Physics. — On the buckling of a thin-walled circular tube loaded by
pure bending. 1. By C. B. BIEZENO and ]. ]J. KocH.

(Communicated at the meeting of June 29, 1940.)

1. Introduction. If a thin-walled circular tube in his end-sections is
loaded by two equal and opposite bending moments M, it may be
stated that its cross section alters its circular shape into an oval one,
owing to the fact, that, apart from the normal bending stresses in the
cross section of the tube, there arise tangential bending-stresses in its
meridional sections. A closer examination of the fact learns, that the

1 5
curvature ry of the “axis” of the tube does not increase proportionally

with the loading moment M.

If “a” be the radius of the tube, h its thickness, E the -elasticity-
modulus of the material and » the reciprocal value of POISSON's coef-
ficient, the following relation between M and ¢ exists:

1 3 at
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the graphical representation of which is shown qualitatively in fig. 1.

It is seen from this figure that there exists a critical value M, it of

M M, characterized by the fact, that no

increase of M occurs, if 1/g increases.

------- Hence a break-down of the tube isto
be expected.

The phenomenon here described has

McRir. been studied at great length by

BRAZIER').

In the present paper quite another

"—(%JCRlT.;—’l Tf’ phenomeflon 1s studied, which occurs

for certain critical values of M, and is

Fig. 1. characterized by the simultaneous ap-

pearance of longitudinal and circum-

ferential waves in the cylindrical shape of the tube. We assume, that,

— if unloaded —, the tube possesses such initial curvature, that under

the action of the buckling moment it is straight, and — in cross-section —

circular and of constant thickness h. Hereby our buckling problem relates to

1) Comp. BRAZIER, Aeronautical Research Committee, Reports and Memoranda
No. 1081, M 49.
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a straight circular tube, loaded at his ends by linear changing bending
stresses. _

Preliminary we shall have to solve some detail-questions (sections 2—6).
In section 2 the formulae for the displacements and stresses of a cylin-
drical tube, submitted to prescribed radial, tangential and axial stresses,
R, @ and Z are reproduced. In section 3 a system of particular loads
B is defined and calculated, which plays a fundamental role in our
proper buckling problem. The loads B will be called “‘elementary normal
loads”, the corresponding deformations, ‘“‘elementary normal deformations”.
Section 4 deals with the differential equations of the buckling problem ;
more particularly it is shown that the differential equations for the
displacements obtained in section 2 may be looked upon as the required
buckling-equations, provided that R, @ and Z be replaced by adequate
“would-be” forces. The so-obtained differential equations are homogeneous
and linear in the displacements and therefore only admit solutions
(different from zero) for special values of the loading moment M—=uM
(M=unit of bending moment). The values u, for which buckling of the
tube is possible, will be called the ‘‘total characteristic values” of our
problem, the corresponding deformations T of the tube *total normal
deformations’’. Section 5 bears on the development of the ‘total normal
deformations’’ into a series of the ‘“elementary normal deformations”.
Finally it is shown in section 6, how by iteration the smallest characte-
ristic value u can approximately be calculated.

2. The cylindrical circular tube of constant thickness under a prescribed
load-system. As shown in fig. 2 the position of an arbitrary point of

\
\
:
|
]

1

/
/
/
__

Fig. 2.
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the middle-surface of the tube is given by its “cylinder”-coordinates a,
@, and 2. The radial, tangential and axial displacements of such a point
are called u, v, w; the components of the external load of the tube
with reference to the unit of surface, and taken in radial, tangential and
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axial direction are designed by R, @, and Z. Fig. 3 shows the nomen-
clature of the so-called “internal’” forces and moments, all of which

refer to the unit of length of their corresponding section.

Fig. 3.

