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1. Introduction. - In recent years several authors, in particular 
G. 1. TAYLOR and TH. VON KARMAN, have given much attention to the 
investigation of the correlation coefficients characteristic of the turbulent 
motion which is found in an air stream of constant mean velocity 1). The 
turbulence in the cases considered usually is produced by a screen or a 
honeycomb through which the air stream has passed (such a case of ten 
presents itself with the air flow in a wind channel), and it is assumed that 
in the region to be considered the motion of the air is not influenced by 

guiding walls etc. 
The assumption that the mean velocity has a constant value throughout 

the current implies that there is no transfer of energy from the mean 
motion ro the turbulent motion; in consequence there wil! be a gradual 
decay of the turbulence, and the object of the investigations is to Eind 
the laws of th is decay, and of the correlation phenomena associated with it. 

An important conception introduced by TAYLOR into this work is that 
of isotropic turbulence, which tS characterized by the circumstance th at 
the average value of any function of the velocity components, defined in 
rdation to a given set ofaxes, is unaltered if the axes of reference are 

rotated in any manner 2). 
Various results arrived at in the theoretical developments have been 

compared with the results of numerous accurate experimental observations, 

1) G. I. TAYL~R, Statistical theory of turbulence, Proc. Roy. Soc. (London) A 151, 
pp. 421-478, 1935; A 156, pp. 307-317, 1936; Journ. Aeron. Sciences 4, p. 311, 1937; 
Same recent developments in the study of turbulence, Proc. Vth Intern. Congr. for 

Applied Mechanics, Cambridge. Mass., 1938, p. 294. 
TH. VON KARMAN, The fundamentals of thc statistical theory of turbulence, Journ: 

Aeron. Sciences 4, p. 131. 1937; On the statistica 1 theory of turbulence, Proc. Nat. Acad. 
of Sciences (Washington) 23, p. 98, 1937; Same remarks on the statistical theory of 
turbulence, Proc. Vth Intern. Congress for Applied Mechanics, Cambridge, Mass., 1938, 
p. 347; TH. DE KARMAN and L. HOWARTH, On tbe statistical tbeory of isotropic 

turbulence, Proc. Roy. Soc. (London) A 164, pp. 192-215, 1938. 
H. L. DRYDEN, Turbulence investigations at the National Bureau of Standards, Prae. 

Vth Intern. Congress for Applied Mechanics, Cambridge, Mass., 1938, p. 362; Turbulence 
and the boundary layer, Journ. Aeron. Sciences 6, p. 85, 1938; Turbulence and diffusion, 
Journ. Industrial and Engineering Chemistry 31, p. 416, 1939 (all with extensive 

references to the literature of the subject). 
L. PRANDTL, Beitrag zum Turbulenzsymposium, Proc. Vth Intern. Congress tor 

Applied Mechanics, Cambridge, Mass., 1938, p. 340. . 
2) G. 1. TAYLOR, Proc. Roy. Soc. (London) A 151, p. 430, 1935. 
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made possible by the application of electrical hot wire anemometers, and 
the insight obtained in this way is continually developing 3). 

Now in a previous communication the present author has described 
some mathematical model systems, by means of which several features 
could be illustrated which play a part in the behaviour of turbulent 
motion 4). Although these model systems had been constructed with a 
view to illustrate the development of a dissipative secondary motion, which 
grows by detracting energy from a given primary phenomenon until a 
balance is obtained between energy detracted and energy dissipated, the 
question can be brought forward whether these same model systems also 
may be used in order to illustrate some of the relations found in the theory 
of the decay of free turbulence. It is true that most of the geometrical 
relations which are of importance in the theory of isotropic tl1rbulence 
cannot find a counterpart in the model referred to; nevertheless it is 
possible to illustrate the conception of correlation and the equations 
describing the decay of free turbulence. 

This will be shown in the following sections (2 - 3), while in '* and 5 
those properties of the model system which are operative in the propagation 
of "elementary regions of tl1rbulence" have been considered in more detail. 

2. Application of the assumptions of the theory of uniform isotropie 
turbulence to the model system. - It is convenient to take as a guide the 
exposition of the statistical theory of isotropic turbl1lence given by 
VON KARMAN and HOWARTH 5), and to indicate which of the ideas 
developed in their paper can be applied to our model system. 

