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Nun ist :
R = (ab)? (cd)? (ad) (bc) = (a Q)°

also

OR _, v~ OR da _ 3
—(E—‘I 25( ‘Oa 0x; =4eQy.

a

Da aber jetzt R=0 und Q=ka}_ ist, folgt
(o) wi = 0.

Hieraus folgt also, dass in diesem Fall | identisch verschwindet.

Mathematics. — On the singular series in WARING's problem and in
the problem of the representation of integers as a sum of powers
of primes. By H. D. KLOOSTERMAN. (Communicated by Prof.
W. vAN DER WOUDE.)

(Communicated at the meeting of January 28, 1939.)

The object of the present note is to give a simple proof of Theorem 2 in
G. H. Harpy and J. E. LiTTLEWOOD, Some problems of “Partitio
Numerorum’: IV. The singular series in WARING's problem and the
value of the number G (k), Math. Zeitschr. 12 (1922), 166—188. The
original proof of HARDY and LITTLEWOOD (as it is also reproduced in
LANDAU’s Vorlesungen iiber Zahlentheorie, Band 1, p. 280—285) con~
tained rather complicated arguments about the number of solutions of
certain congruences. It is shown here, that these arguments can be
replaced by some much simpler lemmas about the generalized GaAussian
sums, The same method of proof is also applicable to the singular series
in the problem of the representation of integers as a sum of powers of
primes.

Notations. k, s, n, q, a are integers, k=3, s=1, n=1, q=1.
p is always a prime. A summation over h, in which h is running
through a complete system of residues mod g or a complete system of
residues prime to g is denoted by

3 and X’

hmod g hmodgq

respectively. Further we write

27ix

eq(x):e 4

and -
S, @)= 3 e,(ah*), C,la= X e,(ah*), c,(a)= I’ e,(ah),
hmodq hmodq hmodgq
A n)= 3’ <§q@>seq(—an)
amodq Cl

(cq (n) is RAMANUJAN's sum). If p is a prime, then p’ and p” (where &
and p are integers = 0) denote the highest powers of p, which divide
k and n respectively and we write

p=pk+v @
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(where § and » are integers =0 and 0=v < k). The integer 7 is
defined by

y=6+1if p>2; y=—68+2if p=2.

Then with the exception of the case k=4, p=2, =2 (in which
k=1y) we have always k>7 (if k= 3). Therefore in any case we have

k= y. Further let

1 =1+ S A (n).

A=1

Temma 1. If 4 is an integer >y, ¢=p" and (a,q)=1, then
C,(a)=0.
Proof. Let
h=h,+h,p"" "1,

where h, runs through a complete system of residues prime to p*~
and h, through a complete system of residues mod p’*l, so that h runs
through a complete system of residues prime to p*. Then

ht= h 4 khi~ by p* =0~ " (mod p),

f—1

(LANDAU, Vorlesungen iiber Zahlentheorie, Band 1, Satz 290) and
therefore

Coa)= 3 elaht) = egnlkhi?h)

b mod pt—0—1 hy, mod f+1
1 4 o

The sum over h, is zero for every hy, which proves the lemma.

Lemma 2. Let 2 be an integer =1 and 4 — 1=tk +r, where ¢ and
r are integers =0 and 0=r<k. Then if qg—=p" and (a,q) =1, we
have

S,a) 1 Spnf@ 1 Cpnla+p
g g et et
Proof. 'Those terms e, (a h*) of Sy(a), for which p* (0 =x=14) is
the highest power of p, which divides h, are together (if we put
h=h,p"):

4 k7 hk
' eqlap*hy)
hy modp}“_Z

and therefore

p V) Cikr(a) or @ (™)

according as 0 =x»=t¢ or t< =2 But if 0=3x <t then

Ik = A=k (=) =r+k+1Zk+ 1>
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and therefore it follows from lemma 1, that

