
Physics. - On the buckling of a thin-walled circular tube lOBded by 
pure ben ding. I. By C. B. BIEZENO and J. J. KOCH. 

(Communicated at the meeting of June 29, 1940.) 

1. Introduction. If a thin-walled circular tube in his end~sections is 
loaded by two equal and opposite bending moments M. it may be 
stated that its cross section alters its circular shape into an oval one. 
owing to the facto that. apart from the norm al bending stress es in the 
cross section of the tube. there arise tangential bending-stresses in its 
meridional sections. A closer examination of the fact learns. that the 

curvature l of the "axis" of the tube does not increase proportionally 
e 

with the loading moment M. 
If "a" be the radius of the tube. hits thickness. E the elasticity~ 

modulus of the material and v the reciprocal value of POISSON's coef~ 
ficient. tbe following relation between Mand e exists: 

(1) 

the graphical representation of which is shown qualitatively in fig . 1. 
It is seen from this figure that there exists a critical value Mcrit of 

M M. characterized by the facto that no 
increase of M occurs. if lle increases. 
Hence a break-down of the tube is to 
be expected. 

The phenomenon here described has 
: MCRIT. been studied at great length by 

BRAZIER I). 
In the present paper quite another 

'r phenomenon is studied. which occurs 
for certain critical values of M. and is 

Fig. I. characterized by the simultaneous ap~ 
pearance of longitudinal and circum~ 

ferential waves in the cylindrical shape of the tube. We assume. that. 
- if unloaded -. the tube possesses such initial curvature. that under 
the action of tbe buckling moment it is straight. and - in cross~section -
circular and of constant tbickness h. Hereby our buckling problem relates to 

I) Comp, BRAZIER. Aeronautical Research Committee, Reports and Memoranda 
No. 1081. M 49. 
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a straight circular tube. loaded at his ends by linear changing bending 
stresses. 

Preliminary we shall have to solve some detail~questions (sections 2-6). 
In section 2 the formulae for the displacements and stresses of a cylin~ 
drical tube. submitted to prescribed radial. tangential and axial stresses. 
R. ft> and Z are reproduced. In section 3 a system of particular loads 
B is defined and calculated. which plays a fundamental role in our 
proper buckling problem. The loads B will be called "elementary normal 
loads". the corresponding deformations. "elementary normal deformations". 
Sec ti on -4 deals with the differential equations of the buckling problem; 
more particularly it is shown that the differential equations for the 
displacements obtained in section 2 may be looked upon as the required 
buckling~equations. provided that R. ft> and Z be replaced by adequate 
"would~be" forces. The so~obtained differential equations are homogeneous 
and linear in the displacements and therefore only admit solutions 

(different from zero) for special values of the loading moment M = ftM 

(M = unit of bending moment). The values ft. for which buckling of the 
tube is possible. will be called the "total characteristic values" of our 
problem. the corresponding deformations T of the tube "total normal 
deformations". Section 5 bears on the development of the "total normal 
deformations" into a series of the "elementary normal deformations". 
Finally it is shown in section 6. how by iteration the smalle st characte-:­
ristic value ft can approximately be calculated. 

2. The cylindrical circular tube of constant thickness under a prescribed 
load~system . As shown in fig. 2 the position of an arbitrary point of 
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the middle~surface of the tube is given by its "cylinder"~coordinates a. 
({J. and z. The radial. tangential and axial displacements of such a point 
are called u. v. w; the components of the extern al load of the tube 
with reference to the unit of surface. and taken in radial. tangential and 



785 

axial direction are designed by R. <p. and Z. Fig. 3 shows the nomen~ 
c1ature of the so~called "internal" forces and moments. all of which 
refer to the unit of leng th of their corresponding section. 

Fig. 3. 

