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1. The object of the following no te is to consider some problems which 
arise in the study of the boundary layers formed in various parts of rotating 
pumps or ventilators. In particular we wish to give attention to the influence 
of the centrifugal forces upon the flow in such boundary layers 1). 

We will begin by deriving the equations for thc flow in the boundary 
layer along a rotating wall in a general form. Special forms of these 
equations which can be obtained by introducing appropriate simplifications. 
then may be applied to thc cases to be considered more in detail. 

It is assumed throughout the following lines that the motion of the fluid 
is stationary with respect to a system of coordinates rotating with th~ 

angular velocity (j) about an axis fixed in space. Wh en a righthanded 
rectangular system x. y. z is used. the hydrodynamical equations can be 
put into the form: 

OU ou ou 2 or I op 
uox+voy+woz+2(wyw-wzv)-w ràx=- (! ox+{x, (la) 

àv OV OV 2 or I op 
uö-.x+vay+woz+2(wzu-wxw)-w rày=-(ioy+{Y (lb) 

ow ow ow 2 or 1 op 
u - +v --- +w-+2(wx v-w u)-Ol r-=- - - - +{z . (Ic) 

ox oy oz y oz (! oz 

Here u. v. ware the components of the velocity of the fluid . measured with 

respect to the rotating system of coordinates; p is the pressure; {x. {y. (z 
represent thE:l frictional forces per unit of mass; w x • w y • W z are thc 
components of the angular velocity w along the coordinate axes; finally r 
is the distance from a point to the axis of rotation. As will be seen thc 

1) For a general treatment of the theory of boundary layer flow the reader is referred 
to the chapters on this subject in S. GOLDSTEIN. Modern developments in f1uid dynamics 
I. II (Oxford 1938). where an extensive summa~y is given of the work of a great numher 
of authors. 



terms depending upon the angular velocity in these equations respectively 
represent the compound centripetal acceleration, according to CORIOLIS' 

theorem, and the ordinary centripetal acceleration. 
In applying these equations to the flow in a boundary layer we shall 

take the y-axis normal to the wal!. Within the boundary layer v at most 
will be of the same order of magnitude as the boundary layer thickness c}; 

the same will apply to {Y' It follows that we may write equation (1 b): 

1 àp '" 2 àr 2 ( ) --à =w r-
à 

- WzU-WxW. 
e y y 

(3) 

which shows that within the boundary layer p can vary at most with an 
amount of the order C}. lt is customary to neglect this variation, and to 
consider p as independent of !I within the boundary layer. The value of p 
to be used in the remaining equations ( 1 a) and (1 c) th en is determined 
by the flow outside of thc boundary layer, which by hypothesis is not 
influenced by frictional forces. 

We will assume that the motion outside of thc boundary layer, wh en 
considered with respect to non rotating coordinates. is free from vorticity. 
The components U, V, l.1-T of this motion, defined with reference to the 
rotating system, consequently must satisfy the relations: 

àW àV 
ày - az = -2 Wx. etc .. (4) 

It follows that the pres su re p is determined by the equation: 

p = con st. - te (U2 + V2 + W2) + t e w2 r 2 
• . (5) 

The equations for the motion in the interior of the boundary layer now 
can be written: 

àu àu àu 1 àp 2 or 
u-+v-+w-=---+w r--2w w+{x 

ox ày àz e àx ox Y 
. (6a) 

Ow Ow ow 1 op 2 Or 
u-+v-+w-=---+w r-+2w u+{z. 

àx ày àz e àz àz Y 
• (6b) 

àv àu Ow 
ày-- OX - Oz' • • (7) 

In these equations p should be considered as a known function of x and z. 

