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investigation, I am inclined to think that an eye vesicle under ectoderm 
can induce numerous lenses, if by the growth of neighbouring or gans it is 
placed in different positions and, now in this place, then in another, comes 
into contact with the ectoderm. My previous investigation, namely, revealed 
that the eye vesicle during a long time possesses the capacity to in duce 
lenses. The lenses, induced in this way, will develop differently, according 
as the eye sooner or later los es contact with the lens anlage. 

If during that process the eye vesicle is turned, it may take the induced 
lens along with it. The latter, if replaced as weil, may later give the 
incorrect impression that it has been induced out of other material than 
ectoderm. Thus the results of POPOFF (1937) might be explained. He 
thought, namely, th at he had found lens formation out of different tissues 
if an abnormally orientated eye vesicle came into contact with them. Only 
his recent researches (grafting of different tissues into the cavity of the 
eye cup) can pro duce evidence in favour of his opinion. 

Besides, the fact that a lens is found against the tapetum of the eye 
(POLITZER) may not lead to the conclusion that this layer also can 

induce a lens. 
Finally I will mention that in Triton taeniatus I repeatedly noticed lens 

formation out of the margin of the iris and even directly out of the retina 
of the grafted eye vesicles. Nevertheless, these eyes had also induced 
lenses out of ectoderm. The presence of a regenerated lens consequently 
does not deprive the eye of its capacity to in duce lenses. 

The phenomenon that an eye vesicle, grafted at a very young stage 
without a lens rudiment, regenerates a lens out of its retina or iris may 
also account for some cases described in the literature of so~called lens 
induction out of other tissues than ectoderm. The observed lens es might 
have been regenerated lenses. In Axolotl and Rana esculenta I observed 
these regenerated lenses only rarely, but there is no doubt that this type 
of lens formation occurs. In Triton taeniatus the phenomenon may be 

frequently observed. 
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Physics. ~ Some considerations on the fields of stress connected with 
dislocations in a regular crystal lattice. I. By J. M. BURGERS. 
(Mededeeling No. 34 uit het Laboratorium voor Aero~ en Hydro~ 
dynamica der Technische Hoogeschool te Delft.) 

(Communieated at the meeting of January 28, 1939.) 

1. In order to explain the mechanism of plastic deformation of a crystal 
in its most simple form, as it is presented by the shearing process due to 
slipping along planes of a definite crystallographic orientation, several 
authors have assumed th at the basic phenomenon leading to slip is the 
migration through the lattice of a weil defined type of deviation from the 
ideal structure, a so~called dislocation 1). 

It has been in particular TAYLOR who has investigated the characteristic 
proper ties of an elementary, two~dimensional type of dislocation, thc 
possibilities for its displacement through the lattice, and the influence of 
the fields of stress connected with a system of such dislocations up on this 
displacement 2). An account of some of the results of this work, together 
with suggestions for certain modifications which made it possible to 
construct a connection with views developed by BECKER and by OROWAN, 
has been given by W. G. BURGERS and the present author in the "First 
Report on Viscosity and Plasticity", pp. 199 and seq. The problem, 
however, presented itself wh ether the two~dimensional type of dislocation, 
which must extend in a straight line through the lattice from one boundary 
surface of the crystal to the opposite boundary, really leads to an appro~ 
priate description of what is to be found in an actual crystal; it would 
appear th at dislocations characterized by disturbances of a more genera!, 
three~dimensional type, which for in stance may be confined to a l'egion of 
finite extent, might lead to a more adequate picture 3). It is the object of 
the following pages to make a few contl'ibutions towal'ds the development 

1) Compare: "First Report on Viscosity and Plasticity" (Verhand. Kon. Neder!. Akad. 
v. Wetenschappen te Amsterdam, Ie secti<'. XV, No. 3, 1935), p. 198 al1d the 1iterature 
mel1tioned there; "Second Report on Viseosity and Plasticity" (ibidem, XVI, No. 4, 
1938), p. 200. 

See also papers by A. KOCHENDÖRFER, Zeitschr. f. Physik 108, p. 244, 1938 and 
Zeitschr. f. Metallkunde 30, p. 299, 1938. 

2) G. 1. TAYLOR, Proc. Roy. Soc. (Lol1don) A 145, p. 362, 1934. 
3) "Second Report on Viscosity and Plasticity", p. 201. - KOCHENOÖRFER in his 

second paper (see footnote 1, above) alludes to the same problem; however, the few 
Iines devoted by him to this matter (l.c. p. 300, second column) apparently are not based 
upon a suffieiently developed investigation of the geometrie features of dislocat~ons of 
three~dimensional type. 
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of such a picture, by investigating some of the geometrical relationships 
presented by dislocations of three~dimensional nature, and developing 
expressions for the fjelds of stress connected with them. 1t must be remarked 
that the treatment is of a preliminary character, and the reader will note 
several points where further work will be necessary. 

2. Introductory geometrical considerations on dislocations of various 
form. - A schematical picture of a lattice with a two~dimensional "unit 
dislocation" of the type as considered by TAYLOR, is given in fig. 1. The 
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Fig. 1. Elementary type of a two~dimensional dis]ocation, having the z"axis 
(perpendicular to the plane of the paper) as its singular linc. 

disturbance presented by the lattice in this case can be described by stating 
that above a definite horizontal plane, say the x, z~plane, every row of 
atoms parallel to the x~axis contains one atom more than every row below 
th is plane. The dislocation can be obtained by imagining the lattice to be 
cut along the upper half of the y, z~plane (i.e. the half plane x = 0, y > 0), 
and inserting an extra layer of atoms into this cut. 

It will be evident that the deformations appearing in the lattice in 
consequence of this process (i.e. the deviations from their original cubicaI 
form, which are shown by the cells of the lattice) decrease indefinitely with 
increasing distances from the z~axis. Instead of the deformations of the cells 
we will consider the displacements of the atoms from their normal positions. 
When the components of the displacement are denoted by lt, v, w, it 
will be seen that although these quantities in reality are defined only 
for the (enumerable) set of lattice points where atomsare to be found. 
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they can be considered as being determined by functions of the coordinates 
x, y, z, which in general are everywhere continuous and finite. lt is only at 
the points of the z~axis and its immediate neighbourhood, that these 
functions lose their meaning; moreover, in the case of the function giving 
the values of ti the following point is to be noted: When in the half plane 
x = 0, y < ° we assume ti = 0, then in the region where y is positive we 
shall Eind that ti approaches to the value + t Aa for x> 0, and to the value 
--t Aa forx < 0; hence the corresponding function will be discontinuous at 
the points of the half plane x = 0, y> 0. The explicit introduction of this 
discontinuity into the function, however, leads to unnecessary complications 
in the analytical treatment of the problems before us: it would lead to an 
infinite value of the derivative àufàx at the points of the half plane, which 
is cumbersome as the actual deviation of the lattice cells from their normal 
form is finite here and in fact approaches to zero. lt is more convenient 
therefore to consider the function defining ti as a function of the coordinates 
which is continuous a1so at the half p1ane x = 0, y> 0, and which con';' 
sequently is continuous through the who1e of spa ce, with the exception only 
of the z~axis; then there is no complication in the expressicin of deformations 
by means of the derivatives of this function. It is to be noted, however, that 
the function thus defined ceases to be a single~valued function: when we 
describe a closed circuit around the z~axis, considering ti as a continuous 
function of the coordinates, then on coming back to our starting point we 
shall find that u will have either increased, or decreased by the amount ,ia. 

The functions giving the values of v and w, on the other hand, although 
they likewise cease to have a meaning at the points of the z~axis, are single~ 

valued throughout the whole of 
space. 

The result arrived at can be 
expressèd by saying that the 
function ti (x, y, z) possesses a 
cycIic constant for every closed 
line embracing the z~axis, which 
constant has the value J,o. 

