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ensuite de (78). par dérivation. et en posant a=(3=-t.le développement 

qui fournit. par application de la transformation de HANKEL de noyau 

Jo (2 V~) CV v-i. l' équation intégrale analogue à celle de MITRA. et 
trouvée par A. ERDÉLYI 35). (Ces équations intégrales sont des cas parti~ 
culi ers de (22). et leur déduction précédente rentre dans la remarque 
faite au sujet de la formule (78)). 

Remarquons. pour terminer. que (18) et (78) donnent lieu aux déve~ 

loppements 

(80) 

(avec les mêmes hk dans les coefficients I). et 

V -) [-T,1 h' L(I1-1) ( ) H 211 ( V = L, k 2k 2 v (80') 
k=O 

L'application de la transformation de HANKEL à (80) (ainsi qu'à la 
relation que l' on en déduit par dérivation) ou à (80') conduira à des 
équations intégrales démontrées également par MITRA. et MEIJER 36), et 
formant des cas particuliers de (22). 

Budapest, Ie 12 février. 1940. 

35) ERDÉLYI. [2]. 

36) MITRA, Math. Zeitschr. 43. 205-211 (1938); C. S. MEIJER. Proc. Kon. Ned. 
Akad. v. Wetenseh .• Amsterdam, 41. 744--755 (1938). 

Mathematics. - On the thermo~hydrodynamics of perfectly perfect 
fluids. ). By D. VAN DANTZIG. (Communicated by Prof. J. A. 
SCHOUTEN). 

(Communicated at the meeting of February 24, 1940.) 

Summary. 

The equations of motion of a perfectly perfect (in particular of a 
re1ativistically perfect) fluid are brought into a general invariant form, 
independent of metrical geometry (§ 1). They are shown to be derivable 
from a simple variational principle. It states that thc integral of the 
pressure over an arbitrary fourdimensional domain in space time. under 
a deformation "dragging along" (cf. § 1) the chemical parameters J,r 
and the temperature vector {),h. hence also the congruence of macrosco~ 
pic wordlines, is equal to Ö x 4 times the virtual heat of the deformation, 
flowing through the boundary into U (§ 2). In § 3 some other variational 
relations are derived. In § 4 aresuit due to EISEN HART and used by 
SYNGE is obtained by metrical specialisation from a one dimensional 
variational principle. 

§ 1. The equations of motion. 
The equations of motion of continuously distributed matter are 

according to EINSTEIN 1) 
\7, CJf- 0 2) VJ "'-',z- t • (1) 

where V j is the symbol for covariant derivation, whereas for a relati~ 
vistically perfect fluid 3) 

c,rh. _ ft!l. _L c:: h . 
""-'.z- J1-.1 T- 'V,lt • 

S~~\ = - (e + lJ) ih ii + lJ A7. 4) 5) 6) 
h -- h· 

6. i = V -g (Fhk Fik -tA i F jk Fik) 

(2) 

(3) 

(4) 

1) E. g. A. EINSTEIN, [1], in particular § 17. 19, 20. The numbers between square 
brackets refer to the bibliography at the end of the paper. 

2) The suffixès h, i. j, k, I run independently through the range 1, 2. 3,4. corresponding 
with the space-time coordinates xh; 1:'. s. t run through the range 5, ... , 4 + n, correspon
ding with the n chemieal components Tr; x,?c, Ik, v through the range 1.2,3, ... ,4 + n, 
and A. B, C through the range O. 1. 2, ... , 4 + n. 

3) The rem ark that (3) is valid for a perfect fluid in adiabatic motion only, was made 
by EINSTEIN [1] already; it seems to have been neglected by several later autors. 

1) In order to avoid superfluous factors V - g (g = det gij)' e itself instead of e V=~g 
stands for the proper energy density. All densities except e, eo, e are denoted by Gothic 
letters. 

5) A~1 is the unit-tensor of space-time: A7 = g: ~;:. The unit-tensors ,;1;, E~, !i.~ 
play the same rale as A~1 with regard to their respective ranges. 