If, for abbreviation, we put

0 g BR,
A=ni—n B=1= (”—_)

and for later purposes

the equations for u, v, w may be written as follows:

1 /u 1 A* /1 0% 2 0%

:(; ? )+ at 6(p‘+a2 6(p2622+6z +
20 , u 3—v v 11—y Pw 1 w R
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10u 1% , 1—»d%  14» 3w L A/ 3—v %
a? 6<p+a2 2+ 2 622+ 2a 6¢Oz+ B ( 2a? 6<p622+
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a 0z 2a Op 0z

1 3%z | 1—v Q®w Z
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(1)

(1)

(2)

The internal forces and moments can be calculated from u, v, w, by

the relations (3):



786

A* (02 1
=5 e
) A° 1aw (1— ) 1 dw
k¢z_ 2a% (acpaz abtp T ( +?($
(l—v)A' ) 0%u 1 0w
= dp 0z az @)
1—v)A' 0%u ov (1—) B [0v ow
be =0 (ot a) Y (et y)
A% du v v  Ow
ke = 3622+B( _+;a—qy+bz)
_ asf v Ol 2u vy 1 0w
g =ik ( R az)
A P
Tey =""9 0p0z ' Oz

We see at once, that for the special loads

R = apq cos pyp sin 4 %

D = by, sin pp sin 1 %

Z=0

)

(3)

~ where p and q design arbitrary positive, integer numbers and 1

stands for

(I being the length of the cylinder) —

of the following type

nqa

1:1

o g
U = upq cos pyp sin 1 —
a

. . 5 2

v = vpq sin pp sin A o

Z
W = wpq cOS py cos A o

)

the equations (2) admit solutions

(6)

Upg, vpg and wp, representing functions of p and q, which are to be
calculated from the equations (7)
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[1 4 k(p* +2p? 22 + 2*—2p* + l)lupq-l—[

+ [—”}- +k ( > p?i—1 )] Wpg = %2 apq
] 3—» 2 2 1 2
p 2 upg+ | p* + + 3k) 2 | vpg —

e a?
T2 plwpg = B bpg

{-n-yk( p?i— l’)] sy — l‘;”pxu,,q+
+[“ 1?<1+k)p2]wpq:o

(It may be noted, that for all solutions (7), the displacements u and v
are zero for z—0 and z—=—1I whereas w is different from zero at the
ends of the cylinder). We restrict ourselves to solving up, and vy, and
find, under the essential condition, that the thickness h of the tube be
small enough to neglect all terms which contain the parameter k (comp. 1*)
in higher than the first degree

:I"pq’F

7

Upg = apq apg + Bpq bpq?

(8)
vpg = Ppg apg + 7pq bpqs
apq, fpg and ypg standing for:
_ (T a*, ( (T3) a?
ape=( = ; Bog =— Py =] @+ » 9
pPq (N pq pq pq — N qu
T,, T,, T5, N themselves standing for:
T\=0+kp*+[22+2(0—) 22k p>+ (1 4 3k) #*
=p[1+k@2+1)]p*+(+2)4>+2k2Y]
T, = kp? (pP—1p + k22 2 *+[1+ kit ot
2 2 2 (10
¥ %v_)klz .’ k:l P+ 2(1 49 2+ T k(12729
N=kp* + k [442—2] pb + k [61—2 (4—) 22 - 1] p* + k [4 25—

— 61+ 2 (2—) 12] p? + (1—»2) At + kAS—2vAS k+ (4—3 ) A1 k.

3. The “elementary normal loads” B, and the corresponding “‘elemen-
tary normal deformations” D. As ‘‘elementary normal loads” B and
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corresponding ‘‘elementary normal deformations” D we define such
loads Rpg Ppg (comp. 2,4) and such corresponding displacements upg,
vpg, for which

=P —, ... o))

Upq Upq

Condition (1) is identical with the requirement, that the equations

apg = @ (apg @pg + Ppq bpq)g (wapg—1) apg + @ fpg bpg =0 2
or :
bpg = @ (Bpg apg + 7pq bpq) @ Bpg apg + (0 ypg—1) bpg =10
admit solutions apq, bpg different from zero. (Comp. 2, 8 and 2, 4).
Therefore the equation
wapg—1 ®fpq
=0 5 « s o v os (3
@ fpq @ ypg—1
has to be satisfied by w. The two (real) roots of this equation are:
1/w*
pq
resp. apq+ypq:tV(¢> e T )|
1o},

