_{d}^{\prime}<\frac{c_{14} n(\log \log n)^{5}}{(\log n)^{3}}+2 n^{-1 / n}<c_{15} \frac{n(\log \log n)^{5}}{(\log n)^{3}}$.
Now we estimate $D^{\prime \prime}$. Denote by $D_{a^{\prime}, b^{\prime}, d}^{\prime \prime}$ the number of solutions in x of (11) and (12) for fixed $a^{\prime}, b^{\prime}, d$.
By putting
$-b^{\prime} d=f_{1} y, \quad-a^{\prime} d=f_{2} y, \quad a^{\prime} d=f_{3} y, \quad b^{\prime} d=f_{4} y, \quad e_{1}=e_{4}=a^{\prime}, \quad e_{2}=e_{3}=b^{\prime}$,
and replacing n by $\frac{n^{1 /:}}{a^{\prime}}\left(a^{\prime} \leqslant \frac{n^{1 /:}}{d}<n^{1 / 4}\right)$ we obtain from (3)

$$
D_{a^{\prime}, b^{\prime}, d}^{\prime \prime}<c_{16} \frac{n^{\prime}=(\log \log n)^{5}}{a^{\prime}(\log n)^{4}}
$$

Now

$$
D_{a^{\prime}, d}^{\prime \prime}=\sum_{b^{\prime}=1}^{a^{\prime}} D_{a^{\prime}, b^{\prime}, d}^{\prime \prime}<c_{16} \frac{n^{1!v}(\log \log n)^{5}}{(\log n)^{4}}
$$

and

$$
D_{d}^{\prime \prime}=\sum_{a^{\prime}=1}^{d} D_{a^{\prime}, d}^{\prime \prime}<c_{16} \frac{n(\log \log n)^{5}}{d(\log n)^{4}}
$$

Thus finally

$$
\begin{equation*}
D^{\prime \prime}=\sum_{d>n^{1 / 4}}^{n^{1 / 4}} D_{d}^{\prime \prime}<c_{17} \frac{n(\log \log n)^{5}}{(\log n)^{3}} \tag{18}
\end{equation*}
$$

From (17) and (18) we obtain

$$
D=D^{\prime}+D^{\prime \prime}<\left(c_{15}+c_{17}\right) \frac{n(\log \log n)^{5}}{(\log n)^{3}}<\frac{n}{\left.(\log n)^{1 / 2}\right]^{\prime}}
$$

which proves (6).
From (4), (5) and (6) we obtain

$$
B^{\prime}>c_{11} \frac{n}{(\log n)^{2}}-\frac{n}{(\log n)^{\sigma_{2}}}>c_{10} \frac{n}{(\log n)^{2}} .
$$

Hence the result.
(To be continued).

[^0]: ${ }^{1}$) On the easier Waring problem for powers of primes, Proc. Cambridge Phil. Soc. 33, 6-12 (1937). I shall refer to this paper as I.
 ${ }^{2}$) In connection with all these problems, see Vinogradov, Comptes Rendus del'Acad. des Sciences de l'U. S. S. R., 16, 131-132 (1937).