H. for abbreviation. we put 

B-~ 
-1-v2 

and for later purposes 

- mzz+%~ZZ dz 

tnz,+ ê)Ezz. clz 

tn9lz+ ê)~""Z d" 
m +~d, 

"" up 

. (1) 

.. W) 

the equations for u. v. w may be written as follows: 

The internal forces and moments can be calculated from u. v. w. by 
the relations (3): 
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We see at once. that for the special loads 

R = apq cos pep sin ). ~ 
a 

. (3) 

<IJ = bpq sin pep sin ). ~ . • • . . • • (4) 
a 

z=o 

- where pand q design arbitrary positive. integer numbers and ). 
stands for 

,l,_nqa () - - /- .......... 5 

(/ being the length of the cylinder) - the equations (2) admit solutions 
of the following type 

• , Z 
u = u pq cos pep sm IL -

a 

• .). Z 
v = Vpq sm pep sm --;- •• • • • • • (6) 

z 
W = Wpq CO$pep cos ).­

a 

Upq. Vpq and Wpq representing functions of pand q. which are to be 
calculated Erom the equations (7) 
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[1 + k (pi + 2 p2 .P + .J.:'-2 p2 + I)] Upq + [p + 3 2 V kP).2J Vpq + 

+ [-V). + k C 2 V p2)._).3) ] Wpq = ~ apq 

[ 
3-v ] [1-V ] P+Tkp).2 Upq+ p2+-

2
-(1 +3k)).2 Vpq-

1 + v a 2 

- - 2- p).wpq = B bpq 

[ -v). + k C 2 v p2)._).3)J Upq- 1 ~ v p). Vpq + 

+ [).2 -/- 1 2 v (1 + k) p2J Wpq = 0 

. (7) 

(It may be noted. that for all solutions (7). the displacements u and v 
are zero for z = 0 and z = 1. whereas W is different from zero at the 
ends of the cylinder). We restrict ourselves to solving Upq and Vpq and 
find. under the essential condition. that the thickness h of the tube be 
sm all enough to neglect all terms which contain the parameter k (cornp. 1 *) 
in higher than the first degree 

Upq = apq apq + fJpq bpq ( 

Vpq = fJpq apq + "Ipq bpq ~ 
. . . . . . . (8) 

apq. fJpq and "Ipq standing for: 

apq=(J;)pq~; fJpq--(J;)pq~; "Ipq=(~)pq~' . (9) 

TI' T 2• T 3• N themselves standing for: 

T I =(1 -/-k)p4+[2).2+2(I-v)).2k]p2+(1 +3k)).4 

T 2 =p [[1 + k (2).2 + 1)] p2 + (v + 2)).2 + 2k).i] 

T3 = kp2 (p2_1)2 + k 2 (2-v) ).2 p4 + [1 + 5-v k).4 + 
I-v I-v 

+ 2 (v-v
2
-2) k).2 + kJ p2 -/- 2 (1 + v)).2 + _2_ k().6_2v).4) 

I-v I-v 

N= k p8 + k [4 ).2-2] p6 -/- k [6).i_2 (4-v)).2 + 1] p4 + k [1).6-

-6).i + 2 (2-v)).2] p2 + (l-v2)).4 + k).8-2 v).6 k+(4-3v2)).1 k . 

(10) 

3. The "elementary normal loads" B. and the corresponding "elemen~ 
tary normal deformations" D. As "elementary normal loads" Band 
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corresponding "elementary normal deformationll" D we def1ne such 
loads Rpq• lPpq (comp. 2.4) and such corresponding displacements Upq. 

Vpq. for which 

Rpq = lPpq = 0) • 
Upq Vpq 

(1) 

Condition (I) is identical with the requirement. that the equations 

or · . (2) 
apq = 0) (upq a pq + fJpq bpq) I (0) upq-I) apq + 0) fJpq bpq = 0 I 
bpq = 0) (fJpq apq + Ypq bpq) O)ppq apq + (O)Ypq-l) bpq = 0 

admit solutions 8pq. bpq different from zero. (Comp. 2.8 and 2.4). 
Therefore the equation 

O)upq - 1 O)fJpq 

=0 . • (3) 
0) fJ pq 0) Y pq - 1 

has to he satisf1ed hy 0). The two (real) roots of this equation are: 

1/0)* 

resp. ~*q =upqtypq ± y(a
pq

-;-ypq)2 +fJp/ • 

1/0) pq 

· (i) 

The corresponding loads and displacements - which of course are 
def1nite except for a factor of proportionality " - may readily he cal~ 
culated from the equations (3). 