6) /1 = d:/sh 
is a unit-vector along the macroscopie worldlines, /1 ilz = + I. i4 > O. 



388 

Usually ~~i is called the material part and 6\ the electromagnetic 

part of the total tensordensity ';it~i of stress, momenturn, and energy. 
According to MAXWELL' s equations 

\7 c:;:j - F k 
VjV.i-- ik5 

where 511 is the electric current~density. Hence (1) becomes 

vj~!i-Fik5k. 

(5) 

(6) 

In order to bring our nota ti ons in accordance with previous papers 7) 

we add to ~~i the potential momentum and energy of the matter with 
respect to the electromagnetic field, which is 5h epi. In fact, let the 
substance be a mixture of n different components, in relative equilibrium 
with each other, so that they all have the same velocity. Further let 
m r and er be the mass and charge of one particle (molecule, ion, 

electron, etc.) of the rth component, N~ v the number of particles 8) of 

the rth component in a volume~element d V, m~ the corresponding 

particle~current, so that N~v =clf m~ dm h 9), dm i being the components 

of d VlO), and fi the potential momentum and energy of each particle 

of the rth component. Then 5lz = m~ er, 6 = er epi. Hence the total 
potential momentum and energy in d V with respect to the field is 

N d V fr _ m h dm r - ;;oh dm r i - :J~r ;.olz· e epi - );) ;.oh· epi. 

The total stress~tensor of the matter is therefore 

1+5\ =df ~~i + m~ {! = ~~i + 5lz 
epi. 

whereas the remaining part is 

';itlz._mh. - 6 lz '_5h . .1 -1-'.1-.1 epI' 

(7) 

(8) 

If the mixture is neutral, the second term in the right members of (7) 

and (8) vanishes. 
Introducing (7) into (6) we obtain 

v j l+5!i = m~ Vi {j, (9) 

where we used MAXWELL's equations in the form 

Fik = 2 V[i epk] =df Vi epk-V k epi, V j Flzj V - g = 5h
, wh en ce V j 5j =0. 

7) D. VAN DANTZIG, [2]. [3]. [4]. referred to as Ph. Th., R. Th., and R. G. respectively. 

8) lf we wish to avoid any molecular model. we may read N~ V as the number of 

gm. mol. of the l'th component. contained in d V. and 1J'c~: as the corresponding current

density. Then ;/. r/. nr. fr. mr. er also haVe to be reckoned pro gm. mol. instead of 

pro molecule. N.B. Summation convention. for l'. s also. 
9) By =df and df= we denote an equality defining its left and its I'ight member 

respectively. 
10) Cf. Ph. Th. p. 684. 
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Equation (9) remains valid if other than electromagnetic forces work upon the 
matter, provided they are derivable from a vector potential, which is the 
same for all particles of each component of the mixture, and if we take 

for ([ the sum of er epi and this vector potential. 
According to (3), (7) the mixture is what I called a "perfectly perfect 

fluid" 11), the stress~tensor and particle~densities having the form 12) 

mlz _uh Ah 
1-'. i = 'ij .pi + .p i, 

m h _uh 
:J~r =.pr·U' , • 

(10) 

(11 ) 

where {}h = ih {}o = cihjk To 13) is the "temperature~vector", To being the 
proper temperature and k BOL TZMANNs constant, whereas 6) 

.pi =- c- I k To (e +.p) ii +.pr {[. (12) 

According to Ph. Th. p. 697, R. Th. p. 604, generalised for a 
mixture of n components . .p can for constant xh (i.e. in each given point 
of space~time) be considered as a function of n + 4 independent variables 
{}h and Jer with 

èl.p 
.ps = èlJes' 

_ èl.p 
.pi -- èl{}i . (13) 

If the dependance upon the coordinates is taken into account also, .p depends 
upon them: 1°. through the {}h and Jer, 2°. through the fr, which enter into.p 

in the combination Jer + fJ {}j only, 3°. through the gij. If the curvature is 

negligible and no direction in empty space is given, .p will have the 
form 14) 

