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Summary. 

With the interferometric method of quartz LUMMER plate crossed with a 
quartz spectrograph the ZEEMAN~effect of the thorium lines has been 
investigated. A number of 50 energy levels of the doubly ionized atom 
Th. III have been detected. A list of classified Th. III lines is given. The 
structure of the Th. UI spectrum is not analogous to Ra. I but to Ce. IlL 
The g~values have been compared. 

Laboratory "Physica" of the University of Amsterdam. 

April, 1940. 

Mathematics. - Self~projective point~sets. By Dr. O. BOTTEMA. (Com~ 
municated by Prof. W. VAN DER WOUDE). 

(Communicated at the meeting of April 27, 1940.) 

1. If we con si der in n~dimensional space Sn a set of (n + 2) points 
(no n + 1 of which belong to a Sn-1) taken in a given order, there al~ 
ways exists a non~singular collineation, which interchanges the points of 
the set in a given way. This is a consequence of the well~known fact 
that a collineation is determined by giving (n + 2) pairs of conjugated 
points. The theorem does not hold for a set of (n + 3) points (no n + 1 
of which belong to a Sn--1) taken in a given order and which may be 
called a throw (dutch: worp). If we exclude the case n = 1 (the four points 
th en being permutable according to the Vierel'gruppe) there does not 
generally exist a collineation, differing from identity, so th at the set, 
taken as a whoIe, is not altered. The question arises to constructpanalogous 
with harmonie and equi~anharmonic sets in the case n= l~throws which 
are invariant for certain finite collineation groups, thus showing "pro~ 

jective symmetry" whieh the general throw lacks. 
For n = 2 and n = 3 the question was completely solved by BARRAU 1). 

Answering a prize~question of the Wiskundig Genootschap for the year 
1938 following BARRAU' s line of thought I gave additional remarks to 
the general theory. 

In the following by a new method a complete solution Is given. 

2. As invariants for the throw Al' A 2 • ••• An+3, BARRAU takes the 
set of homogeneous coordinates (a); a2 ; ••• an+l) of the point An+3 wuh 
regard to a system where thc first (n + 1) points are fundamental points 
and An+2 is the unit~point. The classes of projective throws are thus 
represented by the points of an Sn. By the (n + 3) I permutations of the 
(n 3) points of the throw. the invariants ai are transformed in a well~ 
defined way and take, for n> 1, in general (n + 3) I values. In the Sn 
au involution of degree (n + 3! is created. The coinciding points of the 
involution represent the self~projective throws. 

The method here given is based on thc wel1~known fact, that the 
(n + 3) points of a throw in Sn always lie on a rational normal curve 
Cn of degree n; the curve is uniquely determined by the points. If t is 
the rational parameter on Cn• the points of the throw can be given by 

1) BARRAU, Proc. Kon. Akad. v. Wetenseh., Amsterdam 39, 955-961 (1936); 40, 
150~155 (1937). 
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a set of (n + 3) values of t. We suppose that t = ti corresponds with 
the point Ai, If (p q r s) stands for the anharmonic ratio 

(s-q)(r-p) 
(r-q)(s-p)' 

we consider the set of n non~homogeneous values 

(i=1.2, ... n) 

According to their geometrical meaning the Pi are invariants for the 
projective group in Sn. They are a complete set of invariants for the 
throw: two throws which have the same set of Pi are projective. This 
follows immediately from the following theorems: 

1°. All the en in Sn are projective. 
20. A en is invariant for a group of 00 3 collineations in Sn, which 

corresponds with the group of Jinear transformations of the rational 
parameter. 