The corresponding loads and displacements — which of course are
definite except for a factor of proportionality x — may readily be cal-

culated from the equations (3).
With:

* — _ %%q—Vpg Apg—7Ypq ®pg—7pq Apg—7pgq
Ere == +V( 2650 ) 1 B == V( 25re )

F;q = Qpg _2,_ Ypg + V(apq;}’pq)z + ﬂqu. qu = Qpq + Ypq V(apq;?’ﬂ)z_*_ ﬂf)q 5)

Goo=Ejo Fia: Gy, =E;, By,

pPq™ pPe

they can be written as follows:

R‘:x’cosptpsinlé R“:n“cosptpsin}.—z
*=x"E’ si sin 1= " =" E** sinpo sin A —
- pq i prp st a - pPq Pe a
, i (6)
u'=x"F, cospzpsinl: ut =x"F cosptpsinl:
v =x" G*, sinpo sin A — v =™ G* sinp o sin A —
- pPq p? a - pq by a
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the first solution obviously belonging to ®*, the second one to ™.
To get rid of the undeterminate factors »* and #™ we standardize our
solutions by the condition of standardization

I 2=xn

ff u* R*+v* &*)ad pdz— —resp Jf (u™* R*4v™ d"*)adtpdz——( )

and find hereby:
x__ 1 1

S ———————F e R
I/qu +E, G I/qu +E; Gy

Henceforth the expression ‘elementary normal function” will be used
in the same sense as ‘‘standardized elementary normal function”, so that
from now the elementary normal loads and deformations will be repre-
sented by the egs. (6) and (8).

In the following sections we shall have to deal with systems of
elementary normal functions, belonging to a fixed value of the second
affix gq. In such case this affix will be suppressed. It can easily be
proved, that, under this understanding, the following so-called ‘“‘ortho-
gonality"-relations exist between the functions (6):

fJ [R} u] + D} vi] adpdz=0
k+1

] f[R-;: u’;* _|_ ¢7: v:;*] ad«pdz:O k and [ denoting
. values of the
0 first affix p; . . 9

: 7 the second affix
j f [Riu)" + Piviladpdz=0 | for all q being fixed.
o values
of k

l 2=
J ‘j [Ryu} + @} vj] adpdz =0 and L
L) o /

4. The differential-equations of the buckling tube. If only the load
components R, @ and Z and the displacements u, v, w be adequately
interpreted, the equations (2, 2) may be looked upon as the differential-
equations of the buckling tube, loaded by axial (and linearly changing)
bending stresses at its endsections. As stated in section 1, we assume
that, — thanks to its initial curvature — the tube, under influence of
its buckling moments M =puM, can be regarded as straight and of
constant thickness. The displacements u, v, w of any point of the middle-
surface, from this initial state of stress and strain (II) replace from this
moment the quantities, designed in the same way in equation 2, 2,
denoting originally the displacements from the unstressed state (I).
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One could be inclined, in applying the equations (2, 2) to the buckling
problem, to put R, @ and Z equal to zero, due to the fact that these
quantities evidently now stand for the supplementary loads, which even-
tually arise with the transition from state
II to the (indefinitely) neighbouring buck-
ling-configuration (II’). The following fact,
however, has to be observed. An arbi-
trary element of the tube, as represented
in fig. 4, being in state II, finds itself in
equilibrium, under the axial forces Q ady,
Q representing the external force pro unit
of circumferential length exerted on the end-sections of the tube in the
points (z=20, ¢) and (z =1, ¢).

If now the transition takes place from state II to state II’ these forces
retain their magnitude (because the external load of the tube does not
alter at all), but they change in direction in accordance with the change
in shape and curvature of the surface-elements on which they act.
Therefore these forces (though unchanged in magnitude) produce com-
ponents in the directions r, ¢ and 2z, which, divided by the surface
adpdz, play the role of R, @ and Z in the equations (2, 2).