We suppose ep to be a function of its n + 1 arguments alone (which 

11) Ph. Th. p. 686; R. Th. p. 602. 
12) A very thorough discussion of the relativistic stress-tensor on an axiomatic base was 

given by J. L. SYNGE. [1]. 1 find however some difficulty in accepting SYNGE's hypothesis 
of "elementary impulses" . For either the "gas" consisting of these elementary impulses 
would behave in a way entirely different from any other gas with respect to its thermo
dynamic properties. or otherwise it could. like a photon-gas. be considered like one of 
the components of our mixture, admitted the alterations mentioned in R. G. § 10. In that 
case however it would be difficult to see. how the elementary impulses could have any 
appreciabIe influence. except at very high temperatures. In any case the complete inde
penden ce of the interaction between molecules and the temperature would be hard to 
account for. 

13) In order to avoid factors c in the general (non-metrical) part of the theory. where 
they have nothing to do. we may take with respect to orthogonal coordinates x 1 = t 
(instead of x 1 = ct). g44 = c2• gH = c--2• etc. This leads to some unusual factors c. but 
makes comparison with the non-metrical as weil as the classical theory easier. This system 
of notations was introduced by DE DONDER [1]. 

14) Cf. e.g. for an ideal gas R. G. (51). 

Proc. Kon. Ned. Akad. v. Wetensch .• Amsterdam. Vol. XLIII, 1940. 26 
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themse1ves are functions of Xh) and not to dep end up on the xh explicitly. 
Then, putting q/=df àCPlàija, cpr=df d cp/à À/, 

tJr = CPr V -g, 

tJi = (CPr f{ + cp' ii) V -g, 
dtl ---_. 

'l" -{j,j cp V-g - m] - - r - ;J~r, 

dff 
(15) 

d:j = tJ gij + t cp' V -g . iji ijj/fJo' 

Denoting by o~ the operator àlàxi under constant {jh and .V, and by 
di the complete operator d/àxi, so that 

:4 0 - :4. (:4. ,Uh) ~ _ (:4 . • V)-~ Ui -df Ul - Ul"U" (j ijh Ul d.V' . ( 16) 

a short calculation shows that (9) is equivalent with 

(17) 

In this equation the metrical quantities do not occur anymore. Though 
its terms themselves are not invariant under arbitrary transformations 
of coordinates in space~time, the equation (17) is invariant as a whoIe, 

1l3\ having the form (10). At the other hand it can be shown that it is 

also necessary that 1l3\ has the form (10), i.e. th at the fluid is perfectly 

perfect, in order that (17) be invariant. as long as the operator d~ is 
defined by (16). We may therefore consider (17) as the equations of 
motion of an arbitrary perfectly perfect fluid, independent of metrical 
geometry. 

From here: on, except when the contrary is stated, all equations are 
independent of any special assumption concerning the re1ation between 
energy and momentum. Hence they are independent of the axioms of 
relativity theory and also of metrical geometry. 

Inserting (10) and (16) into (17) we obtain 

Both sides of this equation are invariant quantities. 
The differential equations 

dxh 
dij = ijh (x) . 

(18) 

(19) 

define a one~parametric group over a part of space~time. lts infinitesimal 
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transformation is determined by d xh -df d 8 ij", d 8 being an infini~ 

tesimal increasement of the parameter 8. lts LIE~symbol is :iJ =df i}i di. 

The infinitesimal transformation transforms any scalar function { into 
{ + d {Id 8. The corresponding invariant operator working up on a general 
geometrie object X: (where the big points stand for rows of indices) 

was first defined by SLEBODZINSKI 15). It will be called the LIE-derivative 

and denoted by ~~. It is defined as follows. The components of 

X: + dL X: in a point (with respect to the system of coordinates under 
consideration) are the components of the value, X: takes in a point 
x" + dxh = xh + ij" d 8 with respect to the system of coordinates. 
obtained by "dragging along" the originaI coordinates along dxh. i.e. by 
ascribing to each point yh as new coordinates y'" the originaI coordi
nates of the point from which it was obtained by the infinitesimal 