The model system is defined by the eql1ations 6): 

èJv _ à2v èJv èJw 
-à - U (v-w) + '/l - - 2v - + 2w ---

t èJy 2 dy ày 

èJw _ à2w èJv Ow 
cE- - U (v+w) + '/l èJy 2 + 2w ày + 2v ay 

(l} 

a) A f part rom the papers already mentioned in footnote 1) see: G. I. TA VLOR, 
Correlation measurements in a turbulent flow through a pipe, Proc. Roy. Soc. (London) 
A 1.57, pp. 537-546: 1936; G. 1. TAYLOR and A. E. GREEN, Mechanism of the pro~ 
duetIOn of sm all eddles from large ones, ibid. A 158, pp. 499-521, 1937; G. I. TAYLOR, 
P,roduction and dissipation of vorticity in a turbulent field, ibid. A 164, pp. 15-23, 1938; 
lhe spectrum of turbulence, ibid. A 164, pp. 476-490. 1938. 

For the experimental investigations themselves the reader is referred to the articles, 
m:ntioned by Prof. TA VLOR in these papers, and to those of DRYDEN and his co~workers. 

fhe reader is also referred to a great number of papers on turbulence in the Proc. 
Vth Intern. Congress for Applied Mechanics, Cambridge, Mass., 1938. References to the 
experimental investigations are given in rnany of these papers. 

4) J. M. BURGERS, Mathematical examples illustrating relations occurring in the 
theory of turbulent fluid motlon, Verhand. Kon. Nederl. Akad. v. Wetenschappen. Afd 
Natuurk. (Ie sectie) 17, No. 2, 1939. . 

5) TH. DE KARMAN and L. HàWARTI-I, Proc. Roy. Soc. (London) A 164, p. 192, 1938. 
0) J. M. BURGERS, l.c. p. 16, eqs. (8.2), (8.3). 

Il:l 1 * 
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In order to adapt the equations to the conditions of the present subject it 
is necessary to assume th at the domain of the coordinate y extends from 
- 00 to + 00, so that there are no boundary con di ti ons to be fulfilled by 
v and w. It is supposed that the initial distributions (for t = 0) of v and w 
are given as functions of y, and it is asked to find some general rules 
governing their development in the course of time. A special case e.g. 
might be represented by a distribution in whlch the y~axis is divided into 
alternating segments of lengths a and b, the initial values of v and w 
being assumed to be zero in the segments of length a, whereas they follow 
some prescribed course, may be of similar type but not necessarily the 
same for all segments, in the segments of length b. 

To obtain a fuH analogy with the "free turbulence" of the air stream 
referred to before, in which there is no transfer of energy from the mean 
motion to the turbulent motions, we must take U equal to zero in the 
model system. However, wh en in 'the model system U is supposed to be a 
constant, its presence does not interfere with the condition of isotropy (in 
this respect the model system differs from the actual hydrodynamical 
equations); hence provisionally we shall retain the terms with U, as it is 
possible to drop them afterwards at any time we may like. 

In analogy with the assumptions stated by VON KARMAN and HOWARTH, 
l.c. p. 193, we shall suppose th at in our model system it is possible to 
con si der average values with respect to the time of quantities like 
v, w, v 2 , ... , assuming at the same time th at the fluètuations actually 
occurring in these quantities are so rapid, th at the variations of the average 
values are negligible throughout the period of time required for averaging. 
The average values consequently shall be treated as slowly varying func~ 
tions of the time. 

It will be assumed that the turbulence is statistically uniform, so th at 
the average values are invariant against a translation along the y~axis of 
the points or systems of points with reference to which they are defined. 

The assumption of statistica! isotropy further induces us to suppose 
that the average values are invariant with regard to a "rotation" and a 
"reflection" of the axes for the variables IJ and w. This implies that we take: 

v=o. w=O 

(2) 

vw = 0, vzw=O, etc, 

We now define a correlation function f(r, t) by considering two points 

PI and P2' with coordinates Yl' Y2 lying at a distance r = Y2 -Yl from 
each other; then we cakulate the average value of V1 (t) . V2 (t) and write: 

~-, Vz = [. VZ • (3) 
The condition of isotropy implies that also: 

W~W2=['-WZ=[. v2 (4) 
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whereas on the other hand we shall have: 

--- --

Vt • Wl = Wt . Vl = ° (5) 

The correlation function [ wil! always have the value unity for r =-:: 0, 
while in general it will decrease to zero when r increases indefinitely. It 
may be a s!owly varying function of the time. 