It can be shown!), that in our case R, @, Z amount to

52
R=—Qr% o=—al}
z
and therefore the differential-equations of our buckling problem run as
follows :

Fig. 4.

Z=0 . . s « (1)

atane to5 )T (optaaatan T
e e s )t
+§gz =0

St et et a (St |- @
+357 58] - Fra=0

e t et (e
— 3 58) F 3 5 =0

1) Comp. W. FLUGGE, Statik und Dynamik der Schalen: Springer, Berlin 1934.
C. B. BIEZENO and R. GRAMMEL, Technische Dynamik; Springer, Berlin 1939.
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There only remains to express B in terms of the loading moment
M=puM. We find (comp. fig. 5 and 2, 1):

Q __Macosq)h (1—?) _ pM(1—»?
B~ aa*h  Eh ~ na’Eh

cosp . . . . (3)
It has already been stated in section 1, that the egs. (2) are homo-

geneous in u, v, w and their derivatives,
and therefore only have solutions, different

h A from u—=v=w =0, for distinct values of
the parameter u, respectively for distinct
values of the loading moment M = uM.

Those values will be called the “total char-
acteristic numbers” respectively the “total
characteristic moments’ of our problem; the
corresponding deformations (7') the “total
characteristic deformations”. From now itis
our subject to calculate the smallest char-
acteristic moment.

Fig. 5.

5. The expansion of a ‘total characteristic deformation” T into a
series of elementary normal deformations D. The influence numbers a;;.
The main result of the preceding section lays in the fact, that in case
of buckling the external loading moments M of the tube give rise to a
“would-be” surface load R, @, Z given by

2 2 2
R:—Qg—zgz:——%g—;comp, ¢:—Q%:——%g7zcostp. Z=0 (1)
the magnitude of which depends upon the total characteristic deformation
u, v, w, that corresponds with M. We learn from (1) that — if this total
deformation be decomposed in a set of other deformations u,, v, w,; u,,
vy wy... —, such that u=u,4u, +..., v=v,4v,+..., w=w,+w,+...,
the loadsystem (1) may be decomposed in a set of other loadsystems,
each of which is calculable by (1) from uy, vy, w,, u,, v,, w, etc.

If therefore the total characteristic deformation T be expanded in a
(infinite) series of *“elementary normal deformations” D:

T=53dD/. . . .. ..., (@

i=1

and if the loadsystem, derived from D; with the aid of (1) be called B;
then the “would-be” loadsystem belonging to the total characteristic
deformation under consideration, may be written as:

> d; B

Each system B;, on its part, can be expanded in a (finite or infinite)
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series of elementary normal loadsystems B, so that, at the end the
would-be loadsystem (1), produced by the total characteristic deformation
under consideration, can be regarded upon as the sum of an infinite
number of groups of a (finite or infinite) number of elementary normal
loads B.

Two remarks of some importance are here to be made. Firstly it has
been silently assumed, that all deformations and load systems, introduced
in this section belong to the same parameter 1 (comp. (2,5)), which is
characteristic for the total deformation T, so that all deformations and
loads, considered here, have the same number of longitudinal waves.
In accordance with a remark, already made in section 3, we therefore
denote the functions T, B and D by one single suffix p, relating to the
number of circumferential waves.

Secondly, we could — of course — have developed directly the load
system (1) into a series of the elementary normal loads. We did not,
however, proceed in this way in view of the introduction of a system
of so-called influence-numbers a@;;, which will now be defined.

If (artificially) the tube be given the elementary normal deformation
D, then we can — by the aid of (1) — formally calculate the “would-be"
loadsystems roused by two unit bending moments M, acting at the ends
of the tube. As stated before, this loadsystem can be developed in a
(finite or infinite) series of elementary, normal functions B. The coefficient
a;j, which in this expansion belongs to the elementary normal function
B; is called “the influence number of the elementary normal deformation
D; with respect to the elementary normal load B;.

This formal definition provides us with an expedient to obtain system
of homogeneous linear equations for the coefficients d; in the expression (2).
Indeed, if a deformation D; provokes a “would-be” load, which contains
a;j times B;, (assumed that the tube be charged by unit bending moments
M), then a deformation d;D; provokes a would-be load, which contains
udja;j times B;, assumed that the tube be charged by two bending
moments M= uM.

