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wo C eine positive, nur von der Wahl des Quaders £ abhingige
Konstante bedeutet.

Also auch: die Menge N/ (x) sdmtlicher Punkte A in £, fiir die bei
irgend einem Gitterpunkt X der Hoéhe x =1 aus 9t und irgend einem
Gitterpunkt Y aus R, die sémtlichen Ungleichungen (3) gelten, hat das
dussere Mass

MO ()= 2 m 2+ 1) =11 27 K (x) fffl%(x) 4 C Masx(py () + - ., ()]

»

n
=m.3mrn, xm=1K(x) g, (x) +m.37.C.x" ' Max(p,(x),..., ¢n(x)).

p=1
Wegen der Konvergenz der Reihen (2) konvergiert also die Reihe
S (%),
x=1

so dass fast alle A aus O hochstens einer endlichen Anzahl der Mengen
P (x) angehdren. Q.e.d.

Mathematics., — Tauberian theorems for Cesaro~-summability of double
series, By H. D, KroosTeErMAN, (Communicated by Prof. W.
VAN DER WOUDE.)

(Communicated at the meeting of January 27, 1940.)

In two papers (to appear shortly in the “Journal of the London Mathe-
matical Society’ and the “Mathematische Zeitschrift”) I have given a
new method of proof for Tauberian theorems for Cesaro-summability. This
method depends on some formulae, which appear to be new and which
belong to the theory of finite differences. The Tauberian theorems for
Cesaro-summability are immediate consequences of these formulae, and the
proofs of these theorems thus obtained are considerably simpler than the
proofs already known. Now in a paper entitled “Limitierungs-Umkehrsétze
fiir Doppelfolgen”, Math, Zeitschr. 45 (1939), p. 573589, K. Knopp
has proved Tauberian theorems for double series. However his theorem
on Cesaro~summability treats summability of the first order only. The
object of the present paper is to show, that the method used in my two
papers mentioned above, also gives proofs of Tauberian theorems on double
series for Cesaro~summability of any order.

The following notations will be used. Let

[¢o]

23171,72‘...‘.....(1)

m,n=1

be a double series with real terms, We write
—1, 1) __ o
S(m,n )= am,n (m,n_1,2,.'.)

and if ¢ and r are integers = —1:

m n
(t+L,ry (£, 1) (¢, r+l) (¢, 1) —
Smyn  — 2 Su,n v Smn 2 Sm,v (m,n—wl,z,...).
=1

r=1

If ¢t and r are non-negative, the double series (1) is called summable
(C; ¢t r), if the double limit

S(t,r)
lim - L S ¢4

m, 1= <m+t’—1 (fl—)l—l”—l)
t ) r

exists. Summability (C; 0, 0) is identical with convergence, If the limit (2)
is s, the series (1) is said to be summable (C; ¢, r) to the sum s. It can be
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easily proved (as in the case of single series), that convergence implies
summability (C: ¢ ¢), if £ and » are = 0 ("'theorem of consistency”).

For any function u, , of the two positive integral variables m and n
(which are written as lower indices) let

Dlz Um,n — Um+h,n—UWm,n and Ak Wm,n ™= m,n+k ~— Um,n

be the differences of u, , with respect to the first and second variable
respectively, if A and k are positive integers. If however —h and —k are
negative integers, we write

Dmh Umn=—Um,n—— Um-h,n and A—wk Um,n=—Um,n~— Um, n—k (h<m§ k<”>'

The higher differences are defined in the usual way, Thus, if ¢ and r are
positive integers and A >0, k> 0:

t t
t t—-1
Dh Um,n=— Dh (Dh llm,n) = 2 (_1)T ( . ) Um+(t—r) R, n»
=0

r r
/_\; Um, n== Ak (AI’; lum,n> = 2 (_1)9 (Q > Um, n4(r—o) k

=0
and

t r f r
t o1 N T+
Dy Netuma= 2 3 (—1)+ ( T) ( ) Ut (t—e) b, ntr—oyk + + (3)

T=0 =0 N
Also, if — h and —Fk are negative integers:

t t
Dt—ll um,n:D—h (l)f—ﬁh1 llm,n) = 2 (_I)T ( . ) Um—rh,n s

=0

AI‘ e r—1 . r.y 0 r

Ak Umyn == A»f—k (A—k Um, n) = ZO (““‘1) 0 Um,n—ok
o=

and

Dt A’" . t r ho t r ‘
—h LAk Wmyn — > 2 (”‘1) - 0 Um—rh,n—ek « + -+ (4)

=0 o0=0 T

Clearly the symbols D and A are commutative.
Lemma 1. If m, n, h, k, t, v are positive integers, then

D/z&/csm Il;”‘h krsm f1+k 21 (h w1 ) 2 ht‘ _1DhA Snﬂ—lwrn l)"{"

o=1

+ 3 <c—x+1>DhN L A4 h' .>J (c~%+1> 2 K AV

#=1"

—2
{where rZ means 0, if r==1),
=0
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Proof. If m, n, w, » are positive integers, we have