It can easily be shown, that the Pi notwithstanding their different 
origin are not essentially unlike BARRAU' s invariants. If AI' A2' ..• An+1 
are taken as fundamental points for the system of coordinates, a en which 
passes through these points has the equations 

(i= 1. 2, ... n+ 1), 

wh ere Bi are constants and P (t) stands for 

(t-t1)(t-t2) .... (t-tn+I)' 

If the curve moreover passes through the points An+2 and An+3' the 
corresponding parameter~values being tn+2 and tn+3, the coordinates of 
these points are respectively 

xi =Bi (P(tn~L) (i= L 2, ... n+ 1) 
tn+2- ti 

and 

(i = 1, 2, ... n + 1) 

If we take An+2 as unit~point the homogeneous coordinates of An+3. 
being the BARRAU~invariants ai of the set, are obviously 

xi P (tn+3) tn+2 - ti 
a·----~- --~-

I - xi - P (tn+2)' tn+3- ti' 

or 

wh ere Q is a constant. 

We have therefore 
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ai 
Pi=-~, 

an+1 

the new invariants thus being shown to be the ratios of BARRAU's. 

3. If we have a self~projective throw in Sn, there exists a group of 
collineations which interchanges the separate points, leaving the throw 
as a whole invariant. The collineations then leaveinvariant also the 
rational norm al curve en which passes through the (n + 3) points and 
therefore belang to the group of 00 3 collineations having that property. 
The latter group is isomorphic with the group of linear transformations 
in one variabIe. Therefore the finite group of collineations which leaves 
the throw invariant is isomorphic with a group of linear transformations 
for the rational parameter tand can be produced by the Jatter. 

Thus in order to find a se1f~projective throw, we must consider a set 
of parameter~values ti (i = 1, 2, ... n + 3), which has the property that 
there exists a group of linear transformations of t by which the set as 
a whole is not altered. Now our investigation is highly facilitated by 
the fact, that the theory of Iinear groups in one variabIe was developed 
a long time ago. As KLEIN has pointed out, there are no other groups 
but the cyclic groups (of order kj, the dihedron groups (of order 2 kj, 
the tetrahedron group (of order 12), the octahedron group (of order 21) 
and the icosahedron group (of order 60). In consequence of this we 
shall not proceed by summing up the possible self~projective throws for 
a given value of n, but we start from a given group and construct the 
point~sets which are invariant for this group. For this construction we 
can make use of the idea of Diskontinuitätsbereich as defined by KLEIN. 

The points of the complex t~plane by means of a stereographic projec
tion can be represented by the points of a sphere the rotations of which 
correspond with the linear transformations of t. Finite groups of these 
transformations correspond with groups of rotations belonging to regular 
polyhedra inscribed in the sphere. The symmetry-planes of these polyhedra 
divide the surface of the sphere in a number of regions. A point of the 
sphere, submitted to the rotations of a group of order Z', generates a 
set of points the number of which is r (respectively a factor of r) if the 
original point belongs to one region (respectively to two or more regions). 

4. First considering the cyclic groups and choosing t= 0 and t= 00 

as fixed points, the group is given by 

t' = 10k t (,,=0,1, ... k-I), 

2ni 

where Bk stands for e k • From an arbitrary point (not coinciding with 
a fixed point) arises a set of k points, which is invariant for the cyclic 
group. Thus a point~set which remains unaltered by the group c~sists 
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of mk, mk -+ 1 or mk -+ 2 points, wh ere m?:: ° stands for an integer. 

As t~values of the points of the set we can take ai" Ek (ft = 1, 2, .•. m ; 
v=O,l, ... k-l) to which are added 0,1 or 2 of the points t=O 
and t = 00. The numbers a,u can be chosen arbitrarily with the exception 
of the points of the set having to be different. 

It is possible that the sets thus obtained are invariant for a wider 
group of transformations than the cyclic group. If k = 2, m = 1 or 
m - 2, we have sets of four points, which are invariant for the Vierer~ 
gruppe mentioned above; if k is arbitrary, m = 1, the sets containing k 
or Ic -+ 2 points are invariant tor a dihedron group of order 2 Ic. 