The z~axis consequently is to 
be considered as a singular line 
for the dislocation, which trans~ 
forms the space around it into a 

o'----------------y multiply~connected region 4). 
Fig. 2. Extra layer of atoms botlnded by an 

arbitrary line a in the !J, z-plane. 3. Instead of making a cut of 
haIf-infinite extent in order to 

insert into it an extra half plane of atoms, we mayalso imagine that a cut 

4) For a further elucidation of these geometrical relationships thc reader is referred 
to: A. E. H. LOVE, Treatise on the Mathematical Theory of Elasticity (Cambridge ~920), 
p. 218 seq., and to the paper by VOL TERRA, mentioned in footnote 8) below. 
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is made over a finite area .2 of the plane x = 0 (or of a plane x = constant). 
lying wholly inside the crystal, and insert into it an extra layer of atoms. The 
boundary line a of the cut, or rather of the extra layer of atoms introduced 
into the lattiee, will consist of segments of rows of atoms, alternately parallel 
to the y~axis and to the z~axis (compare fig. 2); in. the geome:trieally 
simple:st case: it may he a rectangle, hut when observed on a scale large 
compared with the atomie distance Aa, it may be of any form. 

In this case again the components v and w can be represented by singlep 

valued functions of the coordinates, whereas u can be: described by a many~ 
valued funetion, with the cyc1ie constant Aa for every line embracing the 
boundary line a. whieh now is the singular line of the field. 

4. It is possrble to imagine a dislocation of another character. in whieh 
the many..-valued function again represents the u~component of the displace~ 
ment, but in whieh the singular line is the x~axis. In order to obtain sueh a 
case a discontinuity is introdueed in the junction of the half~planes x=const., 
y < 0 with the half~planes x=const., y >0, by making a shift of one atomie 
distance in passing from the region z < 0 into the reg ion z > O. Then. 
as indicated schematieally in fig. 3, it will be found in moving along a linc 
x = const., z = const .• that the component u increases by the amount t Aa 
if z> 0, whereas it decreases by the same amount jf z < O. 

40 
r-~ 

!I \1 

x 

Fig. 3. Schematical picture of a dislocation having the x-axis as singular 
line. Continuo us lines indicate rows of atoms above the x, y-plane; broken 

lines indicate rows of atoms below this plane. 

It must be remarked that the vertical rows of atoms in general will not 
remain perfectly straight and parallel to the z~axis. Prom reasons of sym~ 
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metry with respect to the x~axis we might expect that we should observe an 
increase of u by something like i }'o when we move in the direction of + z 

along a row for which y < 0; then in moving along a horizontal row in the 
direction of + y there should be observed a further increase of u by i Aa; 
next going downwards along a vertical row for which y > 0 into the region 
z < 0 there should again be an increase by a similar amount, etc. The exact 
calculation shows that u increases proportionally to the angle described 
around the x-axis, as wil! be seen from eq. (27) below. 

5. In this way we see that it is possible for singular lines to run parallel 
to any one of the three coordinate axes. The case last considered may be 
combined with the other cases; an example is indieated schematically in 
fig. 4. Here on the right hand side of the plane x = 0 we have thc same 
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Fig. 4. Schematical picture of a dislocation with a singular line consisting 
of the positive x-axis together with the positive z-axis (directed upwards 

perpendicularly to the plane of the paper). 

type of dislocation as sketched inJig. 3, with the positive x-axis as the 
singular line; an extra Iayer of atoms, however, has been introduced along 
the quarter plane x ,= 0, y > 0, z> 0, in consequence of which there are no 
discontinuities in the region x < 0, only deformations which will gradually 
decrease as we go further away in the direction of -x. The positive half 
of the z-axis now has become a singular line, being in fact the contin~ation 
of the segment which was formed by the positive x-axis. 

Another case is indicated schematically in fig. 5a, which is obtained in 
the following way: In the x, y-plane a rectangle is imagined with sides 
2a, 2b respectively. This rectangle will interseet a number of layers !f atoms 
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which in the undisturbed state of the lattice were parallel to the plane 
x ,= 0. These layers are assumed to be cut along the lines of intersection 

(all cuts lying in the plane z = 0, and extending from y = -b to 
y = + b); in joining them together again a shift of amount Ao has been 
introduced in the way as indicated in fig. 5b (representing a section 
according to the x, z~plane). The half plane x = - a, Z < 0 then wil! 
possess a free upper border 01 along the segment extending from y =-b 
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Fig. 5. Schematical picture of a dislocation with a singular Hne in the farm 
of a rectangle in the x, y-plane. Fig. 5a: view in the direction of the negative 

z-axi.s; fig. 5b: section by the plane Oxz. 

to Y = + b; the half plane x = + a,z > ° has a free lower border 02 along 
a segment of similar extent. 

The singular line in this case is formed by the four sides of the rectangle, 
the segments 01 and 02 being two of these sides. 

It "must be stated, of course, that in actual cases the discontinuities 
possibly may not have the rather simple form assumed in the diagrams 
given here: there may be regions of irregular atomic arrangement, affecting 
several rows of atoms in the neighbourhood of what we have ealled the 
singular line. However, what is most important in every case is the mode 
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of connection between the planes or rows of atoms at larger distances 
from the disturbed reg ion, and for the sake of simplicity in the mathematical 
formulation it is convenient to keep to the picture of singular lines as deter~ 
mining the geometry of the field. 

We now may generalise to cases where the singular line eonsists of an 
arbitrary sequenee of segments, each of which is parallel to one of the 
eoordinate axes. Again viewing from ascale which is large compared with 
atomic distances, we may consider such a singular line as being of arbitrary 
form in space. 

One important property of these singular lines, however, must be noticed 
at once: they ean never end at an interim point of the Iattice, and must be 
either closed in themselves, or extend from a point of the exterior surface 
to another point of th is surface or to infinity, or from infinity to infinity. 

6. Tile field of stress accompanying a dislocation.-It has beenohserved 
by TAYLOR 5) that although it is not possible to ealculate in a rigorous way 
the farces experienced by the atoms in the immediate neighbourhood of the 
singular line, at greater distances the mean stress es per unit area ean be 
found with the aid of the equations of the theory of elasticity. In order to 
arrive at exact results it is necessary to make use of the equations valid for 
crystalline substances. Even in the case of substances of the regular class 
these equations are more eomplicated than those valid for isotropic bodies, 
the number Qf constants occurring in them being three, instead of two, 
while a still greater number occurs in the equations for erystalline sub~ 
stances of other classes 6). The application of these equations consequently 
will lead to elaborate expressions, which are not easily handled. It will be 
usefuI, therefore, first to develop a provisional treatment, based upon the 
ordinary theory of elasticity for isotropic bodies, for which the mathematical 
I'echnique has been built out much further. The results obtained in this way 
ean give an insight into the principal features of the subject 7), while the 
application of the exact equations for regLtlar crystaIs will be considered 
afterwards in Part Il. 

The concept of dislocations (originally called "distortions"; the name 
dislocations is due to LOVE) was introduced into the theory of elasticity 
by VOL TERRA in order to describe the deformation that can be found in a 
body occupying a multiply~connected region, when the displacements of 
the points are given by many~valued functions of the eoordinates, th ere 
being no exterior forces (neither volume~forces, nor surface~forces) acting 
on the body 8). In our case this multiply~connected reg ion is the space 

5) G. 1. TAYLOR, l.c. p. 375. 
G) See A. E. H. LOVE, l.c. Chapter VI. and works on physical crystallography. 
7) See G. I. TAYLOR, l.c. p. 377. 
8) V. VOLTERRA, SUl' l'équilibre des corps élastiques l11ultiplement connexes, Ann. 

Ecole Norm. Supér. (3) 2'1, p. 400, 1907; A. E. H. LOVE, l.c. p. 218. - A report on 
various types of structural stresses in elastic systems has been given by P.~NEMÉNYI 
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which is obtained when thin cores are cut away from the body along the 
singular lines considered before. 