transformation : y'" = y" - ij" (y) d 8, By th is definition ~~ becomes an 

invariant operator. Applied to a scalar f we get ~1 = ~~. Applied to 

a scalar density (or W~density J6)) tJ of weight + 1. to a contravariant 
vector vh and to a covariant vector Wi we obtain 17) 

dL tJ _ :4 ]. _ dtJ . 
d8 -- Uj tJ ij .- dB + tJ dj ij] . (20) 18) 

dL vh . . dvh . -- = {jl dj vh - vl d . {j,h = - - v] d . ijh 
d8 1 d8 ], (21) 19) 

dLWi 2ij';:' :4' dWi . -afT = ] U[j Wij + Ui ijl W j = d8 + W j di ijl. (22) 

Evidently 

(23) 

15) W. SLEBODZI~SKI [IJ. Cf. also J. A. SCHOUTEN and E. R. VAN KAMPEN [IJ, 
D. VAN DANTZIG [5J; J. A. SCHOUTEN and D. J. STRUIK [IJ, p. 142. 

16) W-densities are quantities which under transformations of coordinates are multiplied 
by a power of the absolute value of the transformation-modulus. They were introduced 
by H. WEYL, e. g. [IJ p. 98. Cf. also J. A. SCHOUTEN [IJ, J. A. SCHOUTEN and D. 
VAN DANTZIG [1]. 

17) Cf. J. A. SCHOUTEN and E. R. VAN KAMPEN, loc. cit., p. 4. 

18) A differential operator (e. g. Vj' a j' {~-, etc.) works upon all following quantities 

untill either a c10sing bracket belonging to an opening bracket preceding the operator, or 
a +, - or = sign, or the end of the formula is met. The symbol for a differential, a 
variation or an element (e. g. d, 0, d) belongs to the immediately following symbol alone. 

19) Introducing the Lie-symbols XI =df ~~ =df 1~j a j and X 2 =df v j a j, we have 
do 

(~* v
j
) a j = (XI, X 2), where the right member is the Ol'dinary Lm-bracket. 

~6* 
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Applied to a covariant vectordensity (or vector~ W,density):pi of weight 
+ 1 we obtain 

(24) 

whieh is the left side of (18). Hence we have proved: 
Theorem 1. The equations of motion (17) are equivalent with the 

system of equations 

d~ _ :P o·)f df) -- r I 

§ 2. Derivation from a variational principle. 

(25) 

In this paragraph we show that the equations of motion (17) for a 
perfectly perfect fluid can be derived from a simple variational principle. 

Let U be a part of space~time, bounded by a differentiable threedi~ 
mensional manifold B. The lat ter is provided with an exterior orientation 20), 

viz the direction outwal'd from U. An element of U will be denoted by 
d U, its fourdimensional volume (as measured by the coordinates under 
consideration) by d U; an element of B by dB or d V; its components by 
dlE i or d~i. Let further acontravariant vectorfield zh = zh (Xi) be 
defined in U, the components of which have continuous first derivatives 
with respect to the Xi, 

In order to determine easily the variations of several quantities it is 
useful to introduce the LIE~variation bL with respect to the equations 

dL 
dxhf djh = Zh (x) in the same way as dL= d f) de was defined with 

respect to (19). 

The variation of an integral W =df J ~ d U under the infinitesimal 

u 
transformation b =df ~ xf 0 j =df b jh . zf 0 i is th en 

b W= OL W=J(OL~) du=~f(Of ~ Oxf) dU=.f~ oxf dIEf, (26) 

u u B 

as by definition OL d U = 0, the new element d U being obtained by 
"dragging along" the original element. It is of course trivia! that 0 W 
reduces to a boundary integral as the variation consists of a displacement 
alone. 