With: 

p* = apq + Ypq + 1/(apq-ypq)2+ fJ2 • p** = a pq + Ypq _ v(apq-ypq)2+fJ2 
pq - 2 V 2 pq • pq - 2 2 pq 

they can he written as follows: 

R* = ,,* cos prp sin À. ~ 
a 

"'* * E*. ., Z 
'V =" pq Sin P rp sm IL a 

* * p* . , z u =" pq cos p rp Sin IL a 

* * G*' ., Z v =" pq Sin P rp sm IL -; 

G** = E** P** pq pq pq 

0"* ** . 1 Z 
~ =" cos p rp Sin IL -

a 

lP** = ,,** E**q sin p rp sin À. ~ 
p 8 

** ** p** . , z u =" pq COS P rp Sin IL a 

.* ** G**' . 1 Z 
V =" pq Sin P rp Sin IL a 

• (6) 

(5) 



789 

the flrst solution obviously belonging to co*, the second one to e.o**, 
To get rid of the undeterminate factors x* and x** we standardize our 
solutions by the condition of standardization 

I 2:r I 2", 

J J(u* R*+v* CP*)adgJdz= 7l ;1 resp,JJ(u** R**+v** CP**)adgJdz= 7l;1 (7) 

o 0 0 0 

and find hereby: 

* x (8) 
VF** + E** G** pq pq pq 

Henceforth the expression "elementary normal function" will be used 
in the same sen se as "standardized elementary normal function". so that 
from now the e1ementary normal loads and deformations will be repre­
sented by the eqs. (6) and (8). 

In the following sections we shall have to deal with systems of 
elementary normal functions. belonging to a fixed value of the second 
affix q. In such case th is affix will be suppressed. It can easily be 
proved. that, under this understanding, the following so-called "ortho­
gonality"-relations exist between the functions (6): 

I 2", 

.f J' [R~ u; + cP~ v;] adgJdz = 0 
o 0 

I 2", 

.1' J [R~* u;* + cP~* v;*] adgJdz = 0 

o 0 

I 2:, 

J J' [R~ u;* + cP~ v;*] adgJdz = 0 

o 0 

I 2.-. .f J [R~* u; + cP~* v;] adgJdz=O 

o 0 

for all 
values 
of k 
and 1. 

k and 1 denoting 
va lues of the 
first affix p; 
the second affix 
q being fixed. 

(9) 

4. The ditferential-equations of the buckling tube. If only the load 
components R. cp and Zand the displacements u, v, w be adequately 
interpreted, the equations (2. 2) may be looked upon as the differential­
equations of the buckling tube, loaded by axial (and linearly changing) 
bending stresses at its endsections. As stated in section I, we assume 
that, - thanks to its initial curvature - the tube, under influence of 
its buckling moments M = ft M, can be regarded as straight and of 
constant thickness. The displacements u, v, w of any point of the middle­
surface, from this initial state of stress and strain (11) replace from this 
moment the quantities, designed in the same way in equation 2, 2, 
denoting originally the displacements from the unstressed state (I). 
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One could be inclined. in applying the equations (2. 2) to the buckling 
problem. to put R. lP and Z equal to zero. due to the fact that these 
quantities eVidently now stand for the supplementary loads. which even~ 

tually arise with the transition from state 
'Qad, 11 to the (indefinitely) neighbouring buck~ 

r.,.~~ ling~configuration (11'). The following facto 

Fig. 4. 

however. has to be observed. An arbi~ 
trary element of the tube. as represented 
in fig. 4. being in state 11. finds itself in 
equilibrium. under the axial forces Q a&p. 
Q representing the external force pro unit 

of circumferential length exerted on the end~sections of the tube in the 
points (z = O. ep) and (z = I. ep). 

If now the transition takes place from state 11 to state 11' these forces 
retain their magnitude (because the external load of the tube does not 
alter at all). but they change in direction in accordance with the change 
in shape and curvature of the surface~elements on which they act. 
Therefore these forces (though unchanged in magnitude) produce com~ 
ponents in the directions r. ep and z. which. divided by the surface 
adep d z. play the role of R. lP and Z in the equations (2. 2). 

lt can be shown I). that in our case R. lP. Z amount to 

02U Ö2 v 
R = - Q 0 Z2 • lP = - Q 0 Z2 • Z = 0 . (1) 

and therefore the differential~equations of our buckling problem run as 
follows: 

!(~+!~+v OW)+ A" (ld1U+~~+ 01U + 
a a a oep OZ B a1 a ep1 a 2 09'2 OZ2 0 Z1 

2 02 
U U 3-v 03 

V I-v 03 
W 1 03 w) 