A
~~~~~ 2 ey (k— 3 AN P —f—
2 p~* [ptY C,,z—kt(a)Jrz:%pr(p’ =p~ C o1 (a) + p~

e p"tﬁrml [Cpr+1 (a) -+ P'] = p_t_rwl SprJrl (a)

(since those terms of Sp,+1(a) for which h is divisable by p are all
equal to 1),

Lemma 3. With the same notations as in lemma 2 we have

Ag (n) = ptlE—s Ay,H (0) if 0=¢<p;
= pF A (p%’ﬂ) if t=8 ;
=0 if >4 ;

—s)—3 n : - -
= pthss e g ("“bkt) if 0=¢=f and y=r=k.

Proof. According to lemma 2 we have

We put
a=a, + a, pth,

whelre a, is running through a complete system of residues prime to
p't! and a, through a complete system of residues mod p**. Then we get:

s ot 7 S"H(al) °
A (n)=p—ts 3 (J—’-;M ————— ) eq (—ajn) X epkt(’—’az n).

a; mod pr+ 1 a2y mod pkt

The inner sum is zero unless n =0 (mod p*Y), that is if =4, and then
it is p*% Therefore

A ()= p'+9 Ay (};> .

But if 0 =¢<8, then

A i (%) = A1 (0)

and the first three statements of the lemma are proved. In order to
prove the fourth statement of the lemma, we observe, that for r=y we
have in consequence of lemma 1:

Cpr-l-l (@ =0

Proc. Kon. Ned. Akad., v. Wetensch.,, Amsterdam, Vol, XLII, 1939, 12
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end therefore lemma 2 gives

Hence

n
Aq (n) . 2 p s(e+ 1) (_a n) :p_s(t+ 1) Cq (.-_n) — pt(k~s)-——s Cpr 1 (——— ;)Ft) .

amod g

Theorem. 1f 4> Max(fk-+»-+1, fk-+7), then A, (n)=0. We

have also

A1
to = pU97 X pt=I N (p7, 0) - pll =97+ 7 ( )

t=0

where (if m is an integer and a is an integer =1) N (p*, m) is the
number of solutions of the congruence

RErpte . RE=m (modp?) . . . . . ()
for which not every A (i==1,2,..,s) is divisable by p. (If #==0, then

g1
> is to be replaced by 0).

t=0

Proof. If 2=1+(f+ 1)k, then the first statement is contained in
lemma 3. Now let

...... —=pk+4r+1 0O=rk).

Then it follows from lemma 3, that if A=k -y + 1, that is if r=y,
we have

n
e B (R8)— .
A (n) = pPt=d scpr-f-1< pk/g)'

Since the RAMANUJAN sum is O for r >, the first part of the theorem

is proved.
In order to prove the second part of the theorem, we obtain from

lemma 3:

-1 k-1 k-1
=1 -} 2 2 Ap/ct+l-+1(fl)+ ) Ap/?k+r+1(n):

=0 r=0 r=0
p-1 1 ) 1 n
,1_ % pt(kf—s) > A e (0) _][_ pp(kﬂ) 2 Apr-H (7(5 )
t=0 0 0 p

Next we consider the sum

0= 2 2 eV((h’f+h’2‘+...+hf-m)a),

hymod o’ amodp?
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where m is an integer and the h;(i—1, 2,...s) and a each run
through a complete system of residues mod p”., Those terms of o, for
which every h; is divisable by p are together equal to

p'e X ey (—ma)

amodp?

Since

2 ey ((AE+ R4 . 4 hF—m) a)

amod p?
is zero unless

he-hE 4. hr=m (mod pt),
in which case it is p’, we get

o=p" N(p’", m)+pr=1+ 2 e,(—ma)
amodp?

Again, collecting those terms of o, for which
@p)=p " (0=1=y)

we have also
o=p" (1 + A, (m) -+ Ap(m) +... 4+ A, (m).

Equating the two expressions for o we get

y—1
2 Api(m)=—1+p N, m+p 3 e,(—am). . (3)

amod p¥

Further it follows from lemma 3, that

—1 k—1
2’ A r+1( )=p— X et (—my=p~™ X ek(—wam) P 3 ey (—am) (4)

=y =y amodpk amod p¥

and the same lemma gives also
k—1

5(; A‘Pr“ (m)=—1+4p " IN(p",m)+p— X €k (—am) . (5)

amod pk

Subtracting (4) from (5) and substituting the result in (3) we find:

B-1 ) £—1
2p =1+ 2 plmd (ph=—1) 4 pli=I7 3 p=I N (p, 0) 4-
t=0 t=—0

(1—-3) —s l (k—s — g T n
- pli=a)r+ £l )N(py,pkﬁ>+pﬁk )( l+p zdkepk (—ap—k—;;))‘»
amodp

Since

B—1

l;%) Z£0 (modp*) and 20 pt-s) (ph—s—1) = pfl-9) — |
t—=

the theorem now follows immediately. @
12% .
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The corresponding theorem for the problem of the representation of