The total characteristic deformation T — 5’1 di D; therefore provokes

=
a would-be load, which contains B;

[

2 u dj a;j times.

i=

On the other hand it was stated in section 2, that the deformation

T'= f d;D; only can be maintained by the load S’ d; B;, and therefore
i=1 i=1
the system of equations

d,-:Z',ud_,'a,-j i=1.2.... e (3)

j=1
must hold.
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It only has solutions different from d; =0 (i=1,2...) if % satisfies

the equation:

1
ay — — agn Q13 ¢ v 0 o 0
7
1
azl a22 —— 023 ......
)z
=0 4
o (4)
sy 32 33—
7

which formally can be considered as representing our problem.

Now we proceed by proving, that — if only the elementary normal
functions be suitably numbered — the reciprocal relation a;;=a;; holds,
so that equation (4) is a secular one, possessing only real roots. To this
end we calculate by using (1) the would-be loads R, @ — to be denoted
by R*, @', resp. R™, & — belonging to the elementary normal defor-
mations u*, v*, resp. u™,v" defined by (3,6) and (3, 8). They are — if
the “order” of the underlying elementary deformation be indicated
by p—

- A2 F" 2
Ry = 2na2l/F‘7—} E*ﬁ G: [cos(p+1) ¢ +cos(p—1) 7] sin —
—% 12 G* . iz
2.71a2 I/F‘ - Et G* [sm (p <+ 1) A + 5”1 = ]) (]’] sin ;

*#‘ 12 F** ) zz (5)
p 2na2 I/F*W [COS (p + 1) + cos(p == l) q)] sin E
— 2 Gy 2
zn,a—Zl/Ftr Eu Gn [Sln p-l—l)!p—f—sm( —1)9“] Sin ;

Both load-systems R, @, and Rj,, @, can be linearly expressed in the
elementary load-systems

Bp-1={Rp-1s Pp-1)s Bprar={Rps1s Tpsi)s Bpi=(Ro-1s Do)

1"
Bp+l-—(Rp+1v p+1)-
Proc. Ned. Akad. v. Wetensch., Amsterdam, Vol. XLIII, 1940. 52
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If we restrict ourselves to the system R,, @,, and if we put

Ry =06p Rp-1 + 85 Ry“1 + 6p Ry + 85 Ry &
@), =0 Ppi + 8 Pyt 4 0p Dot + 3 Pl

the coefficients 6;, (i=1,2...4) can be found by using the relations
| 2=
I —x  * —x %
%6}0 :ff[Rp up_1 + Ppvp1]ad ¢ dz
0 0
I 2=
l — *% =% *k
'n*;ﬁ LF :ff [Rp up-1 + @pvp]ad ¢ dz
0 0

I 2=n

l —% % —%  x
% Sp :ff [Rp upt1 + Ppvpr] ad ¢ dz
o 0

I 2=
l h = *¥ et *%
7% 5:’ = f f[Rp up1 + Pp vp+1] ad @ dz
0o o

which can be verified by substituting the expressions (6) in the right-hand
members and by taking into account the relations of orthogonality
established in section 3 (comp. 3,9). Substitution of the explicite (5) of

ﬁ;,@;, I_'?:,*, 6:,* into (7) gives:

b= e[St |
“I/Fp + E, Gy I/Fp—l + Ep1 Gp1-
SO Y,
LV'F, +E; G, V'F)by + Byt G- @
hmgtal g iG]
—I/Fp +Ep, Gp l/Fp+1 + Ep+1 Gpi1-
=g | Dot GoGon |
LLF, + E; Gy V' Fpii + Epii G

If again we put

=~ 1 * 2 ok 3k 4

Ry =¢p Rp1 + & Rp1 + &) Rpt1 + & Rpna )
— 1 g% 2 ek 3 % 4 ¥k ot

Pp = ¢&p Pp1 + &p Pp—1 + &p Pps1 + &p Ppi1
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we find in an analogous way