20) An exterior orientation of a simplex .E is an orientation for each simplex of com
plementary dimension having exactly one point in common with .E; .E itself need not be 
oriented. Cf. O. VEBLEN and J. H. C. WHITEHEAD [IJ, p. 56, and J. A. SCHOUTEN 

and D. VAN DANTZIG [1]. 
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N ow we take in particular ~ =df :P =:P (x lz , {}h, ,V). In U a congruence 
of curves is defined, viz the macroscopie wordlines of the motion, 

satisfying the equations (17). We now define the operator o~, working 
upon a quantity X: =df X: (x h, {}h, }.r), depending up on {}h and }.r. by 
requiring that not only the coordinates, but also the values of {}h and }.r 

shall be "dragged along". More precise!y: X: + b~ X: shall be the 
components with respect to the coordinates mentioned above of 
X:(/xh,l{}h,IJ,r), where Ixh=xh+oXh. whereas I{}h and I}.r are 
defined by requiring o~ {}h = 0, o~}.r = 0. Hence 

.,0 X·, X' oX:., h oX: 
UL • =df OL • -. -~- UL{} - -- OL}.r 

Of)JI OÀr' . 

In partieular 

IJ~:p= OL:P-:Pi oL'Di-:Pr 0L}.r= ( 

= o:p + :P 0 ~ 0 xf - :P i IJ {}i + :P i {}i Of 0 xi - t'r 0 . .J.r = 
= 0° :P + 113: i Of 0 xi, 

. ° ° . where 0° =df IJ Xl Of, Of being defined by (16). 
Hence 

07.J:p dU=.J(Oxi o~:p + lj3!i Of OXi) dU= 
u u 

= J~~~\ oxi dlEh + J'ox i (o~ :P-Oi lj3!i) dU. 
B u 

Hence we have proved: 

(27) 

(28) 

(29) 

Theol'em 2. The system of equations of motion (17) 
with the variational principle 

is equivalent 

o~J:p d U =.J ptB 
oxi 

• (30) 21) 
U B 

fol' any part U of space~time and any continuously ditferentiable val'iap 
tion 0 Xi, and also with the val'Îational principle 

for any part U of space~time and any continuously ditferentiable 22) 

variation 0 Xi, vanishing at the boundary B of U. 

21) prB 
=df d 'iS h \,p~i is the amount of energy and momentum contained in or flowing 

through the element d B. Analogously N~ V, S d V, etc. Cf. Ph. Th. p. 684. 

22) These conditions will not be mentioned explicitly further on. 
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This theorem seems to be sufficiently remarkable, to restate it in more 
explicite and intuitive terms. Let Iu [:p] be the integral of the pressure 
:p over a fourdimensional domain U in space time. A small deforma~ 
ti on x h ~ 1 xh =df xh + 0 xh deforms U into a new domain I U. Moreover 
the congruence of macroscopie worldlines in U is deformed into another 
congruence in I U. If the parameter e, defined by {}h (x) = d xh j de, is 
kept constant, the vectorfield {}h (x) passes into a new vectorfield 
l{}h(/X)=df {}h(x)+d(oxh)jde, whieh differs from {}h(/X)=1'th(X)+o{}h 
by dL ° xh. Leaving the values of ,1/ unaltered, i.e. taking I Jer ('x) =df Jer (x) = 
= Jer (' xl - 0 Je r, the variation of the pressure integral is the difference of 
the integral of l:p =df :p(/{}h(/X), (/Jer(/x), 'Xh) over 'U and the original 
integral over U. This variation 0° I = I/u [/:p] - Iu [:p] is according to 
Theorem 2 (if the coordinates are such that x 4 may be interpreted as 
the time) equal to 0 x 1 times the virtual heat belonging to the defor~ 
mation, flowing through te boundary into U, if and only if the equations 
of motion are satisfied. 

§ 3. Other variational relations. 

The variational principle (30) can be brought into another form. 
Therefore let So be a part of a threedimensional manifold in space~time, 
whieh has at most one point in common with any (macroscopie) WOrldF 
line, and whieh nowhere is tangent to such a worldline 22), and let 0 0 
be its twodimensional boundary. The threedimensional manifold So wiU 
be defined as the locus of all points x whieh have a difference of 
"thermasy" with So equal to e, i.e. such that the worldline through x 
intersects Sa in a point Xo and that the integral 

x J de =,[ kT d t J c- l kTa ds (32) 

