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Nun ist 
R = (aW (Cd)2 (ad) (bc) = (a Q)3 

also 

Da ab er jetzt R = 0 und Q = k a~x ist, folgt 

(rpa)31jJi = o. 

Hieraus folgt also, dass in diesem Pal! 1 identisch verschwindet. 

Mathematics. -- On the singular series in WARINO's problem and in 
the problem of the representation of integers as a sum of powers 
of primes. By H. D. KLOOSTERMAN. (Communicated by Prof. 
W. VAN DER WOUDE.) 

(Communicated at the meeting of January 28, 1939.) 

The object of the present note is to give a simple proof of Theorem 2 in 
G. H. HARDY and J. E. LrfTLEWOOD, Some problems of "Partitio 
Numerorum" : IV. The singular series in W ARINO' s problem and the 
value of the number G(k), Math. Zeitschr. 12 (1922). 166-188. The 
original proof of HARDY and LITTLEWOOD (as it is also reprodueed in 
LANDAU'S Vorlesungen über Zahlentheorie, Band 1. p. 280--285) con~ 
tained rather eomplicated arguments about the number of solutions of 
eertain eongruences. It is shown here, that these arguments ean be 
replaced by some much simpIer lemmas about the generalized GAUSSian 
sums. The same method of proof is also applicable to the singular series 
in the problem of the representation of integers as a sum of powers of 
primes. 

Notations. k, s, n, q, a are integers, k ~ 3, s == L n == 1. q:==- 1. 
p is always a prime. A summa ti on over h, in which h is running 
through a complete system of residues mod q or a complete system of 
residues prime to q is denoted by 

and ~' 
hmodq hmodq 

respectiveIy. Further we write 

2nix 

eq (x) = e q 

and 

Sq (a) = 2: eq (a hle ), Cq (a) = ~I eq (a h le ), cq (a) = ~I eq (a hl, 
hmodq hmodq hmodq 

(cq (n) is RAMANUJAN'S sum). If p is a prime, then po and pI" (where ()' 
and fh are integers == 0) denote the highest powers' of p, which divide 
k and n respectively and we write 
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(wh ere ~ and y are integers == 0 and 0 === y < kl. The integer y is 

defined by 

y=8+1 if p>2; y = 8 + 2 iE P = 2. 

Then with the exception of the case 
k = y) we have always k > y (if k == 3). 

k ==)'. Further let 

k = 4, P = 2, 8 = 2 (in which 
Therefore in any case we have 

" 

00 

Xp = 1 + 2: A À (n). 
i,=l P 

Lemma 1. lf Je is an integer> y, q = pi, and (a, q) = 1, then 

Cq(a) = O. 

Praaf. Let 

h = hl + hz pi,-O-l, 

where hl runs through a complete system of residues prime to pi, - e-I 

and hz through a complete system of residues mod pHI, so that h runs 
through a complete system of residu es prime to pi,. Then 

hk=c h~ + kh~-l h 2 pÀ-O--I (mad pÀ). 

(LANDAU, Vorlesungen über Zahlentheorie. Band 1, Satz 290) and 

therefore 

C q (a) = 2;1 eq (a h'n 2; epo+1 (k h~-l hz)' 
h, mod pÀ-O-I h, mod p8+1 

The sum over h2 is zero for every hl, which proves the lemma. 

Lemma 2. Let Je be an integer ==- 1 and Je - 1 == t k + r. wh ere tand 
rare int eg ers == 0 and 0 -=: r < k. Then if q= pi, and (a, q) = 1, we 

have 

Praaf. Those terms eq (a hk) of Sq (a), for which p" (0 -=:: U === Je) is 
the highest power of p, which divides h, are together (if we put 

h = hl p"): 
2;1 eq(apkzhi') 

h,modpÀ-z 

and therefore 

pZ(k-l) CpÀ-kX (a) or rp (pÀ-X) 

according as 0 -=: U -=:: t or t < u -=:: Je. But iE 0 -=: U < t, then 

Je-ku==Je-k(t-l)=r+k+ 1 ==k+ 1 >y 
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and therefore it follows from lemma 1, that 

Sq" (a) -À À ----q- = p [pt(k-I) Cpi,-kt (a) + 2; rp (pi,-x)] = p-t-r-I C r+1 (a) + p-t-I 
x=t+1 p 

= p-t-r-I [Cpr + l (a) + p,] = p-t-r-l Spr+1 (a) 

(sin ce those terms of Spd I (a) for which h is divisable by p are all 

equal to 1). 