(0,0 . {0,0) 1)
5m+o» n+tx 4Sm+/» n + 2 Smlm n+a -
Summing over » from | to k, we get
©,1 ©,0) x
Ak S/rf+w,/1 =k Sm,+m,n + 2 ( ——%’“{‘ )Sm+w ntroe e e (5)
z=1
Now summing over @ from 1 to h, we get

D, Ak Sm n =k Dy Sm n + .Z ( —%+1)Dlz Sm n- Fze e e (6)
We have also

©,0) 0.0
Smi+wn T Smn -+ 2: m—U IZ

Summing over o from 1 to h, we get

Dy Sm n—— h31(7)10n + Z (h“”w+1)5m M) P V4

m=1

If we substitute this result in (6), we get

DlekSm n——hk r?zor)z + k Z (h w+1)sm—m n+ Z (k“‘%1 )D/z Sg{,;ﬁz

m==]

and thus the lemma is proved in the special case fe=r=—1.
We now apply induction with respect to £, in order to prove the lemma
in the case r = 1. Suppose that for some integer £ = 1 the formula

i—1
D;z Ak Snt11r)z = h k Sm n + k Z ( —w + 1) 2 ht—T_I Dh Sg;z:lmon ']L 2
m=1 T=0
. . (8)
+ X (k—x -+ 1) Dj s,,i",;L,S

Z=1

is already proved. We then replace m by m -+ ) and sum over 1 from 1
to h. We then get: '

l+l (t+1,1)
Ak Sm no = h k Dh Snz n -+

h (9)
+k S (h—w+1) 2 R DY S, z( —x+1) D SRS

== 1 z=1
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Hence, substituting (7) in (9):

DL A st = A ks k3 (o ) A st

w=1

+k z‘ (h—w + 1) 2 R Dy s 4 2 (k—n+4-1) DT slarps!) =

w=1 z=1

t
ht“k mn+k24( “Q)ﬁ—]) 2 h fTDhst‘;zHlﬂ(;l_

o=1 =0

st -1

-+ 24 (k“”+ I)IDZ‘+1 mynr

Thus the induction from ¢ to ¢ -+ 1 is achieved and therefore (8) is proved
for all integral values = 1 of ¢. This is the special case r ==1 of the state-
ment of the lemma."We now apply induction with respect to r, in order to
prove the lemma for all integral r = 1. We then replace n by n -+ 1 and

sum over A from 1 to k. Then it follows, that
Dh AR S =R Ak s

FE S (hwa>+1) 3 R DY ALSETL 4 (10)

w=1 =0

+ 3 <k~%+1>DhAks;zz+i’+h >k —%+1)2k’ AR sui e

x=1 x==1

We now substitute (5) (with w=0) in (10) and then get:
Dh Ar+1 rfz 714 ”—-h kr+1 (’(7)1011

+k Z’(h——w +1). 2 R DY AE s - Z(k—nJrl)DhAk st i) -

n=1 x=1

k r—1
LR Y (x4 1) 3 KNG sl
%=1 =0

Thus the induction from r to r + 1 is achieved and lemma 1 is completely

proved.
Lemma 2. If m, n, h, k., t, r are positive integers and m>th, n>rk,

then

h—1
L g t—r— — 1, r—1
DLy AT st =Rk s —k 3 (h—w—1) z R DLy AL S

=0

— Z(k—»%wl)DihL\i}l PR B z' (k—2—1) S e PN siel)

#%=0 ' =0 =0
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r—2
(where 3 means 0, if r=1),
=0
Proof. Starting from the formulae

k—
©,1) (0,—t
A—k Sm—w,n == =k Sm w n Z (k—H‘“l) Sm o))nw
%—=0
and
— (0,0)
D—h m n — = hSm,n 2 (h w"‘“l) Sm»—w n

=0

instead of (5) and (7), the proof is very much like the proof of lemma
1 and it may therefore be left to the reader,
Lemma 3. Suppose, that the inequalities

S <f . §n§l°)< T (53

are valid for all positive integers m and n. Here K is a positive constant,
independant of m and nThen if hz1, k=1, r=0, t=0 are integers,
we have

Dj, Ak S(ntz'n V< Klli , Di Ak s < Kﬁkf . (12)
If, in addition m > th and n>rk, then
¥ (¢, r—1 h k r (t=1,7) ht kr
Mh AL k Sm n < K—';E ' A kS m n < Kf;l—:jfuf; . (13)

Proof. If t=r==0 the first inequality (12) is true, since it then is
identical with the first inequality {11). Suppose it to be true for r==0 and
some integer £ = 0. Then

Dh““1<K— Coe L (19)

If we replace m by m -+ « and sum over @ from 1 to A, we get

= . ht t+1
DI st = 3 Dhslilla < K 3 =g
n=1 [
Therefore, by induction, the inequality (14) is true for any integer ¢ = 0.
Again, suppose, that the first inequality (12) is true for all integers £ =0
and some integer r = 0. Then, replacing n by n + x and summing over x
from 1 to k, we get
k . Rt kr Bt Jor+
Dh A slih= 3 Dy A <k 3 MF g .

