Chemistry. - On geometric isomerism in Luteo-Cobaltic-salts. By I. Lifschitz and K. M. Dijkema. (Communicated by Prof. F. M. Jaeger.)
(Communicated at the meeting of June 29, 1940.)
§ 1. According to the classical co-ordination theory, it might be expected, that complex compounds of trivalent metals, such as, for instance: I. [Met. ${ }^{\text {III }} A_{3}$]; II. [Met.A-B-X ${ }_{2}$]; III. [Met. $A_{2} X_{2}$], etc., in which A and B are co-ordinatively-bivalent asymmetrical substituents, X being a co-ordinatively-monovalent substituent, - wil occur in geometrically isomeric forms. Luteo-salts I, for instance, of the ion: $\left[\operatorname{Met} .^{I I I}(p n)_{3}\right]^{\cdots}$ and triaci-dotriammino-salts I, for instance: [Met. ${ }^{\text {III }}(\mathrm{glyc})_{3}$], would be obtainable in two, some diacidotetrammino-salts III, for instance, of the ion: flavo[Met. $\left.{ }^{\text {III }}(p n)_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]^{\circ}$, even in three isomeric forms. Experimentally such isomerism has been observed only in cobaltic compounds and even there only in a few cases. In the first place geometrically isomeric forms were found in complex cobaltic compounds with 3 mol. α-amino-acid ${ }^{1}$). A. Werner could prepare the isomeric forms of flavo-[Co (en) (pn) $\left.\left.\left(\mathrm{NO}_{2}\right)\right]_{2} \mathrm{X}.{ }^{2}\right)$. But even flavo- $\left[\mathrm{Co}(\mathrm{pn})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right] X$, of which three isomerides might theoretically be expected, appears only to occur in one single form ${ }^{3}$).

The reasons why the geometric isomerism predicted by WERNER is so rarely observed, will not be discussed here. In the first place it must experimentally be investigated, whether a greater number of geometrically isomeric salts can be obtained.

Apart from this, however, the preparation of such isomerides in an optically-active form would be of interest with respect to the study of rotatory power and rotatory dispersion in general.

Since geometrically isomeric substances differ almost exclusively with respect to the degree of symmetry of their molecules, an investigation of

[^0]their rotatory power may yield important data concerning the influence of differences in symmetry on rotatory power ${ }^{1}$).
§ 2. In an investigation of the complex-formation of phenylated ethylenediamines, it was found that the luteo-cobaltic-salts of monophenylethylenediamine can rather easily be obtained in geometrically isomeric forms. This is the first case of geometric isomerism in the luteo-series having been demonstrated and of the polarimetric investigation of such isomers having become possible.

Phenyl-ethylenediamine: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{NH}_{2}\right)-\mathrm{CH}_{2}\left(\mathrm{NH}_{2}\right)$ (phenen) was obtained in the racemic and in the optically-active forms by catalytic hydrogenation of α-acetaminophenyl-acetic-acid-nitril:

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH} \cdot\left(\mathrm{NHCOCH}_{3}\right) \cdot \mathrm{CN}
$$

according to H . Reinlen's method ${ }^{2}$). In preparing the luteo-salts, the following prescription may be followed as well in the case of the racemic as of the optically-active bases.

20,4 g. phenyl-ethylenediamine and $4,2 \mathrm{cc} \mathrm{HCl}$ (s.g. 1.19) are added to a solution of $11.9 \mathrm{~g} \mathrm{CoCl} 2.6 \mathrm{H}_{2} \mathrm{O}$ in $350-400 \mathrm{cc}$ methylalcohol and a current of air is blown through it by means of a gasdispersion-tube. Very soon a yellow salt crystallizes, whilst the solution becomes dark brown. After ca. 20 hours the solid salt (L_{1}) is sucked off, boiled three times with methyl-alcohol (each time with ca. 100 cc .) and, after complete cooling, sucked off.

The salt thus obtained is then fractionated by crystallisation from water, whilst some cc. of $\mathrm{HCl}(1,4)$ are added to the filtered and slightly cooled solution ${ }^{3}$).

Besides some luteo-salt L_{1} the deep-brown methyl-alcoholic mother liquor of L_{1} contains a deep-brown, occasionally somewhat greyishcoloured salt, which, after evaporation, is left as a syrupy substance, which on cooling solidifies into a crystalline mass. It probably consists of a polynuclear salt, which, however, even by re-crystallization from water ${ }^{4}$), could not be obtained in a pure state.

When this salt is dissolved in hot water, to which some cc hydrochloric acid ($1: 4$) are added, and the solution is filtered and cooled, the colour changes to a yellowish-brown and a yellowish-brown salt (L_{2}) crystallizes from it; the latter can be purified by fractionated crystallisation from very dilute HCl in the way previously described.