+ a20ep2+ a1 - 2a2 Oepdz2+ 2a3 Oep2 0Z -a OZ3 + 

+Q 02 U _ 0 B OZ2-

l ~+l ()lv + I-v iJ2v + I+v 02W + A" (_ 3-v ~ + 
a 2 oep a 2 Oep2 2 0 Z2 2a oep oz B 2a2 OepOZ2 . (2) 

I) Comp. W . FLOGGE. Statik und Dynamik der Schalen: Springer. Berlin 1934. 
C. B. BIEZENO and R. GRAMMEL. Technische Dynamik: Springer. Berlin 1939. 
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There only remains to express ~ in terms of the loading moment 

M=f'M. We find (comp. fig. 5 and 2,1): 

~ _ M a cos qJ h (1-v2
) _ ,u M (1-v2

) 

B - n a 3 h . Eh - n a 2 E h cos qJ 
(3) 

It has already been stated in section 1, that the eqs. (2) are homo~ 

Fig. 5. 

geneous in u, v, wand their derivatives, 
and therefore only have solutions, different 
from u = v = w = 0, for distinct values of 
the parameter ,u, respectively for distinct 

values of the loading moment M = ,u M. 
Those values will be called the "total char~ 
acteristic nu mb ers" respectively the "total 
characteristic moments" of our problem; the 
corresponding defolmations (T) the "total 
characteristic deformations". From now it is 
our subject to calculate the smal/est char~ 
acteristic moment. 

5. The expansion of a "total characteristic deformation" Tinto a 
series of e1ementary normal deformations D. The influence numbers aij. 

The main result of the preceding section lays in the fact, that in case 
of buckling the external loading moments M of the tube give rise to a 
"would~be" surface load R, W, Z given by 

à2u M à2u a2v M a2v 
R=-Q-s2=- - 2-s2COSqJ, W=-Qà~=--2 à~cosqJ, Z=O (1) 

u z na uz Z na Z 

the magnitude of which depends upon the total characteristic deformation 
u, v, w, that corresponds with M. We learn from (1) that - if this total 
deformation be decomposed in a set of other deformations u), v), w); U2' 

V2. W2'" -. such that u=u) +U2 + .... v=v) +V2 + ... , W=W) +W2+'." 

the loadsystem (1) may be decomposed in a set of other loadsystems, 
each of which is calculable by (I) from u), v). W). U2. v 2' W2 etc. 

If therefore the total characteristic deformation T be expanded in a 
(infinite) series of "elementary normal deformations" D: 

co 
T= Z di Di . 

i = ) 
(2) 

and if the loadsystem, derived from Di with the aid of (I) be called Bi 
then the "would~be" loadsystem belonging to the total characteristic 
deformation under consideration, may be written as: 

ZdiB i • 

Each system Bi. on its part, can be expanded in a (fini te or infinite) 
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series of elementary normal loadsystems B. so that. at the end the 
would~be loadsystem (1). produced by the total characteristic deformation 
under consideration. can be regarded upon as the sum of an infinite 
number of groups of a (fini te or in fini te) number of elementary normal 
loads B. 

Two remarks of some importance are here to be made. Firstly it has 
been silently assumed. that all deformations and load systems. introduced 
in this section belong to the same parameter À. (comp. (2. 5)). which is 
characteristic for the total deformation T. so that all deformations and 
loads. considered here. have the same number of longitudinal waves. 
In accordance with aremark. al ready made in section 3. we therefore 
denote the functions T. Band D by one single suffix p. relating to the 
number of circumferential waves. 

Secondly. we could - of course - have developed directly the load 
system (1) into a series of the elementary normal loads. We did not. 
however. proceed in this way in view of the introduction of a system 
of so~called influence~numbers aij. which will now be defined. 