Xo 

taken along the worldline through x is equal to e. Let U be the locus 
of all So for 0 -=.:: e -=.:: el' lts boundary consists of Sa' Se, and the locus 
BI of the parts of all worldlines through 0 0 between Sa and SD" 

We suppose U to be divided into elements d U of the same nature 
as U itself, i.e. bounded by parts of two hypersurfaces So and SH dO 

and by 00 2 parts of worldlines passing through the boundary of an 
element d V of So. Then 

(33) 

and 

(34) 
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or 

(35) 

if Ua is the part of space~time bounded by B' and Sa, So. 
Now let a deformation ° Xh of Sa in itself be given, so that 

oxidmi=O. (36) 

for any element d mi of Sa and let oxh vanish at the boundary 0 0 of Sa. 
Let every element d mi of So as weil as the displacement ° Xh be 
"dragged along" by the transformation dL, so that 

(37) 23) 

and dL dm i = O. Then (36) remains valid for every element of every Sa. 
Moreover 0 Xh = 0 on BI. 

By (29) and (37) we have then ot:p - OL:P -:Pr OL Ir, henee 

(38) 

henee, using (37) again, 

(39) 

By (26) and the boundary conditions however 

(40) 

The right member of (30) need also be extended over So and So, only, 
so that we have proved: 

Thearem 3. The equatians of motion (17) are equivalent with the 
variational principle 

(41) 

far every variation 0 Xi of each So in itself, vanishing at the baundary 
of each Se, and dragged along by dL. 

23) According to 19) this condition means simply that the deformation OL and the trans
formation dL are interchangeable. 
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A varia ti on of this type leaves the congruence of macroscopical world~ 
lines invariant. IE we assume each displaced tube of worldlines to be 
fllled up with the same amount of matter of each kind as the original 

one, we have oN~v = O. Then, putting 

· (42) 

(41) becomes equivalent with 

· (43) 

This variational principle shows a great analogy with that of ordinary 
point mechanics, viz 

t, 

o J L dt= [pi àxi]~~. · (44) 
to 

Prom (33) and (28) we obtain by Ph. Th. (58), (60) for an arbitrary 
variation à Xh : 

0, 

= J'd8 Jd~h{}h(OLtJ-tJràL,V-tJiàL{}i)= 
o So 

e, 

J' d fJ J(àL ZdV _N~V OL À
r 

- ptV OL {}i --3h bL d~h), 
o Se 

hence 

e, 

ooJ'tJ d U = J d fJ J (àL SdV + Àr bL N~v + {}i àL ptV _tJ{}h OL d~h). (45) 
u 0 So 

According to (30) this must vanish for every variation à xh vanishing 
at the boundary of U. The integrand of (45) is the quantity which 
would have to vanish if the operator OL were replaced by a variation 15 

of the variables {}h and Àr alone, without change of the point Xh 

(Cf. Ph. Th. (57)). 

397 

Hence we have proved: 
Theorem 4. The equations of motion (17) are satisfied if and only if 

(46) 

for every variation 0 Xh vanishing at the boundary of U. 
EVidently the last term in the integrand of (46) only deRnes àL d~i. 

Deforming d ~i simply by "dragging along", we get OL d ~i = 0, and 
this term vanishes. 

The right member of (30) becomes 

(47) . 

where dDhj are the components of an element of the boundary 0 0 of So 
with appropriate exterior orientation. Hence, if oxh vanishes at the 
boundary of each Se (though not necessarily over So and SOl themse1ves) 
and if oLd~i=O, we obtain, equating the right members of (45) and (17): 

0, J d fJ J (OL SdV + Àr OL N~V + {}i OL ptV - :fJ ptV OXi) = O. 

o So 

Differentiating with respect to fJ, and replacing 8, by 8 we get 

J(OSdV + Àr oN~v +{}i optV -àxi d~ ptv)=O. (48) 

So 

wh ere the invariant LIE~variation OL has been replaced by the uninvariant 
variation 0 again. 

§ 4. Variational principles of Fermat's type. 