[^1]This salt appears to be the luteo-salt L_{2}, which is geometrically isomeric with L_{1}. The dry solid salts differ but little in colour, - L_{2} having a little darker yellow hue. Analysis yielded the following values:
Co:
Cl :
$\mathrm{N}: \quad \mathrm{H}_{2} \mathrm{O}$:
$L_{1} \quad 9.72 \% ; 9.78 \% \quad 17.51 \% ; 17.56 \% \quad 13.77 \% ; 13.67 \% \quad 5.0 \%$ $L_{2} \quad 9.39 \%$; $9.36 \% 16.89 \% ; 16.83 \% 13.44 \% ; 13.31 \% \quad 8.6 \% ; 9.2 \%$ calculated for $\left[\mathrm{Co}(\text { phenen })_{3}\right] \mathrm{Cl}_{3} .3 \mathrm{H}_{2} \mathrm{O}: 9.39 \quad 16.98 \quad 13.39 \quad 8.6 \%$ calculated for $\left[\mathrm{Co}(\text { phenen })_{3} \mathrm{Cl}_{3}\right.$]. $2 \mathrm{H}_{2} \mathrm{O}: 9.67 \quad 17.48 \quad 13.78 \quad 5.7 \%$.

Thus L_{1} appears to be a dihydrate, L_{2} a trihydrate: A determination of the molecular weight of the dried salts in phenol, yielded the following values:

	gr. salt	gr. phenol	$\Delta t:$	M (found):	
L_{1}	0.293	17.25	$0^{\circ} .210$	591	
L_{1}	0.290	16.23	$0^{\circ} .222$	596	M (calculated) $=573$
L_{2}	0.391	16.07	$0^{\circ} .290$	607	

Both salts, therefore, are mononuclear ones and have the same molecular weight. The difference of colour of the solid salts is also noticeable in aqueous solutions: solutions of the same concentration by means of a Pulfrich-photometer proved to show an absorption of different extent. In methyl-alcohol L_{1} dissolves with difficulty, L_{2} rather easily.

The saturated aqueous solution of L_{1} at 25° contains 1.16 gr . that of $L_{2} 2.47 \mathrm{gr}$. of salt in 100 cc of water. In hot, boiling water both salts readily dissolve, L_{2} melting under water to a brown liquid mass, whereas L_{1} remains solid, until complete solution has occurred.

On heating in a drying room, the two salts become green, L_{2} at ca. 140°, L_{1} at 150°, under partial conversion into praseo-salts.

The data concerning the rotation-curves of the two isomerides are to be found in Fig. 1, (curves I and $I I$). It is noteworthy that, - in contradistinction to the case of l-stilbenediamine. - l-phenylethylenediamine yields levo-rotating luteo- and praseo-salts. The rotation-curves of the two isomerides show the same qualitative course, but they strongly differ in regard to the absolute magnitude of their rotations. Both isomerides possess a considerably higher maximal rotatory power than $\left[\mathrm{Co}(l \text {-stien })_{3}\right] \mathrm{Cl}$. As the curve shows, the l-base gives a positive contribution to the rotation ${ }^{1}$); the partial racemic complexes: [Co (rac. phenen $\left.)_{3}\right] X_{3}$ therefore, ought to possess a much higher rotatory power. The polarimetric investigation of the geometrically isomeric luteo-salts fully confirms the rules ${ }^{2}$) previously stated by one of the authors (LI) with other geometrically isomeric series:

[^2]1. Geometrically isomeric substances show a rotation which is qualitatively quite analogous, but quantitatively very different.
2. A lower degree of symmetry of the molecule causes a higher rotation: $\left[\mathrm{Co}(l \text {-stien })_{3}\right] X_{3}$ rotates much less than $\left[\mathrm{Co}(l \text {-phenen })_{3}\right] X_{3}$ and practically as much as $\left.\left[\mathrm{Co}(e n)_{3}\right] X_{3}{ }^{1}\right)$.
3. From this, the working hypothesis obtains fresh support ${ }^{2}$), that of two geometric isomerides the less symmetrical one shows the higher rotation.
§ 3. Besides luteo-salts, we also prepared the praseo-compounds; theoretically these might also occur in two isomeric forms, namely in a cis- and a trans-form. We, indeed, got the impression that two praseochlorides $\left[\mathrm{Co}(\text { phenen })_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ are formed; but they were only little stable and, therefore, they could up till now not be isolated in the pure state with complete certainty.

For their preparation the following prescription is recommended:
7.8 gr. of $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ are dissolved in 300 cc alcohol, 8.1 gr. base and then 10 cc HCl (s.g. 1.19) are added and the mixture then is oxydized with a current of air during about 20 hours. A green salt soon begins to crystallize, the solution assuming a blackish-green colour.