5. 

group 

The dihedron group ean be generated by adding to 

t' = Ek t the transformation t' =!. It contains besides 
t 

v 

the cyclic 

the cyclic 

group the transformations t' = ~r whose second powers are the unity~ 

transformation. They interchange the points t = ° and t = 00. If an 
arbitrary point is submitted to the transformations of the group, it 
generates a set of 2 Ic points, which is invariant for the group. This number 

is reduced to k if the original point is chosen in one of the points t = Ek, and 
to 2 if the point is chosen in t = ° or t = 00 • 

Thus a point~set which is invariant for a dihedron group of order 
2 k consists of 

m . 2 Ic -+ mI . k -+ m2 . 2 

points; here m is an integer ?:: 0, mI is ° or 1, m2 is ° or 1. 
It is possible that the point~sets sa obtained are invariant for a wider 

group than the dihedron one. So for Ic = 4, m = 0, mI = 1, mz = 1, we 
have a set of six points (t = 1, i, - 1, - i, 0, (0) which is the stereo~ 

graphic projection of an octahedron and accordingly is not altered by 
the octahedron group. 

6. The t~values of a point~set which is the stereographic projection 
of a tetrahedron, an octahedron or an icosahedron and the formulae for 
the linear transformation groups which belong to them, are not given 
here. They can o,g. be found in KLEIN's classical monography I). 

As for the tetrahedron group, it is of order 12. An arbitrary point, 
submitted to the group, generates a set of 12 points, the t~values of 
which ean be written down by means of KLEIN'S formulae. The number 
decreases to 6, if the original point is taken on the boundary of two 
Diskontinuitätsbereiche; the six points eorrespond to the middles of 
the edges of the tetrahedron and have the octahedron symmetry. The 

~) KLEIN, Vorlesungen über das Ikosaeder. Leipzig (1884). 
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number decreases to 4, if the original point is taken on the boundaries 
of three regions, the points being the vertices of a tetrahedron (whieh 
can be chosen in exactly two ways); they correspond with four values 
of t which have an equianharmonic ratio. 

A point~set which is invariant for the tetrahedron group thus consists of 

12m-+ 6ml-+ 4m2 

points, where m is an integer ? 0, mI = ° or 1, m2 = 0, 1 or 2. In 
the case m = m2 = 0, mI = 1, the set has the symmetry of the octahe~ 

dron group. 
The octahedron group is of order 24. An arbitrary point in duces a 

set of 24 points, invariant for the group. Choosing the original point in 
a particular way, there arise sets of respectively 12, 8 and 6 points, 
each having one and but one representative. 

A point~set which is invariant for the octahedron group therefore 
consists of 

points, where m is an integer ? 0, mI is ° or 1, m2 is ° or 1, m3 is ° 
or 1. 

The icosahedron group has thc order 60. An arbitrary point generates 
an invariant set of 60 points. There are three particular sets, which 
eontain respectively 30, 20 and 12 points. Aeeordingly a point~set, in~ 

variant for the group consists of 

points; m is an integer?:: 0, mJo mz and m3 are eaeh seperately 0 or 1. 

7. Making use of these results, we are able to construct in Sn, where 
n has an arbitrary vaule, all the sets (containing a finite number of points 
r?:: n -+ 3), which are invariant for a group of projective transformations. 
For the present we leave the value of n out of account and investigate 
the sets of rvalues of t. which are as a whole invariant for the linear 
groups of t~transformations mentioned above. This being done and t" 
(v = 1, 2, ... r) being sueh a set, we distribute these values over a rational 
normal curve en in Sn, e.g. the curve with the parameter~equations 

(ft = 0, 1, •.. nl. 

Thus we obtain the throws in Sn, which are self~projeetive. In what 
follows we confine ourselves to r = n + 3, this case being the starting~ 
point of our investigation. 



