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§ 1. A homogeneous elastic body of unlimited extent ean transmit 
two kinds of waves, the longitudinal and the transversaL Wh en the 
body is limited, both kinds of waves are refleeted by its boundary and 
give rise to other waves of the same kind. Any vibratory motion of 
the body can be represented as the result of superposing longitudinal 
and transversal waves. In case of an infinite solid with an infinite 
horizontal surface these waves can combine to form a displacement 
that does not penetrate far beneath the surface : the Rayleigh wave. 
Assuming th at this body is covered by a layer with other elastic 
properties, it is possible to construct another kind of surface waves: 
the Love waves. Further the effect, due to gravity and the surface 
layer, on the Rayleigh waves - and various similar corrections - can 
be taken into account. 

There is however another method of investigating the movements of 
a limited body: the method of normal functions. The soll1tion of the 
eql1ation of wave propagation on a sp here is th en written as a combi~ 
nation of some spherical harmonies, satisfying the boundary conditions. 
The theory of the superficial waves must be included in this theory of 
the vibrations of a sphere, as has been pointed out by RAYLEIGH. In 
case of a homogeneous sphere the deduetion of the eql1ation, giving the 
velocity of the Rayleigh waves from the period equation for the vibrations 
of a sphere, has been effected by BROMWICH and LOVE. 

In this paper we shall investigate the oscillations of a sphere with 
central core, taking gravity into account, and are to arrive at period 
equations, from which numerOl1S known eql1ations can be dedl1ced. 

§ 2. According to the theory of LOVE 3), concerning the oscillations 
of a homogeneol1s sphere, the eql1ations of vibratory motion are three 
of the type 

d2 u dl', ij ( a V) d V tJ W 
e dt2 = (2 +- ft) ax + ft\}2 u + e (§x A -Or- -el', ()x- + e ax 

where u = the x~component of the displacement; with similar equations 
for the y and z components (v and w). We have 

e = the density; 2 and ft = Lamé's constants. 
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A = the radial component of the displacement. 
du dv dw 

D = tJx + fJlj + ai' 
V = the potential if no distl1rbation. 

W = the potential due to a distribution of mass (-e D in the medium 
and + e A at its boundary) together with th at dl1e to possible 
extern al bodies (e.g. the moon); hence 

\}2Wc=4nye6. (y=gravitation constant 6.7XI0-8). 

These eql1ations can be transformed into: 

(1) 

where r=Vx2+y2+z2, rot,.=the radial rotation component. 
We shal1 write the solutions of this set of eql1ations in the form 

F(r} . W n • eip t; W n is a spherical solid harmonic of degree n. 
From the form of the equations (I) it will be seen, that there are two 

possible types of vibrations : 
1°. those. which involve no dilatation and no radial dis placement ; 

these correspond with the oscillations called by LAMB I) "vibrations of 
the flrst class". 

2°. the second type. which LAMB described as being of the "second 
class", are those whieh cal1se no radial rotation component. 

§ 3. Beginning with the vibrations of the flrst class, we put D = 0 
and A = 0; equations (I) are th en reduced to 

(e p2 + ft \}2) (r rot,.) = O. 

The general solution is 

r rot, = n (n + 1) (al 'IPn + bi JIn). W n • eipt
, 

where 

ep2 
and the argument x = -- r or ar. 

ft 
60* 



As 6, = 0 and A = 0; 
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~ç + ~_ (B si'!1fJ) - 0 
èhp dlp-- , 

(B and Care the meridional and the azimuthal components of the 
displacement) ; hence 

1 dM 
B=-~- -

sin 1fJ dep , 

which gives 

or 

The components of the displacement are therefore: 

A=--= 0, B = (al 1fJn + bi nn) . -. d W n 
;;.-, C = - (al 1fJn + bi nn) • 2_~,,-

sm 1fJ • uep u1fJ 

(the time factor eipt being omitted for brevity). 
We apply this solution to a sphere with central core; the movement 

of the first kind is perpendicular to the radius and must therefore be 
related to the Love waves, as those movements are also perpendicular 
to the vertical. 