The introduction of the correlation function f makes it possible to define 
a linear quantity I by means of the integral: 

00 

l=.J [dr. (6) 
o 

This quantity is the analogue of the "average size of an eddy" as defined 
by TAYLOR 7). In the present case it may be termed the "average size of 
a domain of coherence". 

Following section 4 of VON KAI~MAN and HOWARTH'S paper, we now 
can deduce an expression for the correlation coefficients between the 
derivatives of v or w. Making use of the condition of uniformity, mentioned 
before, we have: 

(7) 

and: 

~~:-~-~;~ = af2 (~f:--· V~) = -;Z ~ . (8) 

from which, when the points P1 and P 2 are made to c'Üalesce: 

(9) 

In analogy with TAYLOR then a second linear quantity À can be defined 
by means of the formula 8): 

(10) 

TAYLOR takes À to be a measure of the smallest eddies which are responsible 
for the dissipation. 

When the considerations stated in section 6 of VON KARMAN and 
How ARTH' s paper are adapted to our system, we arrive at the result that 
all quantities of the types: v1 2 V2' v J

2 W2' VI Wl (J2' etc., must be zero, sa 
that apparently in om case th ere are no triple correlations to be retained 
in the equations. It must be admitted, however, that here we have to do 

7) G. I. TAYLOR, Proc. Roy, Soc. (London) A 151, p. 426, 1935. 
8) G. 1. TAYLOR, Proc. Roy. Soc. (London) A 151, p. 437, 1935. 
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with a rather dangerous point, and a further analysis of its applicability 
to the present case would be desirabie. Such an analysis then ought to 
proceed along other lines. ProvisionaIly, therefore, we shall make use of 
the assumption that the triple corrdations can be neglected, as the purpose 
of this section and of the foIIowing one is no more than to point out various 
analogies with the equations of VON KARMAN and HOWARTH. In section -4 
and 5, however, we shall give attention to the effect of the terms of the 
second degree in the equations for the model system, and we shall see 
that they play an important part in the propagation of elementary regions 
of turbulence. 

3. The equation [or the propagation o[ the correlation (VON KARMAN 
and HOWARTH, section 8). From the first one of the equations (1) we 
deduce the relation: 

à àZ àZ 

::> (VI V2) = U (2 VI V2- V 2 W I -VI wz) + Y -0 2 (VI V2) + 'Jl ~i (VI V2)-
ut YI UY2 

from which, by means of the process of averaging: 

(11 ) 

The same result could have been obtained from the second equation of the 
system (1). - When the term with U is dropped eq. (11) is the analogue 
of equation (51), p. 206, of VON KARMAN and HOWARTH'S paper. 

A) We first take r=O. Then [,= 1, while (Ö2f10r2 )r=0=-2/À2, 
according to (10); À evidently can be a function of the time. Equation (11) 
reduces t~: 

d(;2/dt= 2 U v2-4 'Jl V2J}.2. (12) 

With U r- 0 this becomes: 

(12a) 

which is the analogue of eq. (55), p. 207, of VON KARMAN and HüWARTH'S 
paper (section 9). 

B) Returning to eq. (11) and expanding the left hand side, we can 

e1iminate dv2 fdt by means of (12), and obtain: 

~~ = 2 'Jl [~~ - f(~:Ç}'=J (13) 

This equation, which is independent of the value of U, is the analogue of 
eq. (63), p. 209, of VON KARMAN and HOWARTH'S paper. 
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A particular solution of this equation, in which [ is a function of 

rJV;t only, is given by: 

f= e-r2/Bv t. (14) 

This solution is the analogue of the "self~preserving correlation functions", 
considered by VON KARMAN and HOWARTH in section 10. When [ is of th is 
special type, eq. (10) gives: 

(15) 

so th at eq. (12) becomes: 

from which 

V
2 = v0

2 
e 2Ut (to/tr/2. 