If (artificially) the tube be given the elementary normal deformation 
D. then we can - by the aid of (1) - formally ca\culate the "would~be" 

loadsystems roused by two unit ben ding moments M. acting at the ends 
of the tube. As stated before. this loadsystem can be developed in a 
(finite or infinite) series of elementary. normal functions B. The coefficient 
aij. which in this expansion belongs to the elementary norm al function 
Bi is called "the influence number of the elementary normal deformation 
Dj with respect ta the elementary normal load Bi, 

This formal definition provides us with an expedient to obtain system 
of homogeneous linear equations for the coefficients di in the expression (2). 
Indeed. if a deformation Dj provokes a "would~be" load. which contains 
aij times Bi. (assumed that the tube be charged by unit bending moments 

M). then a deformation dj Dj provokes a would~be load. which contains 
ftdjaij times Bi. assumed that the tube be charged by two ben ding 

moments M = ft M. 
CD 

The total characteristic deformation T = L: di Di therefore provokes 
i=1 

a would~be load. which contains Bi 

CD 

L: ft dj aij times. 
j=1 

On the other hand it was stated in section 2. that the deformation 
00 00 

T = L: di Di only can be maintained by the load L: di Bi. and therefore 
i=1 i=1 

the system of equations 

di = L: ft dj aij i= 1. 2 .... (3) 
j=1 

must hold. 
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t 
It only has solutions different from di = 0 (i = 1. 2 ... ) if - satisf1es 

ft 
the equation : 

all- -
ft 

a l 2 a13 

1 
a21 a22-- a23 

ft 

t 
=0. (4) 

a31 a32 a33-- . 
ft 

whïch formally can be considered as representing our problem. 
Now we proceed by proving, that - if only the elementary normal 

functions be suitably numbered - the reciprocal relation aij = a j i holds, 
so that equation (4) is a secu)ar one, possessing on)y real roots. To th is 
end we calculate by using (1) the would~be loads R, cp - to be denoted 

by R', CP', resp. R'·, cp.' - belonging to the elementary normal defor ..... 
mations u', v·, resp. u··, v" defined by (3, 6) and (3, 8). They are - if 
the "order" of the underlying e1ementary deformation be indicated 
by p-

. (5) 

Both load~systems R;, 4);, and R;·, cp;. can be linearly expressed in the 
elementary load~systems 

8;-1 =(R;-I, CP;-I); 8;+1 = (R;+lo CP;+I); 8;"--1 = (R;"--I , CP;"--I); 

8;:1 =(R~:I, CP~:I). 

Proc. Ned. Akad. v. Wetenseh., Amsterdam, Vol. XLIII, 1940. 52 
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If we restrict ourselves to the system R;, ~, and if we put 

• (6) 

the coefficients b~ (i = I, 2 ..• 4) can be found by using the relations 

I 2,. 

nal I IJ -* * - * * 2 bp = [Rp UP_I + q>p vp-d ad qJ dz 
o 0 

I 2,. 

nal 2 JJ - * ** - * •• 2 bp = [Rp Up_I + q>p vp-d ad qJ dz 
o 0 

I 2", 
· (7) 

nal 3 JJ - * * - * * 2 bp = [Rp Up+1 + ~p vp+d ad qJ dz 
o 0 

I 2,. 

nal 1 j'J - * ** - * ** 2 bp =. [Rp Up+! + ~p vp+d ad qJ dz 
o 0 

which can be verified by substituting the expressions (6) in the right-hand 
members and by taking into account the relations of orthogonality 
established in section 3 (comp. 3, 9). Substitution of the explicite (5) of 

R;, ~;, R;*, ~;* into (7) gives: 

bi _ _ À _ Fp Pp- I + Gp Gp- I 2 [ * * * * ] 
P - 2 n a 2 * * * * * * V Pp + Ep Gp V Pp_ 1 + Ep_I Gp _ 1 

2 [ . * ** * *. ] b2 _ _ À _ Pp Pp _ 1 + Gp Gp_ 1 

P - 2 n a 2 Vp* + E* G* Vp** + E** G** p p P p-I p-I p-I 

2 [ * * * * ] 133 _ _ À _ Pp Pp+ 1 + Gp GP+ I 

P - 2na2 * I * * * * * V Pp T Ep Gp V Pp+ 1 + Ep+ 1 GP+ I 

· (8) 

b1 _ ~ [ Pp Pp+ 1 + Gp GP+ I ] 

P-2na2 VP*+E*G*VP** +E** G** p p P p+1 p+1 p+1 

If again we put 

· (9) 
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we find in an analogous way 