2. In sections 2.-6. we shall be concerned with the flow in the 
boundary layer developing along a surface of revolution, and it will be 
assumed that the motion is wholly symmetrical with respect to the axis of 
rotation. 
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In applying equations (6) -- (7) the ongm of the coordinate system 
will be taken in a point of the surface along which the boundary layer 
develops (compare fig. 1); the x-axis shall be tangential to the intersection 

Fig. I. 

of the surface with a meridian plane; the z-axis shall be perpendicular to 
the meridian plane, in such a way that the system shall be righthanded. 
The angle between the x-axis and the axis of rotation will be denoted by 
a; the positive direction of rotation is the one indicated in the diagram. 

Denoting the distance from 0 to the axis of rotation by ro, we have: 
r2 = (ro + x sin a + y cos a)2 + z2. from which, for z = 0: 

orjox = sin a ; orjoy = cos a ; or/oz = o. 
Likewise for z = 0 we have: 

oujoz = - w sin air ; Ov/oz = - w cos air ; owjoz = + u sin air. 

As, moreover: 

Wx = + W cos a Wy = - w sin a ; Wz = 0, 

the equations valid outside of the boundary layer: 

oU/oz-oWjox= - 2wy ; oVjoz-oWjoy = + 2wx • 

lead to the relation: 

àW/or+ W/r=-2w. 

both for x = const. and for y = const. It follows that: 

W=C/r-wr. (8) 

Here C is a constant, and e/r represents the tangential component of the 
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flow measured with respect to fixed axes (the absolute tangential 
component). Hence eq. (5) simplifies to: 

(9) 

It is to be observed that we may put V = 0 at the exterior limit of the 
boundary layer, so long as we remain sufficiently close to the origin of the 
coordinate system. 

Equations (6a). (6b). (7) consequently take the forms: 

ou+ oU_UoU+~(w+wr)2 _ C2~. +f u ::. v::. - ::. 3 sIn a x. 
uX uy uX r r 

ov 
oy 

- (2 w + ~) u sin a + fz 

1 0 (u r) 
----

r OX 

(lOa) 

(lOb) 

(11) 

3. We first consider the case where w = 0 (no rotation) and w = 0, 
e = 0, so that there is no tangential velocity and the motion is confined to 
the meridian planes. Equations (10)-( 11) th en reduce to: 

ou + ou = U oU + f 
u ox v oy ox x 

ov 1 à (ur) 
ày--~ax 

(12) 

(13) 

We will assume that for a given form of the surface the boundary layer 
flow determined by these equations is wholly known, in particula~ also 
when the motion of the fluid in the boundary layer is turbulent. As is well 
known, in the immediate neighbourhood of the wall the left hand side of 
eq. (12). representing the effect of the inertia, vanishes, so tlhat here the 
motion practically is determined by the "exterior driving force" U(oU/ox) 
and the frictiona~ force f x. The frictional force is dependent upon the 
distribution of the velocity in the boundary layer, which distribution must 
satisfy the conditions that u = 0 at y = 0 and u = U at y = c5. In those 
cases wh ere oU/Ox is negative, the "exterior" force tends to drive the 
fluid in the negative direction; when the boundary layer has become of 
sufficient thickness in order that l1he frictional force will have become 
rather smalI. a flow in the negative direction actually sets in close to the 
surface. The appearance of such a "counter flow" or back~flow brings 
about aseparation from the surface of the original positive boundary layer 
flow, which separation soon becomes of such an amount that the concept 
of a boundary layer is no long er applicabIe 2) . 

2) S. GoLDSTEIN, l.c. Vol. I. p. 56 and fig. 22. 
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It will be supposed that the course of this process is known for the 
boundary layer flow described by egs. (12)-(13); our purpose will be to 
discuss the effects which must be expected to appear when the tangential 
velocity wand the rotation of the surface are superposed upon this flow. 

4. We now re-introduce the tangential velo city w, keeping to the case 
of a non rotating surface, so that (jj = O. The tangential velocity either can 
be produced by the action of the rotating blade system of the pump, or it 
may have been produced by a system of fixed guiding blades, placed ahead 
of the surface along which we will consider the boundary layer. In order 
that the flow outside of the boundary layer shall be irrotational, so that 
here W = C/r, the circulation around the blades which have produced the 
tangential velocity must be the same for all distances from the axis. 