With U = 0 this reduces t~: 

V 2 = -~~ (to/t)'/2, 

It can aIso be tried to construct a solution analogous to those considered 
in section 11 of the paper of VON KARMAN and HOWARTH. In these soIutions 
it is assumed that the correlation function [ is independent of 'Jl, with the 
exception of small va lues of the distance r. Hence in eq. (13) we shall 
neglect 'Jl (02[IOr2), but retain the term 'Jl ( 02[/O,(2 ) r=O' Then it is assumed 
th at [ is a function of r; = riL, where L is a provisionally unknown function 
of the time. Substitution into (13) leads t~: 

I r dL _ (àZf) 
-f L2 dt --2yf àr2 ,>=0' 

which equation can be satisfied only provided: 

1 dL _ (a Zf) T-d--const.'Jl ~ . 
t uf r=O 

(16) 

H, in connection with eq. (15), we assume (02f1or 2 ) r=O = - 21À2 = 
=-1/4'Jlt, we should Eind (taking the constant in eq. (16) equal to --Cl: 

1 dL C 
Tdt=+4t' 

from which: 

L = con st. tC/4. 

At the same time we obtain: 

-f'r;=-~ f. 
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so that: 

f= const. (~ re 
The assumption C = 2 e.g. would give: 

However, we cannot come much further in this way, and also VON KAI~MAN 
and HOWARTH'S paper does not give more than a set of possibilities. 

4:. Direct investigation of the propagation of an elementary region of 
turbulence in the model systems. - It may be asked wh ether a direct 
investigation of the equations defining the model systems can give us a 
closer insight into the laws governing the propagation of disturbances. The 
question is particularly interesting as this propagation depends upon the 
terms of the second degree in these equations, which had been eliminated 
in the process of averaging. 

In considering this problem we shall simplify the equations by dropping 
the terms with U. Moreover we shall give attention mainly to the far more 
tractable case of the model system with only one variable v, which (with 
U = 0) is governed by the equation \)): 

av à2 v av 
---- -- v -- - 2 v -- (17) àt -- ày2 ay . 

We assume v to be smal], and we shall neglect the term v0 2 uloy2, except 
when a discontinuity threatens to arise in the solution of the equation. By 
means of a reasoning of similal' kind as was given for the system with two 
variables 10) it is found that a discontinuity propagates itself with a velocity 
c, determined by: 

(18) 

while at the same time it gives -rise to a dissipation of energy of amount: 

(It is to be observed that in a discontinuity we always have UI > Ur). 

When these results are observed, we may restrict to the consideration 
of the equation: 

aU àu 
-Ü = - 2u-~y. . (19) 

A typical example of a solution of this equation is indicated schematically 
in fig. 1. It has been assumed th at for t ,=---' 0 we have v = 110 in a domain 

9) See J. M. BUI<QERS, l.c. p. 14, eq. (7.2), and the reference to RIEMANN given 
p. 27, footnote 12). 

10) J. M. BURGERS, l.c. pp. 30, 40'--43. 

9 

of length Lo (say, in the domain 0 < y < Lo); outside of th is domain 
v=--= O. The values of 11 for all interior points of the domain propagate them, 

t 

o 
Fig. 1. 

- - - -- -- - - --, , , 
I , 

, " 
-'-'--U-'-LLLLLLf_ - - - - -- - -- - --- f" 

/ 

/ , 

y 

" , 
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~elves to the right with the velocity 2v, which at first for all these points 
has the value 2IJo. Such a propagation would leave open a space at the 
left hand side of the domain, of breadth 2IJot; in this space we obtain the 

solution IJ= y/2t, whereas for y ? 2vot we have IJ == vo. The discontinuity 
at the right hand si de of the domain, however, displaces itself with the 
velocity vo. Hence the region where IJ = Va becomes continuously narrower, 
until it vanishes for t!= La/vo. From th en onward we have the solution 
v=-= Yl2t in a domain extending from y ,= 0 until y = L, where L is a 
function of t; at the right hand end of this domain there is a steep front 
(a discontinuity), moving with the velocity dL/dt = Lj2t. It is easily 
found th at we have: 

L == 2 VL~lf~t (20) 

With increasing values of t the front decreases in height; at the.same time 
lts velocity decreases. 
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When the influence of the friction al term và2u/ày2 on the form of the 
steep front is investigated, it is foundthat the maxilnum value of àu/ày 
is of the order u2/v. 

It is to be observed that the integral: 

!J= JUdY. (21 ) 

remains constant during the whole process; this is true also when the 
frictional term is not neglected, and represents an analogy to the conserva~ 
bon of the impulse in the hydrodynamical case. 

