Geophysics. — On the vibrations of an elastic sphere with central core.
By J. G. ScHoLTE. (Communicated by Prof. J. D. VAN DER WAALS Jr.)

(Communicated at the meeting of November 25, 1939.)

§ 1. A homogeneous elastic body of unlimited extent can transmit
two kinds of waves, the longitudinal and the transversal. When the
body is limited, both kinds of waves are reflected by its boundary and
give rise to other waves of the same kind. Any vibratory motion of
the body can be represented as the result of superposing longitudinal
and transversal waves. In case of an infinite solid with an infinite
horizontal surface these waves can combine to form a displacement
that does not penetrate far beneath the surface: the Rayleigh wave.
Assuming that this body is covered by a layer with other elastic
properties, it is possible to construct another kind of surface waves:
the Love waves. Further the effect, due to gravity and the surface
layer, on the Rayleigh waves — and various similar corrections — can
be taken into account.

There is however another method of investigating the movements of
a limited body: the method of normal functions. The solution of the
equation of wave propagation on a sphere is then written as a combi-
nation of some spherical harmonics, satisfying the boundary conditions.
The theory of the superficial waves must be included in this theory of
the vibrations of a sphere, as has been pointed out by RAYLEIGH. In
case of a homogeneous sphere the deduction of the equation, giving the
velocity of the Rayleigh waves from the period equation for the vibrations
of a sphere, has been effected by BromwiCH and LOVE.

In this paper we shall investigate the oscillations of a sphere with
central core, taking gravity into account, and are to arrive at period
equations, from which numerous known equations can be deduced.

§ 2. According to the theory of LOVE?3), concerning the oscillations
of a homogeneous sphere, the equations of vibratory motion are three
of the type
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where u = the x-component of the displacement; with similar equations

for the y and z components (v and w). We have

o = the density; 2 and u = Lamé’s constants.
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A = the radial component of the displacement.
av dw
—l_ oy T 0z "

V o= the potentlal if no disturbation.

W = the potential due to a distribution of mass (—¢/\ in the medium
and -0 A at its boundary) together with that due to possible
external bodies (e.g. the moon); hence

V2W =4myo /A. (y = gravitation constant 6.7 > 10-8),

These equations can be transformed into:
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where r =" x*+ +y - 22, rot,— the radial rotation component.

We shall write the solutions of this set of equations in the form
F(r). W, .efrt; W, is a spherical solid harmonic of degree n.

From the form of the equations (I) it will be seen, that there are two

possible types of vibrations:
19, those, which involve no dilatation and no radial displacement;

these correspond with the oscillations called by LAMB!) “vibrations of

the first class’.
29, the second type, which L.AMB described as being of the “second

class”, are those which cause no radial rotation component.
§ 3. Beginning with the vibrations of the first class, we put A =0
and A =0; equations (/) are then reduced to
(0p? -+ u V¥ (rrot) = 0.
The general solution is

reof. = n(n -+ V(a, v, + by 7,) . W, . eire,

where
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As A=0 and A=—=0;

oC  o(B sin y)
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(B and C are the meridional and the azimuthal components of the
displacement); hence

oM _ 1 oM
oy siny Op
which gives
0? 2 0
— 2 2 9 £ 0
rrot,=r (V 57 - ar) M

or

M= —(a; v, -+ by 7,) . W,.

The components of the displacement are therefore:
A=0, B=(avn+bm). <, C=—(a;ya+ by 7). — =

(the time factor e’ being omitted for brevity).

We apply this solution to a sphere with central core; the movement
of the first kind is perpendicular to the radius and must therefore be
related to the Love waves, as those movements are also perpendicular
to the wvertical,

The solution is now:

T oW,
Bm-—(dl Vn by ) siny . 0p’
oW,
C = —(a; yn -+ by.71,) . 3y

if b=r=a; and

B—a.y Wi
- Zw"'sinl,u.atp’
. oW,
C:—a21/}n“a‘ —=,
Oy
if r=5b
2
(the argument of v, is‘%gﬁr or a,r).
2

The boundary conditions are:

1. at r=> continuity of movement:

b b
ayy? + byl =a vy,
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and continuity of tension:
Q/ b n Wal__ 0 o Wa
M ab%(alwn+b1nn)- b s—/“zab Yy, . b

2. the vanishing of the traction across the free surface r=—a:
0 W,
3a %(al Wa o by 7). _a‘§:0~

Hence

(n—1) y* + a;a y?
. ay and ay = ——— . 8

by =— (n—1) 7 4 aja @2 Yy

(a horizontal line means differentiation to the argument).