596 

8. If n = 2, we must have throws of 5 points. Considering the linear 
groups, we have the: following possibilities: 

Cyclic groups. 

m = 1, k = 4; tI = 1, t2 = i, t3 = - i, t4 = - 1, ts = O. The points of 
the throw are: AI (1, 1, 1, 1), A 2 (1, i, - 1, - i), A3 --- (1, - i, -1, i), 
A4 -- (1, - 1, 1, - 1), As - (1, 0, 0, 0). The throw is invariant for a 
cyclic group of 4 collineations, which permutates the points according 
to the cycle (AI A 2 A3 A 4), m=l, k=2; tl=al> t2 =-al' 13=ab 
t4=-a2' ts=O (al*O, a2*0, ai*a~); A I ---(1,al,ai, ai), A 2----:(1, 

- al' ai, - aD, A3 -(1, a2> a~, a~), A4 ---- (1, a2' a~, - a~), As:- (1. 0, 0, 0). 

The throw is invariant for a group of order 2, the points being permutated 
according (AI Az) (A 3 A 4) As· 

Oihedron groups. 
k = 3, m = 0, mI = 1, m2 = 1; tI = 133' t2 = 13;, t3 = 1, t4 = 0, ts = 00; 

A I --= (1. 13,102, 1), A 2 = (1, 132,13, 1), A3 --- (1, 1, 1, 1), A4 - - (1, 0, 0, 0). 
As - - (0, 0, 0, 1) (13 = 133)' The throw is invariant for a dihedron group of 
order 6, the generating permutations being (AI A 2 A 3 ) A4 As and 
AI (A2 A 3) (A 4 As). k = 5, m = 0, mI = 1, m2 = 0; tI = es, t2 = 10;, 
t3 = e~, t4 = E~, ts = 1; A I ___ (1,13,10 2, 103), A 2 -- (1, e2 , é, el, A3 (1. 103 , e. 104). 

A4 --~ (1, 104, e3
, e2), As - (1, 1, 1, 1), (e = es). The throw is invariant for a 

dihedron group of order 10; two generating permutations are (AI A2A3A4 As) 
and AI (A 2 As) (A 3 A 4), 

For n = 2 the other groups are obviously not possible. The results 
obtained here agree with those of BARRAU. 

9. In the following we omit the statement of the coordinates, these 
being easily calculated by a substitution of the t~values in the equations 
of the norm al curve. 

If n = 3, the throw containing 6 points, we have the following cases. 

Cyclic groups. 
m= 1, k=5; tI =e5' t2=e~, t3=e~, t4=ë~, ts = 1, t6 =0. Thethrow 

is invariant for a cyclic group of order 5, a generating permutation 
being (Al A 2 A3 A4 As) A6' 

IE we consider the case m = 2, k = 3. we find tI = al 103' tz = allO;, 

t 3 = al' t4 = a2 103 , t5 = a2 e;, t6 = a2' But we can always give a linear 

transformation of t, viz. t* = (_1_)'/2 t, so that tI = P 103' tz = p e;, t3=p. 
ala2 

e3 e; 1 1 
t 4 = -, ts = -- t6 = -, which shows that the set is invariant for t' =-

p p P t 
and thus has dihedron symmetry. 

m=3, k=2; tI =al' tZ=-al' t3=a2, t4=-az, tS =a3, t6 =-a3' 
The throw is invariant for a cyclic group of order 2, consisting of unity 
and the permutation (Al A 2) (A3 A 4) (A5 A 6). 

) 
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Oihedron groups. 

1 -1 
k= 2, m = 1, mI = 0, m2= 1; tI = a, t2=-- a, t3 =-, t4=-, t5 =0, 

a a 

t6 = c/:!. The throw is invariant for a dihedron group of order 4, the 
permutations being: (Al A 2) (A 3 A4)(AsA6)' (AI A 3) (Az A 4) (A 5 A 6), (Al A 4) 

(A 2 A 3) (As A 6) and unity. 

k = 3, m = 1, mI = 0, m2 = 0; tI = a, t2 = a ê3, t3 = at;, t4 = l_, t5 =!2.. , 
a a 

e2 

t6 =~. The throw is invariant for a dihedron group of order 6, the 
a 

permutations being (AI A 2 A 3) (A 4 As A 6), (AI A3 A 2 ) (A 4 A6 As). (Al A 4) 