Let us suppose now that the Huid moves in such a way, that a function 
cp = cp (xh) exists, such that 

· (19) 

Then the equations of motion (25) become: 

dL ::. 
d f) tJi = q Ui cp. · (50) 

Transvection with {}i shows that the density 

· (51) 
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is a constant of the motion : 

(52) 

Moreover variation of the integral 

(53) 

with 01J=0 at the boundaries, gives by (50), (51): 

0, 0, 

Ol = J eP 0 cp dIJ = Jo xi dL a-I :p i· (54) 

00 eo 

Hence, if the variation is performed by "dragging along" 1}h (which is 
equivalent with the condition that ox" is dragged along by the operator 
dd, i.e. OL 1)" = - dLoxhjd IJ = 0, then the integration in the last member 
of (54) can be carried out by using (52) and we obtain: 

Theorem 5 238). If (49) is satisfied throughout the [luid, then 

a =df e-P:pi1}i 

is a constant of the motion and 

8, 0, 

o J er dIJ = 0 Ja-l:Pi dxi = [a-I:pi oxi]~~ 
00 80 

for any variation oxh with OL {)h = 0 24). 

Corollary: If the [luid is homogeneous and if 

throughout the motion. then 
0, 

ai 1] = o. 

o J J"ti dxi = [J"ti oxi]~~ .. 
80 

(55) 

(56) 

(57) 

Pro of : By hypothesis n = 1. We drop the suffix rand write :p' for 
o:pjal. Then (56) is equivalent with 

ai Je = - ai J"tj {)i = - J"tj 1}l ai log (-J"tj (}i). 

23a) The theorem remains va lid if to the right member of (49) a term of the form 

- Y Pi is added and if the fhst statement is replaced by "a ef- y 
dO is a constant of the 

motion", a being defined by (SI). If to the right members of (50) and (52) a term Y Pi 
and Y a respectively is added, the demonstration remains valid. 

24) In that case the values of f) can be kept constant during the deformation, so th at 
o fJ vanishes identically, and th at (54) is valid. 
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:Pr ai Jer =:p' (\ Je = - q Oi log (-J"ti (}i) 

so that (49) is satisfied with eP = - TC 1 1}i. Substitution in to (52) leads 
immediately to the proof of the corollary. EVidently (52) holds with 
a = _:p', i.e. the condition (56) implies th at the equation of continuity 
(cf. § 5 (68)) is satisfied. The equation of continuity, however, is not 
suf fkient in order that (56) be satisfied. 

As a particular case let us introduce metric again and assume that an 
equation of state of the form (14) exists with n = 1 (homogeneous 
relativistic fluid) and fi = O. Then (49) becomes 

(58) 

with 

and 

Hence we have also 

A relation u ai v = Oi w, however, implies that wand u are functions 
of v alone and th at u = dwjdv. 

As :p', e and 1}o are always :/::. 0 (even> 0). cp - log 1}o and then also 
:p' e 1}o = - :Pi 1}i = - q = e +:p (cf. (3) and (10)). hence also e is a 
function of :p alone 25) and we have 

(59) 

Or also, introducing the "index~function" 26) F=df er/{}o, whence 

log F=df - J :p~~i =J e ~ :p' (60) 

the integral (53) becomes by (49): 

(61) 

25) This means that the quantities Cl etc. depend upon the coordinates xh through p 

alone, i.e. that 0 Cl = ~~ ij P for aU variations ij of the form ij =cc ij xl () j, but of course not 

for arbitrary variations. Relations of this type with respect to the spatial coordinates alone 
are caJled by BjERKNES barotropic relations. Cf. V. BjERKNES [1] p. 85. 

26) Cf. J. L. SYNGE [2] p. 391. 
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Moreover a-I beeomes 

whenee 

dF 
a-I = er q--I = - Ffj,o (e + p)-I = - {jo -, 

dp 

a-I Pi = (a 19'0)-1 P j {jj ii = F ii. 

Henee we have proved, the argument being reversibJe: 

(62) 

Theorem 6. If a homogeneous [luid has an equation of state of the 
form (14) and moves in such a way, that e is a function of P alone, 
k T o (dF/dp)-1 is a constant of the motion and 

(63) 

(where F is given by (60), whereas Fi =df F ii) for any variation 
satisfying the conditions of Theorem 5. 