2 [ '" '" ] I _ À, F p F p _ 1 + G p Gp - 1 

Ep - 2:n a2 VF" E" G" V=F~'===+==E=:':-===G=':;:== 
p + p P p-I p - I p-I 

2 _ P p-I P p-I À,2 [ F" F" + G" G" J 
Ep - 2:na2 VF" + E" G-" VF" =-+'--=E=='=:" ==G=-'~'= 

p p p p - I p - I p-I (10) 

2 [ ". .,. J 3 _ À, F p F p+ I + G p G p+1 
Ep - -2 2 = ====:::==::== 

:na VF" _L E*' G" VF' + E' G' PiP p p+ I p+ I p+ I 

2 [ """ " ] 4 _ À, F p F p+ I + G p G p+ I 

Ep - 2:n~2 VF" E" G'· VF" -- +-'---'--E,,,,"-,,--""'=G='='= 
p + p p p+1 p+1 p+1 

It goes without saying that each of the coefficients b~ and E~ (i= 1. 2 .. .4) 
represents an influence~number ai} in the previously defined sense. 
Furthermore it is evident, that no other influence~coefficients exist except 
those represented by (8) and (10). 

The question, which suffixes must be ascribed to the coefficient a, to 
let it repr~sent a given (~ or E, depends upon the way in which the 

elementary normal deformations Di (u; , v;) and D;' (u;', v;') are 
arranged. We fix, that 

D~ 0 will be indicated by Di (i=O) and in consequence B~ by Bi 
(i= 0) 

D~' .. Di (i = 1) B~' by Bi 
(i = 1) 

D; .. Di (i= 2) B; by Bi 
(i = 2) 

.. Di (i = 3) B;' by Bi 
(i = 3) 

a. s. o. 

Bearing in mind that ä~ represents the influence~coefficient of the 
elementary normal load B~_I with respect to the elementary normal 

deformation D~, and that B~-l and D~ in the just defined sequences of 
normal loads Bi and normal deformations Di have the numbers 

i=2(p-l), resp. i=2p, then it is obvious that (~~ has to be called 

a2(p-I),2p, and that the significance of the coefficients b~, E~ in general 
can be derived from the following scheme 

~I -
Up = a2(p- IJ,2p 

1 
Ep = a2(p-I),2p+1 

.12 -
up = a2"(p-I)+I,2p 

(~~ a2(p+I),2p 

2 
Ep = a2(p- I)+I,2p+1 

3 
Ep = a2(p+I),2p+1 

(11 ) 

.14 -
Up = a2(p+I)+I,2p 

4 
Ep =a2(p+I)+I,2p+ 1 

52* 
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From the equations (8) and (10) we deduce 

.tI .t3 I .ti .t2 3 2 i 
Up = Up-I • Ep = Up- I • Up = Ep-I • Ep = Ep-I • 

and consequently from equations (11) 

a2(p- I),2p = a2p,2(p-l) 

a2(p-I),2p+1 = a2p+I.2(p-l) 
(12) 

a2 (p-I)+ I, 2p = a2p.2 (p - I)+ 1 

a2(p-I)+1 . 2p+1 = a2p+I,2(p-I)+1 

These equations obviously can be contracted in the single relation of 
reciprocity : 

(13) 

The numbering of norm al functions. introduced in th is section. there­
fore make the left-hand side of (4) to a symmetrical determinant. If 
furthermore we give attention to the facto that in our new nomenclature 
influence-coefficients of the type aii do not occur. and that a great 
number of the other coefficients is zero. equation (4) can be replaced by: 

1 
al2 a\3 o o o 0 . . . 

ft 

a21 0 
ft 

a31 0 
ft 

0 a 1 2 an 

0 a52 a53 

with aij = aji. 

Af ter a well-known theorem the roots of this equation are one and 
all rea!. If the columns 2. 3. 6. 7. 10. 11 .... and the rows 1. 4. 5. 8. 9 • ... 
of the determinant are multiplied by - 1. no aJteration takes place in 

1 
its general shape. except that all terms - change their sign. Therefore 

ft 

it can be stated beforehand. that all roots of equation (14) occur in pairs 
of equal magnitude and opposite sign. 

Every root ftk of (13) corresponds to a total characteristic defor­
mation Tk 

(IJ 

T k = 1) d ki Di. 
i = 1 

the coefficients di satisfying the equations : 
n 

dki = 1) ftk aij dkj (i = 1. 2 ... ). 
j=1 

(15) 