Substituting in the second, equation we obtain the period equation :
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or:
%<l—~&).(n—-l)'w;b—}—azb.‘y);l’g.
M2

A1) (phar—yp2 ab) + oa (Wb ar—yr Al )} =

= g—l cap byt (n—1) (bt —y? ab) - oga (b At —yp al).
5 ;

By putting a == b we arrive at an equation, identical with that found
by LAMB!) for the vibrations of the 1%t class of a homogeneous sphere:

—iga

P
a,a.—= —D=0.
2a y)a+(n, )

a. To explain seismometric data it is generally assumed, that the
thickness (d ==a—>b) of the surface layer is small compared with the
earth’s radius. As a first approximation we have: y? = w2 —ady?;

(n+1)

— = 2
then pb==y*—ad,y?, and as y* satisfies 2 -+ —— va e == 0

P (1+2(n+1),g_ tad. e
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After some reduction we find the period equation in the form:

., (1—ffl»)(n—l)(wz)—(l;@.912).(%51)2

Ga. o ety = R L
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if nd {({a. V

. Lota . s
In case of a sectorial harmonic is the spherical distance between
n

. 2na
two points on the surface of the earth where W, =0, or — s the

“wave length”, Therefore the condition nd {{ a means, that the wave
length should be great compared with the depth of the layer; the
vibrations of the earth are then those given by the period equation of
a homogeneous sphere (consisting of the material of the earth’s core),
with a correction term due to the surface layer.

b. This approximation is no longer applicable, when the degree n
of the spherical solid harmonic is great. Taking a, b and n very great,
we shall find the period equation of the oscillations, possible in an
infinite solid with a plane surface, covered by a surface layer with
depth d, viz. the equation of the Love-waves. We suppose: a, b and n

N

are infinite, so that a—b==d and vv~a~_:I are. finite. It is now necessary

to obtain the form of v, (or #,), when both the order and the argument
are very great and r=2>4-z, z {({ b. Using the method of BROMWICH ?):
v, satisfies the equation:

d? 2 1) d
w0

write r=5 + z:
d*y

d’y | 2 (n 1) dy 2 I
dz?

T b e Twy=0

as nyyl, r{{b:
2 , -
f—l;— + 215‘% + 0,2y =0; hence y—e'**%%, where s, =} I?*—a,?.
The functions must then be of the form:

W, = e——lz (Cl esi? _,l__ dl e-»slz)

g — e—lz (CZ es”? —IN dZ e_slz)' ®

We have now (cy, d;, c;, d, are unknown constants):

b Dwitaam o IUde ) g enidie s
T (n—1) 7o a }ii B o2+ (dﬁ") o cesd—d,e:d " ! |
n dz | _,
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and
1+ ﬁ nib‘ - f{w’{\) [_ji X C:In”
1 a; Wb oyt dz ) __,  a \(dz J_,
R ST ot D mde
Oy Tn n Wn)emo -+ — (7 )o0
14 a’ " 0
by
=)t e—d) s
~ ! =8 g h s,d.
8. b =S d e nid sy . tgh sy
(c1 +di)+ ;i" (ca -+ )

BromwicH found on this method:

pn==c; . el=%= where z==b—r and s,= | PP—a,?;

the left-hand member of the period equation can now be reduced to

s
“282 Hence:

H“1
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== fg s;d.,
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which is the equation of the Love-waves, which are only possible if

l 2
a,>1>a,, or %1>(;> >i’7§‘

§ 4. Proceeding to the movements of the second class we narrow
down the problem to that of a core, surrounded by an incompressible
liquid ; this is to the seismologist one of the most interesting of these
problems, viz. the interaction between the movements of the ocean and
the earth’s core.