The solution is now: 

if b;~ r -=: a; and 

if t'::::= b 
2 

(the argument of 1fJ~ is 122 P t' or a2 r). 
flz 

The boundary conditions are: 

1. at t' = b continuity of movement : 
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and continuity of tension : 

2. the vanishing of the traction across the free surface t' = a : 

Hence 

and 

(a horizontal line means differentiation to the argument). 

Substituting in the second. eg ua ti on we obtain the period eguation: 

or: 

~ (1- ;:). (n-l) .1fJ~b + a 2 b. y)~b ~. 
• I (n-l) (1fJ b na -- ?lJa nb) + a a (lpb na -- Via n b) I l 11 n 'tn n 1 n n t'n n 

By putting a = b we arrive at an eguation, identical with th at found 
by LAMB I) for the vibrations of the 1 st class of a homogeneous sphere: 

a. To explain seismometric data it is generally assumed, that the 
thickness (d = a-b) of the surface Jayer is small compared with the 
earth' s radius. As a first approximation we have: lpb =:= 1fJa --- ad '/ia 

; n n 'I n 

h -b- d - d fi .... I 2 (n + 1) --t en 1fJ = 1fJ. - a . 1pa, an as lp· satis' es 1fJ. î- .-----.. --- ",a -t- 1/~a ::-=: 0 : 
n n n It Tt aa'tI n 
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Af ter some reduction we nnd the period equation in the farm: 

if nd« a. 

In case of a sectorial harmonie lt_il: is the spherical distance between 
n 

2na 
two points on the surface of the earth where W n = 0, or -- is the 

n 
"wave length" . Therefore the condition n d ( (a means, that the wave 
length should be great compared with the depth of the layer ;the 
vibrations of the earth are then those given by the period equation of 
a homogeneous sphere (consisting of the material of the earth's core), 
with a correction term due to the surface layer. 

b. This approximation is na longer applicable, when the degree n 
of the spherieal solid harmonie is great. Taking a, band n very great, 
we shall nnd the period equation of the oscillations, possible in an 
innnite solid with a plane surface, covered by a surface layer with 
dep th d, viz. the equation of the Love~waves. We suppose: a, band n 

are innnite, so that a-b = d and ,-~ = I are nnite. It is now necessary 
a 

to obtain the form of 1fJn (or nn), wh en both the order and the argument 
are very great and r = b ± z, z ( ( b. Using the method of BROMWICH 2): 

'/jJn satisnes the equation: 

d2~ +?jn +_1) c1'l + a 2 y = 0 
dr2 r dr I 

write r= b + z: 

d 2y 2 (n + 1) dy 2 --+------+a y=O' dz2 Z + b dz I • 

as n» 1, r«b: 

d 2y dy -
dzi + 21 d~ + a l

2 Y = 0; hence y = e--1Z±SjZ, where SI = VTI_ aI 2. 

The functions must then be of the form: 

~*;"::-.. ~ 
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and 

BROMWICH found on this method: 

the left~hand member of the period equation can now be reduced to 

Hence: 

jJ'2 S2 -,-, t h d 
-- -- - SI' g SI • 

/hl 

This equation has only roots, if SI is imaginary; we assume 'therefore 

al > I and put SI =: V;;-;-2 _[2. The period equation becomes 

whieh is the equation of the Love~waves, whieh are only possible if 

al > 1 > a2' or Ql > (~)2 > (21 • 
!hl P !hz 

§ 4. Proceeding to the movements of :the second class we narrow 
down the problem to that of a core, surrounded by an incompressible 
liquid; this is to the seismologist one of the most interesting of these 
problems, viz. the interaction between the movements of the ocean and 
the earth's core. 

Since the liquid is incompressible: D = O. but as À. = 00, À. D will be 
nnite. Putting À. D = D, we have the modined equations 

\j2 (D +!?I A i)i)~) = 0 \j2W=O 

el p2 A + ~ ( D + el A àà~) + el à: = o. 