The variational principle (63), was found in 1924 al ready by L. P. 
EISENHART 27) by a method based on the geometry of paths. It was 
proved in a different way and diseussed further by J. L. SVNGE [2J p. 
393. We obtained it here as a metrical specialisation of (54). 

Finally we apply theorem 5 to a volume, filled wuh black radiation, 
which ean be considered as a homogeneous fluid with À = 0 and 
q = Pi {ji = - 4p (cf. R.G. § 10). Then (49) is automatically satisfied 
with cp = 0, so that I simply becomes 

It is of importance to note that the proper mass of a volume filled 
with radiation (being greater than the sum of the proper masses of the 
photons, which is zero) is always positive, viz 3 p dm/c2• Therefore the 
average velocity of black radiation is always < c (e.g. = 0 if the 
radiation is enclosed in a box at rest). Hence d s * 0, so that ih , To' 

etc. remain fini te. Of course this does not apply to _ a single beam of 
light, which is a limiting case with p = Pi {ji = O. Moreover (14) is 

satisJ1ed with À = O. Hence F = {jOl = k To• Finally we rem ark that 
by theorem 5 a = q, hence p, hence To is a constant of the motion, so 
that we have proved 

Theorem 7: Black radiation moves always according to the variational 
principle 

8, 

o [de = - t [p-l Pi OXi]OI 00 

'--

(64) 

00 

27) Cf, L. P. EISENHART [IJ p. 214-216. 
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which becomes by metrical specialisation, T o being constant along the 
rays, 

(65) 

Hence the "stream~lines" of black radiation are geodesics. 
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Anatomy. - The cytology of the cortex in the opossum (Didelphys 
virginiana) considered in. relation to some general problems of 
cortical evolution. By W. RIESE and G. E. SMYTH 1). (Communicated 
by Prof. C. U. ARIËNS KAPPERS.) 

(Communicated at the meeting of February 24, 1940.) 

In the extensive literature devoted to the comparative anatomy of the 
cerebral cortex it would appear that in the cytotectonic descriptions toa 
little attention is payed to the differentiation of the constituent cells them
selves. So the corticallamination of the opossum has been carefully studied 
by GRAY (1924); the excitabIe areas of the cortex of this anima I by GRAY 
and TURNER (1924) and the origin and course of the pyramidal tracts by 
TURNER (1924). N evertheless little or no information is available on the 
structural differentiation of the cells in the several cortical laminae and in 
representative cortical areas. 

In the present paper we shall deal with some cellular differentiations in 
the cortex of the opossum as an addition to our recent observations on the 
cellular structure of the thalamus and corpus striatum and other subcortical 
centers of th is primitive mam mal 2) . 

In consequence of the lack of systematic phylogenetic studies of cellular 
differentiation in mammals no absolute standard exists whereby the degree 
of differentiation of nerve cells may be tested. In these observations the 
criteria adopted are based on ontogenetic studies, in particular on the 
conclusions arrived at by RI·ESE (1939) from investigations on the 
development of the bra in of the bear (Ursus arctos ). They"are in close 
agreement with some earlier observations on the development of cortical 
cells in pig and rabbit embryos reported by PATON (1900). 

Realizing the fundamental difference between embryonic and adult cell 
structures, also in lower mamma Is, the comparisons established in this 
paper are only meant to indicate certain analogies. With this reservation 
the criteria of structural differentiation may be summarized as follows: 

1. The amount of cytoplasm, particularly in relation to the bulk of the 
nucleus, and the sharpness of demarcation between cytoplasm and the 
surrounding substances. The more primitive the cel!, the more poorly 
demarcated seems the cell outline. The bulk of the cytoplasm relative to 
that of the nucleus tends to increasEl with the progressive evolution of 
the cello 

1) From the Laboratoire de Physiologie générale de la Sorbonne et Laboratoire 
d'Ethologie des Animaux Sauvages au Muséum National d'Histoire Naturelle. 

2) These observations will be communicated soon. 