Since the liquid is incompressible: /A =0, but as A== o0, 1/ will be
finite. Putting 1/\ = D, we have the modified equations

oV

VZ(D + o1 A F;‘):O . VW =0

0 oV ow
QleA‘lr"ér(D‘*”QlAﬁ)”}‘Ql“a‘?:O'

Suppose W={a-}br-?r+1) W, and D+, A -a—l;-:(c—}— dr— @ty W,

where W, =" X spherical surface harmonic S,.
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Whe have then: A — %g and, with rot,==0 and A =0, we find

B=10 oo L OF g _aade g botd

i ) S,
r oy’ rsiny o o p? 01 p*

Assuming for simplicity’s sake, that the core is also incompressible,
the equations of motion of the core are

SV2<D+ Aaav):o L W0

=0.

8(92;) Fu At (Draal) ) hay

Put W=a'W, and D0, A »jl{-"* ¢’ W,; then we have

(02 p? "+"//‘v2)t‘A—{—r (a 0+ ¢) W, =0,

’
whence A — — ——=s—nW,+ney,W,, where the argument of

W, is g/up r or kr. Again we have rot,=—0 and /A =0, therefore:

By Yot (L) L

. e

C = the same factor X —~~1~—-—- oW,

rsiny 0@

The boundary conditions at the bottom of the ocean (r=r,) are the
continuity of W, A and of the tensions Trr and Tk, or, in the same
order: '

I. a’==a-+br,~@r+D)
5. “na92+c apg,+c¢

’ ’ ‘ —1 n .
3. -+ (4/3”7Q22+2M§';~f) .r2A+2,u.77:.ekr2‘q),,::
2 2

=ctdr, Cr 044wy 0,1, A _
/ 4 2 2 .
4. 2(n—1). (—1@2*;6 +ewn)-«:~f?:~-
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The equations 2. and 4. give

. 2{(n*—1)
T nkey(kryw.+29,)°

I‘zA,

substituting in 4.:

a
0:p? ot %nkrz (kryw,+2w.) n S

2(”2"‘1)1/)n 1 2 l'zA

with 3.

n—1
c-tdp = g Yamyeslor—e) +2m. " 5+

Pa
where we have put 2 -—— — x for brevity.
kryyn

With 1. we find

0 c+dr, P 40a+0,b g7 ?[37’?’(92 — QL) w_lw +
== 2

0, 01p?. 1A p n
| 1
2(-1) | 207=1) S
k2 ry? kry2 " x+41
or
B Ko g an+1)
o W .2’(; =) ... . ()
kryw, R oy )
1) n(n-2)
where

— 37y (03— 01) o c+dr, @) o, a -+ 0, bry @D '
el o ZeFarain + (d o B) (nt 1) e

The boundary condition at the free surface (r==ry) is Trr==0; hence:

1] 3
¢ dry 24 1y 70, 00e A=0, where we have put og=e; +(e:-01) ;?(;) |
i
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Again there are two boundary conditions due to the surface mass-

distribution o, A at r=r, and (01—02) A at r==r,. The potential W is
(a-Fbr=@) S, if r,==r=r,
a't"S, or (a4 bry @) 1S, if r=g,
and at external points (r = r,)
(a ryt@nt) L ) p=tntD) | S

The surface characteristic equations for the potential are therefore:

0 0
5 a4 br @ty W, 4 — 5 {lar? b)) W t=4my0, A at r—r,

9 a
()t' ;( '+‘ bl 2n+1)) W } —— e {(a._Ith» (2n-+-1) ) Wn %:47-”/(()1-—«92)14 at r=rs.
Or

(2n+ 1),br2"(2"+1)::4ny(@2-——91).r2A and 2n--1)a=4ayo, r A.

These equations give with 6.

nn1)(1—s) f
B TR N R

-~ s r22n+1'

01 '1+ nn+-1(1—s) 1

where

a :M 13-—— (ZnLL — (2 i
4nyo, 4ﬂ7(92”01)’sv<;1> ’

l('oc =1 — 277-{54“‘1 Qo i f’@ — Qz"—Q1 2n +1 Q2

3 01 n’ 01 3 A}—ﬁ
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Substituting in H we obtain:

£ 2 k- 1
He=nQ ﬂ+as+ﬂ 2n-+1 _ﬁj (I11b)
B Ch (= Iy G
2n+41 as

Equations (IITa) and (IIIb) give the period equation of a sphere,
covered by an ocean of uniform depth.

a. It is obvious, that we can consider the periods p, determined by
a known value of n, as the periods of the vibrations of the core, altered
by the surface layer, or as those of the ocean with a variation due
to the core. Equation (III) must therefore include as limiting cases the
period equations, both of a free oscillating homogeneous sphere and of
a free oscillating ocean.