Lemma 3. With the same notations as in lemma 2 we have 

A q (n) =---= pt(k-s) Apr+ 1 (0) if O===t<~; 

= pp(k--s) A ( ~ ) if t=~ pr+ I kp 
P 

=0 iE t> {J 

=-= pt(lc-S)-S Cp,-H (-- Jt) iE O-=:t-=:~ and )' r k. 

Praaf. According to lemma 2 we have 

A q (n) = p-ts :EI (~l'~I(~))S e (-a n) 
8 mod q p' + Iq' 

We put 

a=al +aZp'+I, 

where al is running through a complete system of resiclues prime to 
e,+1 and a2 through a complete system of residues mod pkt. Then we get: 

A (n) = -ts ,1 (~P'+ ~a_I~)S q p 2, ,+1 eq(-aln):E ekt(-a2n). 
.,modp,+l p. a d kt p 

2 me P 

Thc inner sum is zero unless n --~ 0 (mod plet), that is if t -=:~, and th en 
it is plet, Therefore 

A q (n) = pt(k--s) Ap'+l (;t-)' 
But if 0 === t < {J, then 

and the first three statements of the lemma are proved. In order to 
prove the fourth statement of the lemma, we observe, th at for r == y we 
have in consequence of lemma 1: 

Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam. Vol. XLII, 1939. 12 
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c:nd therefore lemma 2 gives 

Hence 

A
q 

(n) = 2:' p-s(t+ I) eq (-a n) = p-s(t+ 1) cq (--n) = pt(k-3)-S cpr + 1(--?--t) . 
ti mod q 

Theorem. If}, > Max (f3 k + Y 1, f3 k + y), th en ApÀ (n) = O. We 

have also 

___ (1- s) Y IS~~ I t(lc- s) N (pY 0) +_ p(1-s) Y -11 ' (k-s) N (py, __ '2..) , Xp - P "'" p, plqS 
(,=0 

where (iE m is an integer and a is an integer :=::: 1) N (pC<, m) is the 

number of solutions of the congruence 

h~ +- h~ + ... + h; __ c m (mod pC<) . (1) 

for which not every hi (i = 1, 2, .. ,s) is divisable by p. (If f3 = 0, th en 
,3-1 

2: is to be replaced by 0). 
t=O 

Praaf. IE Je:=::: 1 + (f3 1) k, then the first statement is contained in 

lemma 3. Now let 

Je = f3 k -t- r + 1 (0 == r < k). 

Then it follows Erom lemma 3, that iE Je =- f3 k + y + 1, that is if r =- y, 

we have 

Ap? (n) = p/3(k-s)-s Cpr-t-I (- ;,3 ). 

Since the RAMANUJAN sum is 0 for r> y, the first part of the theorem 

is proved. 
In order to prove the second part of the theorem, we obtain Erom 

lemma 3: 

j9 -I 
Xp == 1 + 2: 

(=0 

k-I Ic-I 

2: A1ct+rtl(n)+ 2: A p/9k+r+l(n)= 
.. =0 p 1'=0 

N ext we consider the sum 

. (2) 
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where m is an integer and the h i (i = 1, 2, ... s) and a each run 
through a complete system of residues mod pY. Those terms of 0, for 
which every h i is divisable by pare together equal to 

p(y-I)s 2: epy (- ma). 
amodpY 

Since 

2: 0pY ((h; + h~ + ... + h; - m) a) 
amodpY 

is zero unless 

(mod pY), 

in which case it is pY, we get 

o == pY N (pY, m) p(Y-J)s 2: e y(-ma). 
amodpY P 

Again, collecting those terms of 0, for which 

(0 :-= Je :-= y) 

we have a1so 

a = pYs (1 + Ap (m) + A p2 (m) + ... + A pY (m)). 

Equating the two expressions for 0 we get 

y-I 

2: A 1'+1 (m) = - 1 + Py(l-s) N(pY, m) + p--s 2: e Y (--am). . (3) 
1'=0 P amodpY p 

Further it fallows from lemma 3, that 

k-I k-I 

2: A r+l(m)=p-s 2' C 1'+1 (--m)=p-s 2: e k(--am)-p-s 2: e y(---am) (4) 
'r==y P r=y P amodpJc P amodpY P 

and the same lemma gives also 

k-I 

2: A r-t-I (m) = - 1 + pY(I-s) N (pY, m) + p-s 2: e Ic (-am) . (5) 
1'=0 P amodpk p 

Subtracting (4) from (5) and substituting the result in (3) we find: 
(3-1 , j9-1 

Xp = 1 + 2: pl(k-s) (pk--s -1) + p(l-s)y 2: pt(lc-s) N (pY, 0) + 
1=0 t=O 

+ p(l-s)y+j9(k-s) N (pY, .!2..) + pj9(k-s) (-1 + p-s 2: ek (-a .!2..)) . 
Pkf3 k P pkf3 

ti modp 

Since 

n 
pkr 

,3-1 o (modpk) and 2: pl(k-s) (pk-s_l)=pf3(lc-s)_l 
t=O 

the theorem now follows immediately. 