The equation for the motion of the front can be written: 

L=2 V!Jt. (22) 

5. It is possible to develop solutions of similar nature from other initial 
conditions, and it can be expected th at af ter a sufficient lapse of time we 
shall always obtain a solution of the type: 

v = (y -- yo)/2 (t- tol. (23) 

where Yo and to are two constants, depending upon the initial conditions. 
This solution will be valid in a domain extending from y = Yo until 
y= Yo + L, the quantity L satisfying the equation: 

(24) 

wh ere !J is theconstant value of the integral J u dy. The quantity L may 

be either positive or negative. The steep front at y ~ Yo + L is rounded 
off by the influence of the viscosity, and the maximum value of àu/ay 
again is of the order v2/v. 

The asymmetrical character of the growth of the domain wh ere v 

differs from zero, is an accidental circumstance due to the particular form of 
equation (17). When we return to the system formed by eqs. (1), (taking 
U = 0), in which there are two variables, there is found a more sym~ 
metrical growth of the domains where v and ware different from zero, but 
the exact investigation will be far more difficult. 

Returning to the case of eq. (17) or (19) it is still to be observed that 
various of the growing domains may meet each other. For instance, when 
we have two domains with positive values of v, and the left hand one has 
the greater !J, this one will overtake the othef. Af ter a sufficient lapse of 
time there will be left a single domain only, again of the type described in 
the beginning of this section, and characterized by a value of !J which is 
the sum of the fJ's of the original domains. 

Another case may be formed by two domains of different sign, situated 
in such a way that the one with v positive is to the left of the one with v 
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negative. When they have met, then af ter a sufficient lapse of time again 
only one domain will be left, characterized by a value of !J which is the 
difference of the Q's of the original regions. 

We thus arrive at the general result th at there is a tendency for all 
domains where some disturbance is present (that is, where at t = 0, u, or 
bath v and w in the system with two variables, are different from zero). 

to increase in size, at a rate approximately proportional to V t. In this 
process the larger domains overrun the smaller ones, and consequently 
more and more of the details of the original pattern will be gradually 
eliminated. Hence it is to be expected th at the average size of the "domains 
of coherence" to be found in the field will increase as well, and also roughly 

proportionally to V'i. 
A particularly interesting feature of the process is the tendency to form 

steep fronts at the advancingedges of the domains. The steep fronts are 
the sources of intensive dissipation of energy. When v is smal!, the dissipa~ 
tion in these fronts is far more important than the dissipation due to the 
values àu/ày assumes in the rest of the domains. 

This result is remarkable as again it affords an analogy with what is 
observed in fluid motion, although the geometrical features of the field 
are different in the hydrodynamical case. It has been pointed out by 
T AYLOR th at in turbulent motion the intensity of the vorticity is always 
increased in those parts of the field, where vortex filaments are extended. 
as according to the law of the conservation of circulation the absolute 
value of the vorticity changes proportionally to the length of a filament 
having the same direction as the vorticity vector. As TAYLOR remarks 
turbulent motion is found to be diffusive, sa th at particles which were 
originally neighbours move apart as the motion proceeds; consequently 
there must be a continuous increase of the vorticity 11 ). In TAYLOR' s view 

11) G. 1. TAYLOR, Journ. Aeron, Sciences 4, p. 315, 1937; G. 1. TAYLOR and A. E. 
GREEN, Proc. Roy. Soc, (London) A 158, p. 501, 1937; G. 1. TAYLOR, ibid. A 164, p. 15, 
1938. 

In order to obtain an estimate of the minimum thickness to which a vortex can be 
drawn out, we may consider a field of fluid motion, which. wh en described with reference 
to cylindrical coordinates c, {j, z, possesses the velocities: 

vr=-Ur; V,~=ll(t.r); vz==+2Uz. 

where U is a constant. This field satisfies the equation of continuity. As u has been 
assumed to be independent of z. the only vorticity component is: 

_ 1 à (llr) 
yz- -;: ... _~ .. 

When the pressure is taken equal t~: 
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this process represents the fundamental mechanical cause which controls 
the dissipation of energy in turbulent motion. 