àV 
Suppose W=(a + br-(2n+1)) W n and D+el Aa-i" = (c + dr-(2t1+I)) Wnt 

where W n = rn X spherieal surface harmonie Sn. 
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àF 
Whe have then: A =~' and, with rotr=O and D=Ü, we find 

Assuming for simplicity's sake, that the core is also incompressible, 
the equations of motion of the co re are 

Put W:-:- a' W n and D + (}z A èl~ = c' W n ; then we have 
ut 

a' (}2 + c' 
whence A = ---~r~ n W n + ne '/jJn W n , where the argument of 

(}zP 
Z 

'/jJn is ({~~ r or k2 1'. Again we have mtr = 0 and D = 0, therefore: 
fh 

C = the same factor X ____ ~ ____ È W n
• 

t sin '/jJ à cp 

The boundary conditions at the bottom of the ocean (r == rz) are the 
continuity of W, A and of the tensions T RR and TR,p, or, in the same 
order: 

a'(}z+c' a(}l+c b(}l+d 2. -no ----z - + ne'/jJn=-n. --z-- -f--(n + 1). ----2-1'Z(Zn+l) 
(}2P (}IP (}IP 

3. c' + (1/3nY (}i +2fh'!---z~) .1'zA +2!~. -;. ek1'z .1;}n== 
l'z tz-

=c + d t2 -(Zn+ I) + 4/3n Y (}I ez t2 A. 

4. 2(n-l) (_al({z+c
l 
+e'/jJ )-~~f):ev) ---~ekt21jJ =0 

• (}z p Z n n+ 1 n n+ 1 n· 
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The equations 2. and 4. give 

substituting in 4.: 

with 3. 

---

1fJn f b wh ere we have put 2 --- = x or revity. 
k t2V}n 

With 1. we find 

el ~+9~2--~~I)+e~a +(}z b!:z-(2n+~ =~ 1h7r.L((}~ =_eJ _ ~ + e; (}I pZ 
• Tz A P n 

or 

where 

IcZ t 2 
·-~----H-(2n+ 1) 

2- P"---- __ ~~:-1) _____ ~ _________ , 
Ic l'z'/jJn - _~tL H-- n (n + 2) 

2(n-l) 

. (l1/a) 

The boundary condition at the free surface (t=l'I) is TRR=O; hence: 

c (
t Z)3 d t -(Zn+l) + 1/3 ny f!i (}o ti A=O, where we have put (}o=(} I +(ez-el)'. -- . 

I • ~ 
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Again there are two boundary conditions due to the surface mass-

distribution el A at r = rl and (el-e2) A at r = r2' The potentiaI Wis 

(a -+ b r-(2,,+I)) . r" Sn, if r2 r-= rl 

a' r" S" or (a -+ b r2 -(2,,+1)) . rn Sn, if r -=: r2 

and at extern al po' t (:=- ) Ul S r= rl 

(a rl +(2n+l) -+ b) . r-(n+l) . Sn. 

The surface characteristic equations for the poten tial are therefore: 

ti- ! (a -+ b r(2,,+I)) W" l - ~r ! (arI2n+1 -+ b)r-(2n+l). W" !=4nyel A at r=rl 

d a 
dr !(a -+ b l'-(2n+I)) W n l - dl' ! (a-+bl'2-(2n.! 1)) W n !=4ny((?!-e2)A at l'=r2' 

Or 

(2 n·+ 1). b r2-(2n+l)=4ny (e2- el) .l'2A and (2 n -+ 1)a=4nyell'1 A. 

These equations give with 6. 

1 -+ n(n-+l)(1~~.l"-
b=a. f>.2=-el ____ 2::z -+J __ ~_~ l' 2n+1 

el 1 -+ n(ntlliL-s) l . 2 • 

2n-+l 'fJ 
where 

a =(2n-+l)p2 fJ- (2n-+l)p2 s=(0-)2n+1 
4nyel '-4ny(e2"':'-'el)' l'1 ' 

fa = 1 _ 2 n_-+ _! eo -+ ~, ff' = e2-el _ 2 n_tl e2 -+ ~ 
3 el n (?! 3 el n' 
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Substituting in H we obtain: 

ffJ -+ fa -+ ~ _ 1'l(n -+ 1) (1_=s] 2_ 
el fJ as fJ 2n-+l 'fJ2 H - n -- ~-----------------------------------

-- e2' 1 -+ '!J~ -+ l)J!=s) .e . 
2n -+ 1 as 

. (llI b) 

Equations (lIl a) and (lIl b) give the period equation of a sphere, 
covered by an ocean of uniform depth. 