In the fo11owing discussion we assume the crystal to be of infinite extent 
in all directions, and - unless especia11y stated - we restrict to singular 
lines of finite extent, and consequently closed in themselves. 

The boundary conditions for the field of stress in this case require that 
all stress components sha11 vanish at infinity, in such a way th at no resultant 
force nor resultant moment is transmitted through any plane which recedes 
to infinity. In virtue of the equations of elastic equilibrium these conditions 
at the same time ensure that there will be no resultant force or moment 
acting up on the matter in the immediate neighbourhood of the system of 
singular lines considered as a whoIe. It will be natural. however, to intro~ 
duce the more stringent condition that the resultant force and moment must 
vanish for any one of the singular lines separately. And generally we must 
go still further: when the disturbed reg ion along the singular line is of the 
nature of a relatfvely thin care, it is inconceivable that farces of considerable 
magnitude can be transmitted along it Erom one part to another. Hence, 
when we consider a small element of this core, bounded e.g. by a cylindrical 
surface having an element of the singular line as axis, the stresses acting 
on the cylindrical surface must balance each other already very nearly, so 
that there will remain only residues of an order of magnitude vanishing at 
the same time as the radius of the cylinder. 

7. General mathematical expressions for the components of the displace~ 
ment in an elastic body, connected with a given dislocation. - The genera} 
expressions for the displacement components have been deduced by 
VOL TERRA. However, before giving VOLTERRA'S equations we will 'follow 
a more synthetic way, which will make clear the meaning of the various 
terms of these equations. 

We start from a set of formulae giving the components of the displace~ 
ment due to a force operating at a point in an indefinitely extended body 9). 
The displacement may be considered as being the sum of two parts, one 
part having the same direction as the force and being equal in magnitude 
to the force divided by 4:n ,u 'r, while the second part can be written as the 
gradient of a certain function 'IjJ: 10) 

Fk d1jJ 
Uk = -- +--- (1) 

4:n ft r d Xk 

(Selbstspannungen elastischer Gebilde, Zeitschr. f. angew. Math. u. Mech. 11, pp. 59-70, 
1931) . 

9) A. E. H. LOVE, l.c. p. 183, eqs. (11). As stated by LOVE at p. 181. these equations 
originally are due to W. THOMSON. 

10) For convenience we write Xl, X2, X3 for the coordinates; Ul, U2, U3 for the 
components of the displacement, etc. The force is acting at the point ~1, ~2, ~3 and 

r 2 = (Xl - ~1)2 + (X2 - ~1)2 + (X3 - ~3)2. 
The quantity ft is one of the two elastic constants (ft, À) characteristic of an isotropic 
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the F k representing the components of the force. For the present it is not 
necessary to give the "complementary function" 'lp explicitly; it must be 
introduced in order to ensure that the equations of the theory of elasticity 
sha11 be fulfilled, but. as we sha11 see later, th is can be done afterwards, 
so that we are entitled to leave it aside until further consideration, It may 
be remarked that whereas the first part (the "principal" part) of Uk satisfies 
the equation 

6 (_E"--) = 0 
4:nftc 

(2) 

the "complementary function" 1p is subjected to the equation: 

661P=0 (3) 
Now it wiJl have been seen from sections 2-5 that the condition 

expressing the multi~valuedness of the displacement component U in the 
cases considered is of the same kind as that of the potentiaI cp associated 
with the velocity field determined by a vortex line, coinciding with the 
singular line a. In the hydrodynamical case the cyclic constant of the 
potential function for every closed line embracing the vortex line is equal 
to the strength of the vort ex line. which thus in our case should be 
numerically equal to lco. -- In a more general case, where all three com~ 
ponents Ul' U2. Ug may be multi~valued. we sha11 intro duce three cyclic 

constants fl' f2' fg· 
We may, therefore, begin by tentatively writing down the fo11owing 

formula for the "principal" part of the components Uk: 

Uk = 6 cp. (4) 
where cp is the hydrodynamic potential for a vort ex line of unit strength. 
coinciding with the singular line a characteristic of the dislocation. The 
value of cp is equal to the solid angle which a surface .2 bounded by the 
line a subtends at the point of the field considered. divided by 4:n; it can 
also be represented by the integral ll ): 

(5) 

v being the normal to the element d.2, drawn in the direction determined 
by th at side of the surface .L.,' which is considered as the positive side. 

8. Formula (5) induces us to interprete the components Uk considered 
in (4) as being due to a system of imaginary doublets. distributed over the 
surface 2'. the axis of the doublets everywhere being norm al to d.L.,', whereas 
the strength (the "moment") of the doublets has the components fl f k • 

medium. as used by LOVE and other writers; ft is equal to the shear modulus G. while the 
ordinary modulus of elasticity (YOUNO's modulus) is given by E = ft (3À +- 2ft)/(À +- ft). 
the compression modulus being H = À+- 2ft/3. POISSON's ratio l/m of the lateral contraction 
to the longitudinal ex ten sion in an ordinary extension experiment is determined by: 
m c= 2(À +- ,u)/ft. 

11) See H. LAMB, Hydrodynamics (Cambridge, 1932), p. 212. 
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As every doublet consists of two forces of equal and op po site magnitude, 
the resultant force due to the system is zero. There will be, however, a 
resultant moment, and it is not difficult to prove that the components of 
this moment are given by the expressions: 

ft (A 2 [3 - A3 (2) 

ft (A3 [I - AI (3) 

ft (AI [2 - A 2 [I) 

(6) 

where Al' A2' A3 resp. represent the area's of the projections of .2 upon 
the three coordinate planes, taken with such signs that Ak > 0 when the 
norm al ')J to .2 is in the direction of the positive x k~axis. Our force system 
consequently does not represent an equilibrium system. 

In order to balance this moment, we introduce a system of imaginary 
forces ft Bk acting at the points of the boundary line, where: 

d~3 d~2 
gl = f2da - f3 do 

d~1 d~3 
g2 =--= [3 do - [I do (7) 

d~2 d~1 
g3 := [I do- - f2 d;; 

It is easily proved that this system yields a resultant force equal to zero, 
while it has a resultant moment which is the exact opposite of that given 
by eqs. (6). Consequently as a second contribution to the "principal" part 
of the components Uk we take the expressions: 

Uk* =) . j' do .gk. . (8) 
4n r . 

The whole system then will be balanced. 
It is of importance to observe that formula (8) also can be written in 

the form of an integral over the surface .2, as follows 12): 

(9) 

9. We now turn to the determination of the "complementary function". 
to be denoted by T. We put: 

(10) 

12) In this equation and in the following ones it is assumed that when in a product 
or in a differential quotient an index, like I, occurs twice, summation is to be performed 
with respect to I = 1. 2, 3. - The quantities (1' k) are the cosines of the angles between 
the norm al l' to d2,' and the coordinate axes, and t ~ = (1'1) • ti (component of t knormal 
to d2). 
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The dilatation e then is given by: 

(11 ) 

The components Uk must satisfy the equations of the theory of elasticity: 

(12) 

As both 6 u~ = 0 and 6 a:* = 0, th is equation will be satisfied, provided: 

ft D T -+. (À + ft) & = 0 . (13) 

from which it follows that T must satisfy the equation: 

D T= - /-+r~ (~~k + ~;:*) (14) 

N ow from (4), combined with (5), and from (9) it is found that: 

(15) 

The solution of (14) therefore can he given in the form: 

(16) 

where T' is a function which satisfies the equation 6 T' = O. This function 
must he determined in such a way that the function T shall not present a 
discontinuity at the surface .2. It is found that this is obtained hy taking: 

(17) 

so that af ter a slight reduction there results: 

IJI = - ~D~ ~À~2;;i.f J d.2 [tIjjJ~)jX~~/k) (Xz= ;1) + .. ~ J (18) 

It is interesting to remark that l[I also can be represented by a line 
int eg ral taken along o. We intro duce a vector ft hk with the components: 

(19) 
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Then it is found that: 

(20) 

The fact that th is transformation is possible proves that rp is independent 
of the particular form given to the surface .2 (provided it is bounded by 
the line a), and th at consequently rp and its derivatives will be continuous 
at the points of .2. 