Firstly: we put r;==r, or s==1; then

ot 2
H= Qz(ﬁ“{ a I_lg)

2n (n—1
H: 1““(7;1"_1“1*5}%2 .%757@2.

Substituting in ([Ila) we obtain

k* v,? _ nget;
5, ) @ntnu on
2 e S , where 91‘4/3 Y Q2 U2
1
krywa k* r, . ngealn —n(n+2)
2(n—1) 2n+u

the equation found by BROMWICH ?) in case of a homogeneous incom-~
pressible sphere.

Secondly : to deduce the period equation of an ocean with uniform depth,
covering a non-vibrating core, we must assume that u==co. Thenk=0
and H = oo, or

1+ E(f,ii).(lfi) . £ —0;

2n-+1 as
this gives:

4+ 1) (1—s 3
p? = ﬂgt—)LAWZ . (1 — f;—ﬁ §1> . % 7Y 00

being the equation in question. (LAMB. Hydrodynamics).
Note. Taking this solution of LAMB we find that the tension, due to
the movement of the ocean, on the surface of the core

_ (2"  2n+1 3n(l—s)
TRR_(m) 'g'n+1+s'<91’(2n+1)2 QO)SH‘

&




928

This periodic tension causes a vibration of the core, which can only
be neglected, if the wave length is small compared with the depth of
the ocean.

b. In case of a liquid core we put #==0; then k= o0 and H=0, or
w1 @ nbldnsy 0 2n41g
(e B L T
OO (12O Ly gy oo ntltas e
€1 @1 30 o  2n-t1 "3p

4 n*(n+1) (1—s) 0,0,

2n+1 ' o

1 2nt1 00\ (02— 2nd-10,) 00
: 3 - =) - 56==0.
01 91 3 o 01

If n is great, the two roots of this equation correspond with 1. the
frequency of an ocean of uniform depth, and 2. the frequency of two
infinite liquids with a plane interface, as hasbeen remarked by SEzawa 8),

c. BROMWICH (and later LOVE) has proved, that the Rayleigh-waves
are vibrations of the 2nd class of a homogeneous sphere (if r;, and n
are very great). We can therefore expect, that the period equation of
t.he corresponding vibrations of a heterogeneous sphere include as a
limiting case the equation which determines the propagation of the
Rayleigh-waves, with correction terms due to gravity and the liquid
surface layer.

When ry, r, and n are infinite, so that ri—r; = h and % [ are
finite, then : K

e\ . \3
§ = B ~ e v 0 =01 + (0201) <é> ~ 02

(2"+1)P2N2/3n292 @2 h —4
tmpo,  © gl .Ql,wereg_ [z 7ty o,

After some reduction, we find

o 1 y<] e
%x—@_%ﬁ) and fxu“-l-@w»g—l).

n g ! n

Hence

/
/

[ e H% AN
Hx|14+%, P — (1—9-) or H= g!
’ , =+ K)(1=97).
@ ctgh hi—9! o e pz)
p

2
Applying the method of BROMWICH to equation (1a) we find

4 VT;Q;‘(Z—C)Z -2 (1-—H) =0, where /:_::;“c;

|
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Substituting H, the period equation becomes

4 l/'ité;_(z__C)Z - g2 g_;(l + K)_§2 K=0, K= o, P . (IV)
pl ‘ AL
clg pz

This equation determines the velocity of the Rayleigh-waves on the
bottom of the ocean; it is obvious, that it includes the equation of the
Rayleigh-waves (g =0 and h=0) and the equation

4| T~ @ty + 2.5 02 tgh =0,

found by BRoMWwICH in case hl {{ 1.

I want to express my gratitude to Prof. VAN DER WAALS for his
kind assistance and interest he has taken in this paper.
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