%=1 =1 n—}—% n
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Thus the first inequality (12) is proved by induction. The second inequality
(12) and the inequalities (13) can be proved in the same way.

Theorem 1. Let the double series (1) be summable (C:t r) to the
sum s, where t and r are positive integers. Then if

o-n _ K
S, n L n ’ Sm n <’*

for all positive integers m, n, where K is a positive constant, independant
of m and n. then the double series is convergent with the sum s.
Proof. Tet first s==0. Then it follows from

(¢, r)

lim Sm, n —"
m,n—» w mt—1 n -+ r—1
)
that also
Sﬂtz rrl .

lim

ot
m,n-+ o M

nf
Therefore, ¢ being a positive number, we have

‘s(,f{,r,ﬂ<emlnf M=N(@E, n=NE).. . . . (15

Now let & and k be positive integers, such that
m n

From (3), (15) and (16) it follows that

‘Dlekgm )1<324 Z( )(Z) (m+1‘h)f(n+rk)’

=0 o0—0

) r tN/r . ) / (17)
<2t minre Z X ) ):zzmzzmtnzg
=0 0=0 T 0
(m=N,n=N)
In the same way (4) and (15) give

t o) Lo [t |
D!, A__ksmn‘”_mtnrgz’ > (9 =2trmtnre . (18)

=0 o=0 \ 7T

Using the inequality (17) and lemma 3 it now follows from lemma [, that
formz= N, nzN:

It f— T F—1
Rk 51(7)191) — 24 2rminTe—k 2 h 2 Ri=1 K- ht k,_, +
m==] =0
k tfr—1 k -2 o
--Zk’Kbr—kuw — ht Z’kZ’k’—@“l,Kk—,
#=1 n r=1  0=0 n
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Hence

1 for trt
hit1 Krh kT

m n

0, 0)
Rk s90 > — 2242 it pr g K¢

(m=N,n=N). (19)

We now choose

h::[a’*ltm]—kl , k::[s‘*i’n]—[—l. .o . (20

Then, if m and n are sufficiently large (m = N,, n = N,) we have h =2,
k=2 and

L L x 1

tm<<h=2e'm |, etrn<k=2¢"n
Also, if ¢ is sufficiently small, the conditions (16) are satisfied and it now
follows from (19), that

RS 1 1
S(,,O{,?l)>“—22t+2"82~“2[(f84t——2[(t’84r (m=N, nZ=N,).

Therefore, since ¢ is arbitra‘ry, if 5 is a given positive number, we have

S > — 1 (mM=N,(n), n=N@). . . . (21)

In the same way, using the inequality (18) and lemma 3, it follows
from lemma 2, that for m=2N, n=2N (then m—ht>4im>N and
n—kr>%4n=N) we have

SIS Bkt

Bk SO < 2 minre kS b 3 et g PR
=0 =0 m—w—1th
t for—1
i ): k. K~—h LA 2 k 2 ) L
—(r—1)k = n—x—ok

Hence
. t+1 t Lr
A R a+21<f5‘---—5- +2Kr ’i{‘li (m=2N, n=2N).

With the same choice (20) of A and k, we find

1 1 1
S << 20T e2 4 4Kt 44K e <y (mEN;(n); nZ=Ns(p) . (22)

since ¢ is arbitrary.
From (21) and (22) it now follows, that

. (0,0
lim sy =0,
m, n—>w

which proves theorem 1, if s =0,
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If 540, we replace the term a;; of the double series (1) by a;; —s.
Then st must be replaced by

1) (er—F—I) <n+r—l>
Smn— § ¢
) t r

(if t20, r 20). Therefore the modified series is summable to sum 0. Since
s‘,%;ll) remains unaltered, if n>>1 and s-10 remains unaltered, if m > 1,
we can apply the result just proved to the modified series. Therefore the
modified double series converges to 0 and the original double series is
convergent with sum s.

Theorem 2. Let the double series (1) be summable (C:t r) to the

sum s, where t and r are positive integers. Then if

am,n<;;. """"" *(23)

for all positive integers m, n, where K is a positive constant, independant
of m and n, then the double series is convergent with the sum s.

Proof. 1t is sufficient to prove, that (23) implies (11) with some K.
Now we have

mo— 1 m d
sma) = 3 s Z‘ au,n < K 2 77777 <K 3 ""éigi —

u=1 u=1 /12 "}‘ n? =1 X

and in the same way:

10)<

This proves theorem 2.
Finely it may be remarked, that theorem 1 and theorem 2 remain valid,
if the conditions (11) and (23) are replaced by

K - K
Sm n > =TT S(m,l;l()) > — r;
and
K
amn 2
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respectively. These theorems are also true for double series with complex
coefficients, if the conditions (11) and (23) are replaced by

I,?f,;‘|< ,lmnf<
and
K
amn‘< *I“T‘l

respectively. In order to prove this, it is sufficient, to apply the theorems
already proved to the series of the real and imaginary parts.

1%5*