Our Einal expression for Uk thus becomes: 

(21) 

with cp given by (5) and rp given either by (18) or by (20). The first 
integral introduces the desired multi~valued character, while all three terms 
are independent of the particular form given to the surface .2 and exclusively 
depend upon the form of the boundary line a. 

10. The formulae deduced by VOLTERRA with the aid of a very elegant 
method, refer to a somewhat more general case than the one considered 
here 13). Wh en we restrict to the type of multi~valuedness considered 
above, these formulae can be given in the form: 

Uk = JJ dL: X kl fz . (22) 

where the X kl (i = 1, 2, 3) represent the components of the stress acting 
on the element d.2 at ~1' ~2' ~3' when a unit force in the direction of the 
xk~axis is applied at the point Xl' x2' x3' When the calculations are worked 
out, it is found th at 14): 

X kl = ~ ~ (-~) + _1 ~ (v k) ~ (-~) - (v i) _~ (J_) ~--
4 n à v r 4 n ? MI r Mk r ~ 

A + ,u ~ à3 r à (1) ~ . (23) 
-- 4~f.+ i~) (àXk à.iza-; - 2 (v l) àx; -;: ~ 

With these values of X'rl the expressions (22) are identical with (21). 

11. Appiication of equations (21) to some simpie exampies. - We turn 
back for a moment to the cases indicated schematically in fig. land 3, 
although they refer to fields where the singular line is of infinite extent, 
and wil! attempt to apply eqs. (21) to them. In these cases f2=f3=0, 
while fl =C~ Aa. 

A. In the case of fig. 1 the singular line is the z~axis. In order to find 
the value of cp by means of eq. (5) we may take an arbitrary half plane for 
the surface .2, provided it has the z~axis as its boundary, as different 
positions of this plane lead to results differing only by an additive constant. 

13) V. VOLTERRA l.c. p. 425, eqs. (I), (lI). 

14.) Here oki = 1 or 0, accordingly as Ic = I or Ic "* Z, 
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It is necessary, however, to specify the positive direction of the normal v, 
as this determines the side from which the solid angle must be viewed, and 
at the same time determines the direction in which the boundary line must 
be described in the integrals (8) and (20). . 

When for .2 we take the half plane X = 0, y > 0, and as the positive 
direction of the normal that of the positive x~axis, then the boundary line 
must be followed in the direction of - z; consequently along th is line we 
shall have: 

d!;J!da == 0; d!;3/da == dC/da = - 1. 

We now obtain: 

(a) 1 y 
cp = -2 --_. arctg -- + const. 

n x (24a) . 

(b) 

Th . t ,1 ** 1 f' gz. d' e lil eg ra Uz = 4n ~ da -z.- IS lVergent; the relevant part (i.e. the 

part dependent upon x and y), however, can be written: 

(24b) 

(c) hl=O, 

Equation (20) becomes: 

which, in the same sense as above, gives the result: 

f',} (11 + /l)Ao . V-2 -- Z rp = 2 n (A +- 2,u) y In x + y + const .. (24c) 

Hence we obtain 15): 

(25) 

U3=0 

B. In the case of fig. 3 the singular line is the x~axis. Along this axis 

we have d~2lda = 0, d~3/da = 0; hence the quantities g" vanish; likewise 

15) It may be remarked that these expressions differ from those given by VO!l:ERRA, 

Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, Vol. XLII, 1939. 2 ',I 
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the integral (20) vanishes. There remains only the function cp, whieh now 
is equal to: 

1 z 
cp = --~ arctg --- + con st. 

2n y 
(26) 

Henee 16): 

Xo z 
UI = - -- arctg -

2n y 
(27) 

12. Expressions [or the stresses.-- Now that the expressions for the 

displacement eomponents Uk have been found, the eomponents aki of the 
elastic stress es ean be ealculated by means of the equations: 

(28) 

The quantities oeeurring in these equations ean be obtained by means of 
line~integrals along a: the terms depending up on the quantities gk by means 
of eq. (8); the quantities depending upon l[J by means of (20); from (11) 
and (14) it follows that: 

(29) 

which leads ta the equation: 

8=+ f1, Jdo (~ dçI + _~2_ 95.2: +!!2 ~~) 
2n (J, + 2f1,) r2 da r2 da r2 da 

(30) 

finally, the derivatives of the potential cp, which in the eorresponding 
hydrodynamic problem represent the eomponents of the velocity, can be 

by way of example, l.c. p. 428. Wh en we take 1 ,= AO, m = n = p = q =-= r = ° in those 
formulae we obtain: 

10 Y 
UI = -2 - arctg -

n X 

J, ----~--
U = ~Jl.. In V X2 + y2 

2 2n 

U3=O' 
However, the expressions (25) given in the text ab ave are in substantial agreement with 
the result given by VOLTERRA l.c. p. 465, egs. (I), wh en in the latter we take Ri = 0, 
Rz = 00, and interchange x and y. - The formulae for the stresses given by TA VLOR, 
Proc. Roy. Soc. London A 145, p. 376, 1934, correspond to the expressions given by 
VOL TERRA at p. 428. 

16) This re sult is in accordance with the formulae given by VOLTERRA at p. 428, if 
we take n = -Ao, 1 = m = p = q = r = 0. 
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calculated by means of the so~ealled "formula of BIOT and SAVAwr" 17). 
This is espeeially eonvenient when the singular line a consists of straight 
segments. 

It ean be shown that when the line a is closed in itself and embraees a 

finite area, the stress es aki with inereasing distanees r beeome of the order 
of magnitude at most of r-3 . 

13, It may be useful to come back to the guestion of the balancing of the force system 
aIIuded to at the end of section 6 and also in section 8. For this purpose we should consider 
the resultant force acting upon a cylindrical surface described with the (smaII) radius a 
around an element do of the singular line a~ axis. However, instead of treating the general 
problem, we wiII consider the case of an infinitely extended straight singular line, tangent 
to the given line at the element do. and having the same cyclic constants as the latter, 
assuming that when the radius of curvature of the given singular line is great compared 
with the length of the cylindrical surface to be considered, the stresses for the two cases 
wil! differ at most by guantities of a finite order of magnitude, sa that the difference 
between the resultant farces will vanish simultaneously with the radius a. 

We first consider the stresses connE'cted with the guantities 11~ and that part 'JI* of 
the complementary function lp which can be directly associated with them. In virtue of 

the relation ('lul: / (Ix" = (Iuk"/ (Ixk -~ sec eg. (15) - we have; 

(31) 

Taking the singular line along the z-axis (the direction being that of -z), we again find: 

1 Y cp = - arctg ~~-
2n X 

(32) 

while, if [1, Ez, b al! are different from zero, we shall have; 

(33) 

From this expression for ljI* we obtain: 

(34) 

Writing; 

a = arctg y/X (35) 

it is found that the components a rl of the stresses acting up on an element of the cylindrical 
surface can be calculated from the eguation: 

a"1 = all cos a + a21 sin a = 
. è)(P 

== f! (fl cos a + f2 sm a) ~è)-~ + 2 f1, 
XI 

è)2 lJ'* ( . .... + 18 cos (rI) 
è)ràxI 

(36) 

17) See H. LAMB, Hydrodynamics (Cambridge 1932), p. 211, egs. (2) an~(3). 