The crystallized praseo-salt $\left(P_{1}\right)$ is sucked off and the mother liquor strongly concentrated; on cooling, a considerably darker salt (P_{2}) then begins to crystallize. Both salts, after recrystallizing them from alcoholic hydrochloric acid and drying at 130°, are, however, still impure. A pure praseo-nitrate could finally be obtained by mixing a solution of P_{1} in methyl-alcohol with an aqueous solution of KNO_{3}. This salt, which dissolves in water with great difficulty and slightly better in alcohol, gave the following values:
[Co(phenen) $\left.{ }_{2} \mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$ Calc.: $\mathrm{Cl}=15,31 \% ; N=15,09 \% ;$ found: $\mathrm{Cl}=15,44 \% ; 15,54 \% ; 15,26 \% ; N=14,83 \% ; 14,88 \%$. The values for nitrogen, which are a little too low, are caused by the presence of Cl in the molecule ${ }^{3}$). The data concerning the rotation-curve of the praseo-salt. which shows a course perfectly analogous to that of the curves of other prasea-compounds ${ }^{4}$), is given in Fig. 1 by curve III. By treating the praseo-chlorides with potassium- or silver-oxalate, an oxalo-salt: $\left.\left[\mathrm{Co}(\text { phenen })_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{Cl}$ finally also could be obtained. The salt crystallizes from water in red little prisms, containing 2 molecules of water: Calc.: $N=11,42 \%$; $\mathrm{Cl}=7,2 \%$; found: $N=11,33 \%$ and $11,40 \% ; \mathrm{Cl} 7,2$ and $7,0 \%$. Curve $I V$ in Fig. 1 graphically represents the rotation of this salt. It can be remarked, that the oxalo-salt:

[^3][Co (phenen) ${ }_{2} \mathrm{C}_{2} \mathrm{O}_{4}$] Cl may occur in three geometrically isomeric forms. An isomeric salt, however, was in our experiments only found once, in a

Fig. 1. Rotatory Dispersion of:
I. Luteo-salt L_{1} in water, $(c=0,2252 \mathrm{gr}$. in 100 cc$)$.
II. Luteo-salt L_{2} in water, ($c=0,2244 \mathrm{gr}$. in 100 cc).
III. Praseo-salt: $\left[\mathrm{Co}(\text { phenen })_{2} \mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$ in alcohol $+5 \%$ conc. HCl ($c=0,1300 \mathrm{gr}$. in 100 cc).
IV. Oxalo-salt: $\left[\mathrm{Co}(\text { phenen })_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right] \mathrm{Cl}$ in water ($c=0,1180 \mathrm{gr}$. in 100 cc).
minimal quantity. Because of the lack of material, for the present we have abstained from more extensive investigations. The determination of N of this salt yielded: 11,40 and $11,50 \% \mathrm{~N}$; calculated for the compound: [Co(phenen) ${ }_{2} \mathrm{C}_{2} \mathrm{O}_{4}$] $\mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}: 11,42 \%$.

> Groningen, Laboratory for Inorganic and Physical Chemistry of the University.

[^0]: 1) C.f. I. Lifschitz, Proc. Kon. Akad. v. Wetensch., Amsterdam 27, 721 (1924); 39, 1192 (1936); 42, 173 (1939).
 ${ }^{2}$) A. Werner, Helv. Acta I, 5 (1918).
 ${ }^{3}$) The statements of Miklosich, who thought that he had isolated the 3 forms expected, are incorrect. MIKLOSICH in his experiments started from commercial propylenediamine, which nearly always contains ethylenediamine, as was proved by the experiments of one of us (LI). As a matter of fact., H. E. Watts (Diss. Zürich 1912) and H. Hürlimann (Diss. Zürich 1918) failed to obtain such isomerides in using pure propylenediamine.
[^1]: 1) I. Lifschitz, Rec. Trav. Chim. Pays-Bas 58, 785 (1939); more extensive literature is given there.
 ${ }^{2}$) H. Reihlen, Ann. 493, 20 (1932); 494, 157 (1932).
 ${ }^{3}$) L_{1} is considerably less soluble in dilute HCl than in pure water; moreover, in this way a brown colouring matter is removed (see following pages).
 ${ }^{4}$) After re-crystallization from water, one finds, for instance, $\mathrm{Cl}=14,80 \% ; 14,75 \%$; $N($ micro $)=13,01 \% ; 13,06 \% ; \mathrm{H}_{2} \mathrm{O}=6,9 \%$ so that $N: \mathrm{Cl}=2,24: 1$.
[^2]: 1) In the red part of the spectrum, where the luteo-complexes practically have no rotation, the said contribution is very evident, see curve II.
 ${ }^{2}$) I. Lifschitz, 1.c. Proc. Ned. Akad. v. Wetensch. Amsterdam, 1.c.
[^3]: ${ }^{1}$) I. Lifschitz and J. G. Bos; this paper will soon appear in Rec. trav. chim. d. Pays-Bas, 59, (1940).
 ${ }^{2}$) I. Lifschitz, Rec. trav. chim. d. Pays-Bas, 58, 785 (1939).
 ${ }^{3}$) I. Lifschitz and J. G. Bos, Rec. trav. chim. 58, 795 (1939).
 ${ }^{4}$) F. M. Jaeger and H. Blumfndal, Z. anorg. allg. chem. 175, 191 (1928).