It will be evident th at T AYLOR' s result, connected as it is with the laws 
governing vortex motion, is a typical effect due to the presence of terms 
of the second degree in the hydrodynamical equations. Notwithstanding 
the difference in geometrical character, the model system in this respect 
shows a similar behaviour: a1so here there are present terms of the second 
degree, which bring about the tendency to produce steep fronts, and these 
are the loci of high values of the gradient du/ay and consequently of 
intensive dissipation. 

6. Conclusive remaJrk. -- The results of the preceding discussion, taken 
together with the investigations of the previous paper, can be summarized 
by saying that the model system in a simplified way possesses the 
essential features which are governing the energetica! relations of the 
hydrodynamical system. It would appear therefore th at a further investiga~ 
ti on of the statistical character of the solutions of eqs. (1). in particular 
in the case where the domain of the coordinate y is bounded and where 
boundary conditions are applied to the variables v and w, certainly wil! 
be worth while; should it have success, then it is to be expected that it 

will bring out features which will be helpful in the analysis of some of 
the still existing riddles of turbulent Huid motion. 

the equations of motion for the directions rand z are satisfied. We write cr =, UI'; 

then the equation for the -a.~direction takes the farm: 

%i=~: U r ~~ + y (~2r~ -~ -~;} 
It must be expected that the solution of this equation asymptotically win approach 

to a form in which cr is a function of r only. This function then must satisfy the equation: 

y ~~ .+ ( Ur - -~ ) -~~ = O. 

The soJution appropriate to our case is: cr ,= C ( l--e- r" UI2"), where 2nC represents 
the strength (circulation) of the vortex . We then obtain for the vorticity: 

y= çg e-r2UI2". 
y 

The dissipation. calculated per unit of height in the z~direction. is found to have the val'lle: 

00 

,u.r 2n ry2 dr= ne C2 U. 

o 

It is interesting to observe that here again -- the same as in the case of the discon
tinuities of the model system (see J. M. BURGERS. l.c. pp. 26. 43) - the dissipation. is 
given by an expression which is independent of the viscosity, and which is of the thl:d 
degree with respect to the veJocity components of the motion (v r = -UI'; IJ (~ = U c.co Clr 
outside of the vortex proper). 

Mathematics. - Bin Satz über assoziierte Geraden im R4' Von 
R. WEITZENBÖCK. 

(Communicated at the meeting of December 30. 1939.) 

Zu je vier Geraden allgemeiner Lage im R4 lässt sich auf lineare 
Weise eine fünfte Gerade konstruieren. was zu der bekannten Figur von 
fünf assoziierten Geraden führt. 

leh beweise hier zweierlei. Erstens. dass fünf assoziierte Geraden 
allgemeiner Lage nicht Erzeugende derselben Quadrik F

2 
im R4 sein 

können und zweitens. dass die fünfte Gerade der Ort der Kegelspitzen 
ist für alle dreidimensionalen Kegel zweiter Ordnung. die die vier ersten 
Geraden enthalten. 

§ 1. Die assoziierte Gerade. 

Sind 1. 2. 3 und 4: vier Geraden im R4 mit den Koordinaten 

so ist 

(XS;2) =---= (xa 2 a2) = 4.2: XI a23 a4S =---= 0 

die Gleichung des R3' der 1 und 2 verbindet. Die drei Räume S;2. S;3 
und S;l schneiden sich in einer Geraden 4*. die mit 4 verbunden den 
Raum 4' liefert. Dann gehen die vier Räume 1'. 2'. 3' und 4' dnrch 
dieselbe Gerade; die assoziierte zn 1, 2. 3. 4. Ihre Gleichung lautet. wenn 

G --. (n3 a2) -- 0 G -_. (n3 0 2) _.- 0 1 ~. -", 2 --- A- ~ t. + + 

die Gleichungen der vier Geraden 1. 2, 3 nnd 1: sind I); 

Gs =: ~:. + ~~ + ~: +- ~! == o. 

Die Invarianten Ai sind hier die vier unabhängigen 
Geraden 1 bis 4 und gegeben durch: 

Al =--= (m S;3) (m S;2) 

A 2 := (a S;3) (a S;4) 

A3 = (a S;3) (a S~4) 

A4 = (p S;4) (p S;l) 

(1) 

Invarianten der 

(2) 

Die Bezeichnung ist hier so gewählt. dass in (1) alle Glieder das 

1) Vgl. Proc. Kon. Ned. Akad. v. Wetenseh .. Amsterdam, 42. 248 (1939). 