21* 
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which gives: 

Orx= - ~ (f cos a sin a + (2 sin 2 a) - ~_±d __ {2-
2na I 2n(2+2,u)a 

-- 2;re (2 ~ 2,u) a (fl cos a sin a -- f2 eos
2 

a), 

_,u 2 .,u (2 +,u) ). 
Ory-+ 2na (fl cos a + f2 cos a sm a) + 2-;-(2+ 2,u) a fl -

(37) 

,u 2 (f' 2 f: ') - -------.-.' 1 sm a - 2 cos a sm a , 
2n (2+ 2,u)a 

O,'z=o. 

The resultant force acting hom the elastic medium upon the cylindrical element conse

quently has the components (per unit length) : 

in the x-direction: u f ( -,' 2 

in the y-directlon: -+,u {I . 

in the z-direction: 0 

(38) 

14. We must next consider the stresses connected with the quantities ut* and the 
second part P**, of the complementary function, We have: 

while, hom (8): 

,ugl=-,uf2 ( 

/J,g2= + /1fl 

,ug3 = 0 

ut* = %: J dr~ ~ - ~~ In r . 

As P** = P*, 0** = 0*, the calculation is not difficult; instead of (36) we obtain: 

(39) 

(40) 

,ugz ,u(gleosa+g2sina) à à211'* 
0.-1 = - --- - --,-------~- --- (In r) + 2,u --+ 28 cos (rt) . (41) 

2nr 2n àxz àrèJxz 

and the components of the resultant force become: 

in the x-direation: + ,uf2 

(-in the y-direction: -,ufl (42) 

in the z-direction: 0 

These quantities are equal and opposite to those given in (38); hence there is na 
resultant force acting up on our cylindrical element, as had been required in section 6. 

It may be remarked that the stress component (}zz in general will not be zero, so that 
there may be tensions and pressures in the direction of the singular line, connected with the 

dilatation H. The mean value of Gzz over a cross section of the element, however, vanishes. 

15. Further geometrieal eansiddratians. Migration af a dislaeation 
through the atomie lattice. - The passage of a two~dimensional unit 
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dislocation across a crystal has been described by TAYLOR as the basic 
phenomenon in the explanation of the process of slipping 18). A schematical 
picture of a case in which the singular line 0 is parallel to the y~axis has 
been given in fig. 6; it will be seen th at in the situation of fig, 6a the 
atom 1 can jump over to another equilibrium position; next the atom 2 can 

2 3 

a 

5 

h 

Ó 
1 2 3 '* 5 

-
C 

Fig. 6. Schematical picture of the migration of an elementary dislocation 
through the lattice. 

make a similar jump, then 3, 4, . '" and in consequence of these jumps the 
singular Une a moves to the right. In a crystal of finite dimensions this 
process wil! be accompanied by a shift in the relative position of the upper 
and the lower parts of the crystal; th is shift is of su eh a magnitude th at 
it becomes equal to the amollnt Ào when the dislocation has moved across 
the whole crystal from the left hand boundary to the right hand boundary. 

18) G. I. TAYLOR, l.c. p. 368. - See also "First Report on Visçosity and Ptr,sticity", 

p. 199. 
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When the dislocation has migrated only over a distance L, in a crystal the 
dimension of whieh in the same direction is a, then the relative shift of 
the two parts will be given by J'oLja. 

Wh en the dislocations are characterized by closed singular lines of finite 
extent, embedded in a lattice of indefinite, or at any rate of very large 
extent, it is to be noted that at large distances from the dislocation the 
lattiee must be wholly regldar. When we imagine a closed surface surround~ 
ing the characteristie lines of all dislocations, outside of this surface the Uk 

will be single-valued functions, whieh with increasing distances either will 
become zero or will approach to constant values. It wil! be evident th at in 
a region with regular structure no dislocation can be generated "out of 
nothing": dislocations either must have been originated during the process 
of growth of the crystal, or they must have been derived from other already 
existing regions of irregular structure. When a dislocation of the type 
considered by us takes its birth fr om some unspecified reg ion of irregular 
structure, then -- the same as in any other case -- the condition of never 
having an open end in the interior of the lattiee always wil! remain valid: 
the singular line characteristie of the dislocation either must be closed in 
itself, or else its ends must be situated at the boundary of the irregular 
reg ion (or eventually perhaps in the interior of th is region ). It would appear 
probable th at a given dislocation can be displaced through the lattiee over 
an arbitrary distance, possibly in variOlIs directions. The character of being 
a closed line wil! not be lost during such a displacement, although the 
singular line perhaps may change of form; further the strength of the 
dislocation, or more exactly the values of the cyclic constants 11,12,13 
associated with the singular line, wil! not change. When a singular line in 
its migration through the lattiee should meet another singular line, th en it 
is to be expected that the simple type of migration, determined by jumps 
of the atoms of the kind as describecl above, cannot be continued. Hence 
we may assume that two singular lines in their process of migration in 
general cannot cross each other, or at least will have a certain diffieulty in 
crossing each other. (It may be that the approach of the two dislocations 
leads to the formation of a reg ion of irregular structure of larger ex tent, 
from whieh, under suitable circumstances, a new dislocation may take its 
birth; a more detailed investigation of such a process wil! be useful, but 
probably may be difficult). At any rate we may suppose that the easy 
migration of a dislocation is impeded when it meets other clislocations; this 
is one of the features whieh serve as a basis for the explanation of the fa ct 
that the plastic deformation of a crystal gradually becomes more difficult 
(i.e. requires the applieation of greater forces) with increasing values of 
the shear. 

It will be evident th at in the points mentioned there is an analogy with 
the properties of vortiees in an idealliquid. We might even go further and 
ask whether e.g. processes in whieh there is a change in the area enclosed 
by the singular line (or more exactly in the area's Al, A2' A3 of its three 

3 [1 

projections up on the coordinate planes; compare section 8) wil! require the 
application of exterior forces to the lattiee. We shall come back to th is 
point in section 19. 

However, although a certain analogy with vortex lines exists, we must 
not forget that the migration of a dislocation, as pietured schematieally in 
fig. 6, is intimately connected with the geometry of the atomie lattice. 
Consequently there may be restrictions on the possibilities for the displace~ 
ment of the singular line, which have no analogy in the hydrodynamic case. 

16. There are a few examples of migrations whieh can be discussed in 

a simp Ie way. 
Consider the case pietured in fig. 7. In the first place this may be 

;"'0 
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Fig. 7. SchematicaI picture of the migration of a dislocation, bounded by 
two parallel sin gul ar lines, when these lines move simultaneously with 

equal steps. fj 
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considered as representing a section of a lattice in which a dislocation has 
been introduced by inserting into it an extra layer of atoms along a surface 
2,', perpendicular to the x~axis and bounded by two parallel singular lines 
al and a2 perpendicular to the plane of the paper (i.e. parallel to the y~axis), 
both of infinite extent. As indicated schematically, it is possible in such a 
case th at the two singular lines migrate simultaneously over the same 
distance, e.g. to the left. It will be seen that, although there is a relative 
shift of the central portion of the lattice (i.e. the portion situated between 
the plan es described by the singular lines in their movement ) with respect 
to the rest, there is no resulting shift of the uppermost portion with respect 
to the undermost. 

Fig. 7 may be considered also as representing a section of a three~ 
dimensional field, in which the surface ~ is of finite extent and is bounded 
by a closed line a (.2 in this case still being plane and perpendicular to the 
x~axis). There seems to be no objection to the assumption that in such a 
case a similar migration is possible, jumps of atoms now taking place with 
equal frequency at all points of a; the singular line then migrates without 
change of form through the lattice in the direction perpendicular to its plane. 

Turning back to the original conception in which we had two parallel 
singular lines al and a2 of infinite extent, it will be evident that the 
parallel and equal migration of al and a2 is not a necessary feature: these 
lines may just as wel! move independently of each other, e.g. in the way 
as indicated in fig. 8. The dislocation then of course obtains a different 
character in sa far as the surf ace .2 of tig. 7 does no longer exist. 