a. It is obvious, that we can consider the periods p, determined by 
a known value of n, as the periods of the vibrations of the core, altered 
by the surface layer, or as those of the ocean with a variation due 
to the core. Equation (lIl) must therefore inc1ude as limiting cases the 
period equations, both of a free oscillating homogeneous sphere and of 

a free oscillating ocean. 
Firstly: we put l'l = r2 or s = 1; then 

Substituting in (lIla) we obtain 

2~"-
k r2 1Pn 

_-"':l'2: _ __ n g e2 r2 __ _ (2 n -+ 1) 
2 (n-l) (2n -+ 1) Ik 

---"-2-2--- --------, where g=1/3nye2t'2' 
__ ~ ___ '!JJ e2l'2 _ __ n (n -+ 2) 
2 (n-l) (2n -+ 1) fA, 

the equation found by BROMWICH 2) in case of a homogeneous incom

pressible sphere. 
Secondly: to deduce the period equation of an ocean with uniform depth, 

covering a non-vibrating core, we must assume th at Ik = 00. Then k = 0 

and H= 00, or 

n (n -+ 1) (1-s) fa_ 
1 -+ ---------- .- --~ 0 ; 

2n -+ 1 as 

this gives: 

p2 = n (n~tJli~ -sL . (1 _-~_ . !?1) . 1- n y eo, 
n + 1 -+ n s 2 n -+ 1 eo 

being the equation in question. (LAMB. Hydrodynamics). 
Note. Taking this solution of LAMB we find that the tension, due to 

the movement of the ocean, on the surface of the co re 
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This periodic ten sion causes a vibration of the core, which can only 
be neglected, iE the wave length is small compared with the depth of 
the ocean. 

b. In case of a liquid core we put /], = 0; th en k = 00 and H = 0, or 

a
2 (1 + q~el ()l • ~-t;1:111!) + n a ~ 1-2 njt} ~~ 

ez-el s-(n + 1) (l-s) I?}_-{!J . _~ eo -2(n-l). I??=_el . Tl_+!j-ns 1 (21 ~ 
(?! el 3 (!I el 2n + 1 . 3 (?! ~ 

+ ~zJn2~-t(:--s) }~~JiJ. K 1- ~n:l ~) (~z-el (h - 2n:.!b~) - I?~elel s~=o. 

If n is great, thetwo roots of this equation correspond with 1. the 
frequency of an ocean of uniform depth, and 2. the frequency of two 
inBnite Iiquids with a plane interface, as has been remarked by SEZAWA 8). 

c. BROMWICH (and later LOVE) has proved, that the Rayleigh~waves 
are vibrations of the 2nd c1ass of a homogeneous sphere (if Cl and n 
are very great). We ean therefore expect, that the period equation of 
the corresponding vibrations of a heterogeneous sphere inc1ude as a 
Iimiting case the equation which determines the propagation of the 
Rayleigh~waves, with correction terms due to gravity and the liquid 
surface layer. 

When Cl' Cz and nare inBnite, so that CI--CZ = hand n_ = I are 

fini te, then: 
Cl 

(

1' )2n+l 
S = ~~ ;::::; e-2h1 

_(2n+1)p2~213n2p2 e2 
a---------- ~ ----- --, where g=1/3nYfh l']. 

4nYel gl' el 

Af ter some reduction, we Bnd 

Hence 

I 1 + gl ) 

Het + ~;. :;9h~IP~ (1-~} 0' 

Applying the method of BROMWICH to equation (IIIa) we Bnd-

1 
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Substituting H, the period equation becomes 

4 Vl--=-t - (2_')2 + fJ-;;r C (1 + K)-C 2 K = 0 , (IV) 

This equation determines the velocity of the Rayleigh~wa~es on the 
bottom of the ocean; it is obvious, that it inc1udes the equatJon of the 

Rayleigh~waves (g = 0 and h = 0) and the equation 

--- 9 e2 I" I"Z h hl 0 4 VI-C-(2-C)2 +~T s-s tg =, 

found by BROMWICH in case hl < < 1. 

1 want to express my gratitude to Prof. VAN DER WAALS for his 
kind assistance and interest he has taken in this paper. 
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