integers as a sum of powers of primes is rather more simple, Let?)

A= 3 (9&))8 eo(man). =1+ 3 Au)

amodq

Then we have the

Theorem. 1f N’ (p*, m) is the number of solutions of the congruence
(1) for which all Ai(i=1,2,... s) are prime to p, then

o=p" (@ (p") ) N (p", m).

Proof. From lemma 1 we get
14
=14+ X A;A (n).
I=1

We now consider the sum
o= 3 3 ey ((hE + h’2“+...+h’;-—~n)a).
hy mod p¥ a mod p¥

Then in the same way as shown above for o, we now find for ¢’ the

two expressions
o' =(p (")) 1, =p" N' (p", m)

and the theorem follows immediately.

) 1. VINOGRADOFF. Hinige allgemeine Primzahlsatze. Travaux de l'lnstitut math. de
Thilissi 3, 1—67 (1938) (in Russian and in German).

Chemistry. On dissymmetrical synthesis in the case of complex metallic
salts. 111, By L. Lirscrirz 1), (Communicated by Prof. F. M. JAEGER.)

(Communicated at the meeting of January 28, 1939.)

§1. If a luteo-cobaltic salt be prepared from an optically inactive Co-~salt
and an optically active diamine — e.g. [-propylene-diamine (= l-pn), —
a relatively~dissymmetrical reaction takes place and the obtained reaction~
product is totally (or double) active. It might be expected to consist of
a mixture of two optical isomers, viz. I [Co(l-pn)s], Xz and IL
[Co(l-pn)s] , X3 However, in all cases so far examined only one single
salt was obtained. Nevertheless, it may be easily demonstrated that a
relatively dissymmetrical synthesis has, indeed, taken place. The obtained
luteo-salt, namely, appears to possess a rotatory dispersion of a perfectly
similar nature as [Co(en)3] , X3, — which salt owes its activity exclusively
to the axial symmetry of the complex ion. Moreover, already the occurrence
of a CoTTON-effect in the visible spectrum proves that the above-mentioned
luteo-salt must be totally-active; for complexes, which are only partially~
active with regard to the diamine, never manifest such a CoTTON-effect 2).

Totally different conditions are met with in the case of the complex
cobaltic salts with three mol. of an optically-active a-amino-acid, e.g.
[Co(d-alanine)s]. A comparison with optically-active [Co(glycine)s] is
impossible here, as the latter salt has not yet been obtained in the optically~
active form; while, on the other hand, it is not known whether a complex-
bound, optically-active a-amino-acid present in of themselves racemic
complexes, causes a COTTON-effect to display itself or not. The occurrence
of a relatively-dissymmetrical synthesis, consequently, could only be
considered as rigorously proved in the case of these tri-a-amino-acid
cobaltiates, if of the four theoretically possible reaction-products
(a and f forms are geometrical isomers): IIl. a-[Co(d-alan)s],; IV.
a~[Co(d-alan)s], ; V. p-[Co(d-alan)s] ,: VI f-[Co(d-alan)s],, either
all four, or three, or at least III and IV or V and VI could be shown to
be present in the reaction-product and could be isolated from it.

In the preceding communications the presence of a relatively-dissym-~
metrical synthesis could, indeed, in this way be proved in the case of the
complex~formation with three mol. d-alanine or d-glutaminic acid. The
results of these and not yet published researches 3) now justify the

1) Ct Proc. Kon. Akad. v. Wetensch., Amsterdam, 27, Nos. 9 and 10 (1924); ibid.
39, Nr, 10 (1936).

2) Cf. A, WERNER, Helv. Chim, Act, 1, 5 (1918).

3) From not yet completed experiments it was found, that also in the case of
complexes with asparaginic acid a similar argumentation is feasible, @