Is it possihle to imagine something to be compared with the latter case 
taking place when the surface ~ is bounded hy. a closed line a? 

Referring to fig. 9, where the line a originally had the form of a rectangle 
ABDE (the plane of the rectangle heing perpendicular to the x~axis), 
we may imagine that jumps of atoms take place only along the parts CD, 
DE and EF of a, producing a displacement of CDEF parallel to itself 
towards a new position C'D'E'F', whereas the part FABC remains where 
it was. An irregularity in the arrangement of the atoms then will be pro~ 
duced along the whole course of the lines CC' and FF', and these lines in 
fact will hecome parts of the singular line characteristic of the dislocation 
in its new form, joining up the parts FABC and C'D'E'F'. The nature of 
the singularity in the immediate neighbourhood of the segments CC' and 
F F' is of the eharacter indicated in fig. 3 (and also in fig. 5 for the parts 
of the singular line which are parallel to the x~axis), while in the neigh~ 
bourhood of the point F it ean be compared to the case indicated in fig. 4. 

17. The picture arrived at in the preceding section ean be of help in 
discussing a point which had been raised in some sections devoted to the 
phenomena of plastic deformation in crystalline substances of the "Second 
Report on Viscosity and Plasticity". In connection with views brought 
forward hy TAYLOR it had heen assumed in the "First Report" that when 
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in the course of a shearing process applied to a crystal, a certain numher 
of dislocations have started from already existing flaws, and have moved 
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Fig. 8. Schematical picture of the change of character of a dislocation 
bounded by two parallel singular lines, when these lines move in opposite 

directions. 

through the lattice until they are stopped by encountering other regions of 
irregular structure, th ere is produced a field of stresses, formed by the 
resultant effect of the fields connected with these dislocations, which field 
counter acts the stress due to the exterior foroes causing the shearing 
process 19). In making an estimate of the magnitude of the average shearing 
stress derived from the fields of the dislocations, TAYLOR's picture and 
calculations were used, refel'ring to the two~dimensional type of dislo-

19) "First Report on Viscosity and Plasticity", p. 209. 
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cations, all singular lines being parallel to each other and extending right 
across the crystaL The average shearing stress then is found to be inversely 
proportional to the mean distance between the singular lines; consequently 
it is directly proportional to the square root of the number of singular lines 
per unit area. 

The picture of a system of parallel dislocation lines, all extending in the 
lateral direction right across the crystal, however, has a degree of regularity 
which appears greater than may be expected in a crystal with flaws, and 
it is therefore that in the "Second Report a "three~dimensional" picture 
with dislocations of finite lateral extent had been suggested 20). 

We may now attempt to consider the process indicated schematically in 
fig. 9 as a possible case of the migration of such a three~dimensional dislo~ 
cation. The case of fig. 7, which as stated, likewise can be taken as 
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Fig. 9. Schcmatical picture of the transformation of a dislocation, originally 
characterized by a rectangular singular line situated in a plane parallel to 

the g, z-plane. 

representing a dislocation of finite extent, is of no use, as in this case no 
resultant average shear will appear in the crystaL In the case of fig. 9 on 
the other hand, there is a contribution to the average shear, depending in 
magnitude up on the area of the rectangle FF'C'CF. The lateral extension 
of the dislocation, determined by the length AB (= FC = ED), like the 
dimension AE or BD, will depend upon the dimensions of the disturbed 
region from which this dislocation originated, and th us will correspond to 
the quantity I in the equations of the "Second Report"; whereas the distance 
CC' or FF' represents the length L of the path described by the dis~ 
location 21). 

20) "Second Report on Viscosity and Plasticity", pp. 200 seq. 
21) Compare "Second Report", p. 202, eq. (5. lb), where À corresponds to Ào in the 

present communication. 
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In calculating the field of stress associated with the type of singular line 
pictured in fig. 9 we may - in a similar way as can be done in all problems 
relating to vortex lines - separately consider the three circuits AFCBA, 
F' E' D'C' F' and F F'C'CF. When we ask for the magnitude of the stresses 
in points situated at distances, say rl fromAFCBAand r2 fromF'E'D'C'F', 
which are large in comparison with the sides AB and AF or F'E' etc., then 
according to wh at has been remarked at the end of section 12, the contri~ 
butions of these circuits into the stresses will be of the orders (rd-3 and 
(1'2)-3 respectively. The contribution of the circuit FF'C'CF, however, will 
be óf a different order when the length CC' = L itself is great compared 
with F'C' = Z. 

18. CalcuZatian ot the tield ot st,ress connected with a singuZar Zine of 
a tarm as given in tig. 9. - With reference to fig. 10 the calculation for 
the circuit FF'C'CF can be given as follows: Let cp, as before, represent the 

c 

CC1=F'F'1=L 
Fe =F1C1 =1 

z 

x 

Fig. 10. The rectangular circuit FF'C'CF of fig. 9 considered separately. 

solid angle, divided by 4 n , which the rectangle FF'C'CF subtends at the 
point P. The positive direction of the normal to the rectangle is the direction 
Oz; the same as with the dislocation in its original form, characterized by 
AEDBA, there is a discontinuity in the component ul only, so th at 
t2 =c:: i3 = 0, while t1 = J,o. Hence, according to (4): 

u~ = Ào cp, U2' =--= uJ = 0 . (43) 
Along FF' and CC' we have gl=[12=g3=0 by (7), so that these 

segments do not give a contribution to U**. From (19) and (20) it follows 
that they neither give a contribution to the value of IJl. 

Along F'C' and CF (the positive direction of integration along the 
circuit being FF'C'CF) we have gl = g2 = 0; along F'C' we have: 
d~2jda:= + 1; g3 == + Ào; h2 = -- J'ozjr2' and along FC: d~2jda = -1; 
g3 =-J,o; h2 =-},ozjrl' Hence we obtain: 

from (8): ul* = uz*::cc:: 0; u:;* = ~o~ C;~ - :J. (44) 

from (20): • {;{j' (45) 
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It has been assumed in these expressions th at r is large compared with Z. 
The stress 't which had been considered in the "First" and "Second 

Reports" corresponds to the component 013 in the notation used here, which 
is given by: 

0]3 = fi (~~ + .~~ ) = fi ( 20 ~~. + -~;'~ + 2 a~-~) . (46) 

In this expression 02 !P/oxoz is to be calculated from (45); àep/az is 
obtained by calculating the velocity field associated with the rectangular 
vortex line. With sufficient approximation we have: 

fi ( 20 ~; + --~~:-) = !~~l (;:/=:~2 +zl~T4);~L~ yil2 (cos 131 + cos (32)' (47) 

the angles fJt and fJ2 being defined in fig.10. 
Even without calculating the value of 021fI / oxoz (which for r» I 

becomes of the order 1'-8. as mentioned before), it will be seen from the 
expres sion (47) th at so long as lxi does not greatly surpass L/2, so that 
cos fJl + cos fJ2 is either > 1, or not much below 1, this result leads to 
values of 018 of an order of magnitude decreasing inversely proportional 
to the square of the di stance from the x~axis, i.e. it leads to values which 
for constant y/z practically are inversely proportional to (y2 + z2). The 
dimensions of the region in which this result holds of course depend upon 
the magnitude of L. 

19. It is of interest also to consider the stress es 012 and 018 in the 
points of the plane determined by the rectangle F'E'D'C'. We must then 
work out thc calculations for the singular line FF'E'D'C'C: when L is 
sufficiently great, we may neglect the contributions due to the part CBAF. 
It will be superfluous to give the calculations in detail; and we mention 
only the following points: 

It is found again th at Uj*= 0, whereas: 

D' 
(48) 

uj* = ~ J c!..11 
4n r 

E' 

Further: 

In the equations for the stress components 012 and 013 the derivatives 
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02lj1fàxoy and 02ljf/OXOZ occur; as àlP/dx = ° for points in the plane of the 
rectangle F'E'D'C', the contributions to be derived from Ij! vanish here. 