- 22_22 [ — —F;:_—F;ﬁ j;(?:p:GLLT_ : |
aLV'F +Ey Gy V Fpoy + Ep oy Gpy-

&= 25;;2[ = FP*FP_ITGLG ;*_'ﬁ—

VFY + B Gy VFL +EL Gl (g

d= o | e P B G O
aLV'F) LE) Gy V' Fpui + Epy1 G-
PHNE N P 4R -
@ LWWV'F," + B, Gy V' Fpii + Epii G-

It goes without saying that each of the coefficients éf, and 8;, (i=1,2...4)
represents an influence-number a;; in the previously defined sense.
Furthermore it is evident, that no other influence-coefficients exist except
those represented by (8) and (10).

The question, which suffixes must be ascribed to the coefficient a, to
let it represent a given 0 or ¢ depends upon the way in which the
elementary normal deformations D; = (u?, vf) and D; = (u?*. v?*) are
arranged. We fix, that

Dy =0 will be indicated by D; (i=0) and in consequence B; by B;

(i=0)
Dy T . . Dii=1) . . . By by B;
(i=1)
DT " ”" ” ” Di (l:2) - ” BT bY Bi
i=2)
DY . . . Dii=3) . . . B\ by B;
(i=3)
a. S. 0.

Bearing in mind that 0, represents the influence-coefficient of the
*
elementary normal load Bj,_; with respect to the elementary normal

deformation D), and that B, ; and D} in the just defined sequences of
normal loads B; and normal deformations D; have the numbers

i=2(p—1), resp. i=2p, then it is obvious that o, has to be called

asp—n,2p» and that the significance of the coefficients 85, ¢ in general
can be derived from the following scheme

3 [— 1
dp = az(p-1,2p Ep = A2(p—1),2p+1
52 = ar 2
p — A2(p—-1)+1,2p €p = @2(p-1)+1,2p+1 (11)
3 _ 3
dp = az(p+1),2p £p = A2(p+1),2p+1
5t = 4
p — Q2(p+1)+1,2p Ep = A2(p+1)+1,2p+1

52*
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From the equations (8) and (10) we deduce

1 3 1 4 2 3 2 4
5p:6p—1 ’ ep:(,p—l ’ 5p:5p—1 » Ep — &p—1,

and consequently from equations (11)
@2 (p-1),2p = @2p,2 (p-1)
Qa2 (p—1),2p+1 — A2p+1,2(p—1)
Ce L (12
A2 (p-1)+1,2p — @2p, 2 (p—1)+1
Qa2 (p—1)+1,2p+1 — @2p+1,2 (p—1)+1

These equations obviously can be contracted in the single relation of
reciprocity :
a,-j:aj,-. . . . . . . . . . (13)

The numbering of normal functions, introduced in this section, there-
fore make the left-hand side of (4) to a symmetrical determinant. If
furthermore we give attention to the fact, that in our new nomenclature
influence-coeflicients of the type a;; do not occur, and that a great
number of the other coeflicients is zero, equation (4) can be replaced by:

L ws o 0 0o 0 o...
# 1
Ay —_ ; 01 (e B Qs 0 0
(131 0 i 034 a35 0 0 oo
® { =0 (14)
0 Q42 Q43 - ; 01 Q46 Q47
0 asy Qs3 0 - 7 a56 As7 .

with a;; =aj;.

After a well-known theorem the roots of this equation are one and
all real. If the columns 2, 3, 6, 7, 10, 11,... and the rows 1,4,5,8,9,...
of the determinant are multiplied by —1, no alteration takes place in

1
its general shape, except that all terms m change their sign. Therefore

it can be stated beforehand, that all roots of equation (14) occur in pairs

of equal magnitude and opposite sign.
Every root ux of (13) corresponds to a total characteristic defor-

mation T

Tv= 3 du D,

i=1

the coefficients d; satisfying the equations:

n
dki:_zl,ukaijdkj i=12..). . . . . . (19
Jj=