(Az A 6) (A 3 As). (AI As) (A 2 A 4) (A 3 A 6), (Al A 6) (A2 As) (A3 A 4) and unity. 
k = 6, m = 0, mI = 1, m2 = 0; tI = 106' tz = e~, t3 = E~, t4 = e~, ts = e~, 

t6 = 1. The throw is invariant for a dihedron group of order 12; 
generating permutations being (AI A 2 A3 A4 As A 6) and Al A4 (A 2 A 6) 
(A 3 A 5 ), 

In th is space we have a throw belonging to the octahedron group, 
viz. m=ml =m2=0, m3=1. We have: tl=l, t2=i, t3=-I, 
t4 = - i, ts = 0, t6 = 00. The order of the substitution group is 24. The 
results obtained here for n = 3 agree with those of BARRAU. 

10. We proceed by giving the self~projective throws in S4' A throw 
now must contain seven points. 

Cyclic groups. 

m= 1, k = 6, tI = ë6. t2 = ê~, t3 = ë~, t4 = ë:, ts =e~, t6 = 1, t7= O. The 

throw is invariant for a cyclic group of order 6, generated by (Al A 2 A3 
A4 As A 6) A7' 

m=2,k=3;tl =al ë3,t2 =al e;, t3 =al. t4=a2 e3' t5 =a2 e;. t6=a3. 
t7 = O. The throw is invariant for a cyclic group of order 3. generated 
by (AI A 2 A 3) (A 4 As A 6) A7 

m =--= 3. k = 2; tI = al. t2 = - al. t3 = a2. t4 = - a2' ts = a3. t6 = - a3' 
t7 = O. The throw is invariant for a group of order 2. consisting of 
(AI A 2) (A 3 A 4) (As A 6) A7 and unity. 

Oihedron groups. 

k = 5. m = a. mI = 1. m2 = 1; tI = es. t2 = e;. t3 = e~, t4 = ë~, ts = 1. 
t6 = 0, t7 = c/:!. The throw is invariant for a dihedron group of order la. 
generated by (AI A 2 A3 A4 A 5) A6 A7 and Al (A2 A 4) (A3 As) (A 6 A 7). 

k = 7. m = O. mI = 1. m2 = 0; tI = 107. t2 = e~ • ... t6 = E~. t7 = 1. The 

throw is invariant for a dihedron group of order 14, generated by (AI 
A 2 A3 A4 As A6 A 7) and AI (A2 A 7) (A3 A 6) (A 4 A 5), 

In this space obviously no other self~projective throws are p01jfible. 
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11. As for the self~projective throws in Sn for general value of n, 
each case must be considered for it self. Indeed the solution depends 
on the arithmetic properties of the number n. Meanwhile same general 
remarks can be made. In Sn a throw consists of n + 3 points. If Cl is 
a factor of n --j-o. 2 (which may be the numb~r n + 2 itself) there clearly 
always exists a throw, which is invariant for a cyclic group of order Cl' 

H C2 is a factor of n + 3 or of n + 1, there always exists a throw, in~ 
variant for a dihedron group of order 2 C2' In S5 (more generally : for 
n = 1, 5, 7, 9, 11 (mad. 12)) we have throws which are invariant for a 
tetrahedron group. In 8 s (more generally: for n=3, 5, 9,11, 15,17, 
21, 23 (mod. 24)), we have throws with the symmetry of the octahedron 
group. The case of a throw, which is invariant for the icosahedron 
group first occurs in 8 9 (and generally for n = 9, 17, 27, 29, 39, 47, 
57. 59 (mod. 60)). 

Mathematics. - Uebec eine Erweiterung det' LAPLACE~ Trans[ormation. 
(Erste Mitteilung). Van C. S. MEIJER. (Communicated by Prof. 
J. G. VAN DER CORPUT). 

(Communicated at the meeting of April 27, 1940.) 
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