The values of dep/dy and dep/àz again can be obtained by means of the 
formulae for the velocity field associated with a vortex line. It is found that 
the sum 

oep oui* 20 - + ._. __ ._-
oy ox' 

occurring in the expression for ° L2' is determined exc1usively by the contri~ 
butions to the value of d(p/dy derived from the lines FF' and C'C; whereas 
the sum 

occurring in the expres sion for (JUl' in the same way is determined by the 
contributions to the value of dep/àz derived from these lines. 

The va lues of the stress components 012 and 013 in the points of the plane 
determined by F'E'D'C' finally become: 

(50) 

Let us give attention to the value of 018 at the points of the segment 
B'D'. It is not difficult to calculate the mean value of 013 at the points of 
this segment; this mean value is found to be: 

(51) 

and thus appears to be negatiue. 
In order to understand the meaning of the sign 'Of 013' we remark that in 

the cases indicated in figs. 6 and 8 the application of a positive exterior 
shearing stress to the system, acting to the right at the upper surface of 
the crystal, and to the left at the lower surface, wiJl promote the occurrence 
of the type of migration pictured in these diagrams. The case of fig. 9 has 
been derived from that of fig. 8 without change of signs, so th at the same 
result will apply to it. Hence we may conc1ude that the appearance of a 
negative value of (013)", along E'D' will act in the opposite way, and 
consequently will drive back the migration process, or at any rate impede 
its further progress in the original direction. 

Here thus we have an instance of the "counteracting" effect of the field 
of stress connected with the dislocation itself. It will be evident that this 
"counteracting" effect can be overcome by the application to the crystal of 
an exterior shearing stress 't of sufficient positive magnitude. fl 
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We now are in a position to construct an expression for the work that 
apparently must be performed in order to displace the part F' B'D'C' of the 
singular line in the positive x-direction, or in other words to increase the 
length L of the lines FF' and CC'. Prom eq. (5. 1b), p. 202 of the "Second 
Report", we see that the increase of the mean shear of a rectangular crystal 
with si des a, b, c due to an increase of L is given by: 

(52) 

The work done in this process by the exterior shearing force T is determined 
by the product: 

T • (dYI/dL) . (volume); 

hence, with T:== -( 0J:1 )"" we obtain: 

x~ [2+ h2 

work per unit increase of L = ~ n- ln- -71-2- (53) 

It must be remarked that these considerations are given only in order to 
illustrate some of the concepts which have arisen in considering the 
phenomena accompanying the migration of a dislocation through the lattice; 
no great value can be attached to the exact form of the equations derived. 
For instance we have left aside the effect which the stress 012 may have 
at the segments F' E' and C' D'; it is true that the values of 012 at these two 
segments are of opposite sign, and thus do not call for compensation by the 
application of an exterior shearing stress which can store work in the 
system. It will be a matter for further speculation to find out what is the 
meaning of the relations which have turned up here. 

20. The impression will have been obtained th at the introduction of 
dislocations of three-dimensional type leads to a picture possessing at least 
some features which point in the direction of the assumptions of which use 
was made in the "Second Report" 22). Consequently we might imagine 
th at in a crystal subjected to shear in the x-direction, along planes parallel 
to the x, y-plane, there would appear a number of disturbed strips of the 
nature of the rectangle FF'C'CF in fig. 9 or fig. 10, extending over various 
lengths L in the x-direction, and having breadths I in the y-direction. A 
schematical picture of such a system of strips has been presented in fig. 11. 

Nevertheless, the picture does not give results ready for immediate use 
in further ·calculations. In the preceding section we had arrived at an 
in stance of a counteracting field, impeding the progress of a dislocation. 
Prom eqs. (47) and (50) it can be derived th at in a region of the lattice 
surrounding the dislocation the value 013 remains negative so long 

as 1 y 1 is smaller than 1 z I. Hence the counteracting effect is also to be 
observed in the regions situated directly above and below the dislocation 

22) "Second Report", p. 204 in eonneetion witb eq. (5. 12b). 

319 

considered. However, in regions situated further away in the lateral 
direction, where 1 y 1 becomes greater than 1 z I, the effect is of opposite sign, 

Fig. 11. Crystal bloek with a number of rectangular dislocation lines 
parallel to tbe x, y-plane. 

and with the aid of eq. (46) it is not difficult to prove th at the mean value 
of 013 over a plane z = const. is equal to zero. 

This re sult is connected with the circumstance that the mathematical 
considerations developed above refer to the case of dislocations of finite 
extent embedded in a lattice which at great di stances ultimately approaches 
to perfect regularity. Clearly such a picture is idealized too far, and cannot 
represent the state of things in an actual crystal, exhibiting irregularities of 
growth, etc. We must assume that in an actltal crystal many of the irregular
ities, whatever be their nature, will extend over great di stances, and that 
they wil! meet each other at various places, so th at the crystal is divided 
up into more or less separate regions of regular structure. The boundary 
between two adjacent regions of regularity in many cases may be formed 
by systems of irregularities arranged so as to form a surface, and the 
dislocations migrating through the crystal in a process of plastic deformation 
of ten will have their endpoints moving over such surfaces. At these surfaces 

moreover the displacement components Uk may be subjected to certain 
conçlitions, which will rea ct upon the field of stress. 

21. Systems of dislacatians farming a "surface of misfit" between twa 
regions of a lattice. - An adequate treatment of the problems touched upon 
in the preceding section is difficult, and will not be given here. We shall 
restrict to the investigation of a surface of irregularity built up from a 
system of simple rectilinear dislocations of the type indicated in fig. LW e 
assume a two-dimensional field, all singular lines being perpendicular to 
the x, y-plane. The problem to be considered is closely related to one 
treated by TAYLOR in order to obtain an example of a "surface of misfit" 23). 

2:1) G. 1. TAYLOR, l.c. p. 400. 
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Making use of the equations developed in section 11 A, we shal1 write, 
with a slight change of notation: 

u = u* + i'W' j ox t 
v = v* + 0 tjIj oy ~ 

(54) 

Wh en the complex variabIe x + i g (with i =V=·f) is introduced, eqs. 
(24a), (24b ) give: 

-iÄ 
u* + i v* =--r;; In (x + i y) + const. (55) 

which is a form convenient for generalisation. 
We take the case in which there are singular lines at the infinite series 

of points: 

x=nl, y =: n h (56) 

where land hare two· arbitrary constants (both being equal to same 
multiple of }'ü)' while n takes all integer values from - 00 to .f- 00. By 
giving special values to land h various subcases can be constructed; with 
h=ü all singular lines are situated in a horizontal plane (in thex,z~plane), 
with I = ü all are situated in a vertical plane (in the g, z~plane). - Every 
singular line gives a contribution into u* and v* which can be expressed 

by: 

* . * iÄo x+ iy-nl-inh (u + f V )n = - -ln--~----~--;-~-"---- . 
2 n n (l + 1 h) 

(57) 

According to weIl known procedures applied in the theory of functions 
of a complex variabIe, we consequently may construct the solution of our 
problem with its infinite number of singular lines by writing: 

* . * _ i Ao . n (x + i y) u + 1 V - - 2-~ In sm-T+ih-- . (58) 

For convenience in notation we introduce the auxiliary variables: 

n(ly-hx) 
---P+f!i-- = 17 • (59) 

The separation of real and imaginary parts then can be eHected by 
writing 24): 

where: 

so that: 

v* = - _Ao_ln M 
2n 

(60a) 

(60b) 

(61) 

24) Compare e.g. E. JAHNKE u. F. EMOE, Funktionentafeln, 1st Ed. (Leipzig u. Berlin 
1909), p. 11; 2nd Ed. (1933), p. 60. 
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From the theory of functions of a complex variabIe it follows that: 

ou* ov* 
öx=ay ; D u*= DV*=O. 