12* 
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The corresponding theorem for the problem of the representation of 
integers as a sum of powers of primes is rather more simpie. Let 1) 

A~ (n) = ~I 
amodq 

Then we have the 

Theorem. If NI (pC/., m) is the number of solutions of the congruence 
(1) for which all h i (i = 1, 2, ... s) are prime to p, then 

X~ = pY (cp (pY) )-. NI (pY, m). 

Proof. From lemma 1 we get 

Y 

x~ = 1 + ~ A'). (n). 
).=1 p 

We now con si der the sum 

Ol = ::EI 

hj mod pY a mod pY 

Then in the same way as shown above for 0, we now find for Ol the 

two expressions 

Ol = (cp (pY))' X~ = pY NI (pY, m) 

and the theorem follows immediately. 

1) I. VINOGRADOFF. Einige allgemeine Primzahlsätze. Travaux de l'Institut math. de 

Tbilissi 3, 1-67 (1938) (in Russian and in German). 

Chemistry. - On dissymmetrical synthesis in the case ot complex metallic 
salts. lIL By I. LIFSCIIITZ 1). (Communicated by Prof. F. M. JAEGER.) 

(Communicated at the meeting of January 28, 1939.) 

§ 1. If a luteo~cobaltic salt be prepared from an optically inactive Co~salt 
and an optically active diamine -- e.g. l~propylene~diamine (= l~pn), -
a relatively~dissymmetrical reaction takes place and the obtained reaction~ 
product is totally (or double) active. It might be expected to consist of 
a mixture of two optical isomers, viz. 1. [Co (l~pn) 3 J DX 3 and IJ. 
[Co(l-pn)3J LX3' However, in all cases so far examined only one single 
salt was obtained. Nevertheless, it may be easily demonstrated that a 
relatively dissymmetrical synthesis has, indeed, taken place. The obtained 
luteo~salt, namely, appears to possess a rota tory dispersion of a perfectly 
similar nature as [Co (en) 3] D X 3, - which salt owes its activity exclusively 
to the axial symmetry of the complex ion. Moreover, already the occurrence 
of a COTTON~effect in the visible spectrum proves that the above~mentioned 
luteo~salt must be totally~active; for complex es, which are only partially
active with regard to the diamine, never manifest such a COTTON~effect 2). 

Totally different conditions are met with in the case of the complex 
cobaltic salts with three mol. of an optically~active a~amino~acid, e.g. 
[Co (d-alanine hJ. A comparison with optically~active [Co (glycine lsJ is 
impossible here, as the latter salt has not yet been obtained in the optically
active form; while, on the other hand, it is not known whether a complex
bound, opticaIly~active a~amino~acid present in of themselves racemic 
complex es, causes a COTToN~effect to display itself or not. The OCCllrrence 
of a relatively~dissymmetrical synthesis, consequently, could only be 
considered as rigorously proved in the case of these tri~a~amino-acid 
cobaltiates, if of the four theoretically possible reaction-products 
(a and (J forms are geometrical isomers): lIL a~ [Co (d~alan ls] D; IV. 
a-[Co(d-alanls]L; V. (J-[Co(d-alanls] D; VI. (J~[Co(d~alanls] L' either 
all four, or three, or at least III and IV or V and VI could be shown to 
be present in the reaction-product and could be isolated from it. 

In the preceding commllnications the pres en ce of a relatively-dissym~ 

metrical synthesis could, indeed, in this way be proved in the case of the 
complex-formation with three mol. d-alanine or d-glutaminic acid. The 
results of these and not yet published researches 3) now justify the 

1) Cf. Proc. Kon. Abd. v. Wetenseh .. Amsterdam, 27, Nos. 9 and 10 (1924); ibid. 
39, Nr. 10 (1936). 

2) Cf. A. WERNER, Helv. Chim. Act., 1, 5 (1918). 
3) From not yet completed expe'l'iments it was found, that also in the case of 

complexes wHh asparaginic acid a similar argumentation is feasible. ll1! 