Equation (14) thus becomes: 

It is difficult to find the expression for Pitself, but the problem is satisfied 
if we take 25): 

à lJf = À + ~_~_ ~ 1') (l sin 21; - h sin!! 3172 + h ln M l 
0'; A + 2 f1 2 n 2 ? 2 M2 ~ 

à lJf =--= _ A + f1 _AO __ ~ 1') (l sinh 21') + h siTl 2J) + ZIn M ( 

01') À + 2 f1 2 n 2 
( 2 M2 ~ 

(63) 

From these equations àlJfjàx and àPjàg can be obtained without difficulty. 

22. It is of interest first to investigate the meaning of these equations 
for points at large distances from the row of singular lines. As thc row 
itself is situated at the line 1') = 0, these points are obtained by considering 
large '\Talues of 1'). We must distinguish between positive and negative 
values, and it is useful to observe th at 1') is positive on the left hand si de 
and negative on the right hand side. 

For positive r; we find: 

M ':: sinh r;; In M = const. + r; 
tg a = cat'!; ; 

hence, neglecting constant amounts: 

a = const. - .; ; 

* _ Aa I; _ Aa (l x + h y) 
u - - 2 n - - 2 ([2 + h2) 

* _. Aa 1') __ Ao (ly- hx) v - - ----- - - ---------
2n 2 ([2 + h2

) 

Further: 

o lJf ! + f1 Ao l1') 
01') A + 2f1 n 2 

(64) 

(65) 

25) Equation (62) does not wholly determine the function lP, as a function P', satis
fying the equation D P' '--= 0, always can be added. The value of pi can be fixed only 
by having recourse to the conditions assumed at infinity. In the expressions (63) a form 
of 'P has been chosen, which leads to the most satisfactory behaviour of ti qpd v at 
infinity, as will be seen from the results given in section 22. ~ 

Proc. Kon. Ned. Akad. v. Wetenseh., Amsterdam, Vol. XLII, 1939. 22 
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à lp '" _ _ J'_±L ~e_LhjlH ~_~~l 
. àx = A+2ft W+h2)2 

àlJI '" +~tE_ AoF(ly-hx) 
ày = À + 2 ft -- ([2 + h2)2 

(66) 

For negative 17 the values of u*, v*; àlJl/a~ and àP/àl7; àT/àx and 

aT/ày change sign. 
In order to get an insight into these results it is of advantage separately 

to consider the cases 11==0 and h = O. 

A. In the case I t=_ 0 (singular lines in a vertical row; compare fig. 12) 
we have: àP/àx = 0, àP/ày = 0; and consequently: 

for x< 0: 

for x> 0: 

Fig. 12. Surface of misfit fOl'med by parallel dislocation lines situated in 
the plane x = O. 

(67) 

These expressions make: 

àu _I ào - O. 
àx ,- ày - , 
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à~L~_O 
OXl ày - . (68) 

Hence they state that at large distances from the y, z~plane the lattices 
are inclined over the constant angle + J'o/2h on the left hand si de, and 
--J'o/2h on the right hand side, without change of form. The deformations 
existing in the region near the y, z~plane completely disappear far away 
from this plane. 

B. In the case h = 0 (singular Hnes in a horizontal row; see fig. 13) we 

have: 

for y> 0: 
• Àe x u -----. 

- 21' 

àlJf 
àx =0; 

and hence: 

* _ Ào Y 
o --27 

àlJf _+ À+ft AeY 
ày - À + 2 ft -Z-

while for y<O: . (69) 

À ÀoY o = - ------- ----
À+2ft 21 

In this case above the row of singular Hnes there is a lateral compression, 

y 

I Ol I 
- -- -- b- e-- - - -f- -- -- - --b-- L.._ -- -- -

I 
x 

I I 

i : 
I I 
I 

i i 
l----~ 

1 

Fig. 13. Surface of misfit formed by parallel dislocation lines situated in 
the plane y = O. 

22* 
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aeeompanied by an extension in the y~direetion, while below the row the 
reverse situation is found. 

The stress eomponents beeome: 

2,u(,1,-1-,u) ,1,0 
for y > 0: °XX= --,1,-1-2,u -1; 

and for y < 0: 

_ . 2,u(,1,-1-,u)_~,,-. 
Oxx - -r -r--T2,u I' 

Oxy = 0; 

0xy = 0; 

ij" = 0 ; 

"" = 0 \ . 

(70) 

The faet th at we obtain a value for Oxx which does not vanish at infinity, 
shows that in a bloek of finite extension in the x~direetion the state of 
deformation described by our formulae ean exist only if suitable pressures 
and traetions are applied at the lateral boundaries. When this is not the 
case, another deformation will be superposed up on the one ealculated here, 
the precise nature of which will depend up on the form of the boundary. 

23. The system obtaineq by taking 1=-= 0 (fig. 12) clearly is of similar 
nature as the case eonsidered by TAYLor~ and pictured schematically in 
fig. 2a (p. 392) of the paper mentioned in footnote 2) above. It seems 
plausible to suppose that the "surfaces of misfit" oceurring inactual crystals 
give rise to lattice inclinations of sm all amount, generally less than a 
degree, and of ten measuring a few minutes of arc only. Sueh cases are 
obtained when the distanee h between two eonseeutive disloeations is of the 
order of 100 ,1,0 to 1000 ,1,0' There is, however, a difference between the 
conception introduced here and TAYLOH's picture: TAYLor~ appears to 
assume that the disturbanee of the lattice in passing from one bloek to the 
other is small only in relatively sm all regions, represented in his fig. 2a 
mentioned above by the gaps in the line AB, where the distance of atoms 
on one si de Erom the nearest atoms on the other is the same as that which 
belongs to the perfect crystal structure. In our picture on the other hand 
the regions where the two lattices are united in a regular way are of much 
Iarger extent than the regions where there is a disturbance; in particular 
when h is of the order 100,1,0-1000,1,°' the parts of the "surface of misfit" 
where there is an actual disturbance are of the order of a few percent only, 
perhaps even less, of the whole area. The two parts of the lattice in our 
picture are united sa to say "in the best way possible" for a given angle of 
inclination between them. The "surface of misfit" in our conception there~ 
fore would be still Iess "opaque" than in TAYLOH's picture, so long as we 
restrict to the consideration of dislocations the singular lines of which are all 
parallel to the z~axis. Evidently the "surface of misfit" of our picture can be 
"opaque" to dislocations with singular lines in other directions, provided 
these lines are of sufficient length. 

Pram the equations obtained in section 21 we can calculate the values 
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of Oxx and Oxy at the points of the "surface of misfit", i.e. of the y, z-plane. 
We have: 

a = 2 IJ. ~- -1- À (~ -1- -q~-) 
xx ,. dx ox Oy 

Oxy =:,u (~~ -1- -~~-} 
As in fig. 12: ~=:reyjh, n=-:rexjh, we find, for x=O: 

ou* _ ov* _ ,1,0 :rey 
-àx - ai - - 2 h cot h 

ou* ov* ay--a:x (everywhere in the 

Hence in the plane x = 0: 

Oxx = - ~},(~~t~~o cot :re: ~ 
Oxy = O. ~ 

When x is different from zero we obtain: 

I 
field) ~ 

(71 ) 

(72) 

(73) 

(74) 

These expressions can be used for making estimates of the magnitude of 
the stress es to be expected in given cases, in a similar way as is done by 
TAYLOH. 

Other examples can be constructed, giving rise to a multitude of possible 
cases. Por instance the "surface of misfit" can be repeated periodically at 
a di stance Lo, sa that a series of flat blocks is obtained. Or fields containing 
a finite number of dislocations may be investigated, and cases where the 
singular lines are not parallel straight lines, but lines of other form. 
However, it seems preferabIe for the present to leave the matter here. 