In this case (13) remains unchanged, whereas (12) is replaced by the 
two eguations: 

(14 a) 

OW ow uw. 
u - + v - = - - $tn a + fz . àx ày r 

(14 b) 

The case to be investigated can be compared to one in which w = W = 0, 
the surfaces limiting the field of flow remaining the same. So long as the 
boundary layer is sufficiently th in we may assume that the values of U and 
of àU/àx are the same in both cases, which conseguently differ only by the 
presence of the tangential velocity in one of them, and by the corresponding 
term in eg. (9) for the pressure. It will be seen that the term depending 
upon C in this eguation adds to p an amount which increases with r. 

The flow in the boundary layer now possesses a tangential component 
along with the component u. The distribution of the first one is governed 
by eg. (14b), which does not contain a term independent of w (as f z is a 
function of w). Associated with eq. (14b) are the boundary conditions: 

w=O at y=O; w= W=C/r at y=èJ. 

As there is no tangential pressure gradient we may expect that eg. (14b), 
so long as u is everywhere positive (which will be the case so long as the 
boundary layer does not separate from the surfé'ce), will determine a 
monotonous course of the function IV (y); at the same time it will give 
information about the variation of èJ along a meridian section of the surface. 

It is more important to consider eg. (14a). Here the guantity 
( w 2 / r - C2 / r 3 ) will be negative in the boundary layer, in particular close 
to the surface, where w vanishes. Hence to the "exterior force" U(àU/àx) 
already considered before in 3. there is added another "impressed force". 
the sign of which depends upon that of sin a. IE ro increases when we move 
downstream along a meridian, sin a will be positive, and this new force is 

Proc. Ned. Akad. v. Wetenseh., Amsterdam, Vol. XLIV, 1941. 2 
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a retarding one. Hence when U(oUjox) should be negative, the already 
existing tendency for separation will be increased: when oUjox is positivc 
the stability of the flow at any ratc is impaired andwith a sufficiently large 
value of C a possibility for the occurrence of separation even may arise in 
this case. 

We must be careful. however, in making conclusions of this kind, as 
there are other effects which also influence the behaviour of the boundary 
layer. In the first place as the velocity outside of the boundary layer has 

increased from U to the value VU2 + W 2, the motion in the boundary 

layer which perhaps might have been laminar with W = 0, may have become 
turbulent. The transition to turbulence generally :nakes the boundary layer 
flow of a more stabIe nature and defers the tendency towards separation. 
This effect naturally loses its importance when the flow in the boundary 
layer should have been turbulent already from the beginning. - Another 
effect is connected with the curvature of the motion around the surface: 
in turbulent motion there is a tendency towards a decrease of turbulent 
intermixing and turbulent friction if it takes place along a convex wall: 
while the opposite tendency makes itself felt along a concave wall. Now a 
decrease of the turbulent frictional forces appears to increase the possibility 
for the occurrence of separation. 

Hence there are several effects which must be taken into account, and it 
of ten may be difficult to determine their combined result. By way of 
example we may consider the case indicated in fig. 2, wh ere it is assumed 

Fig. 2. 

that U decreases when we pass from CC to DD, so that U(oUjox) is 
negative. Wh en the motion in the boundary layers is turbulent already with 
W = 0, it is probable that the introduction of a tangential component will 
increase the chance for the occurrence of separation along the interior 
surface AB. as here we have both the influence of the negative term 
(w2 j r-C2 j (3 ) sin a and the decrease of turbulent intermixing due to the 
flow along a convex surface. - At the exterior surface CD the tendencies 
discussed oppose each other. Experimental evidence points to a preponderant 
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influence of the increased turbulent intermixing and to a decrease of the 
chance for separation 3). 

In the case sketched in fig. 3 we have sin a < 0 along the part EF of the 

:?5>~ 
-=;;-_.~.= ....... -=._.-

--------~ - Fig. 3. 

interior surface; hence the additional "impressed force" in eq. (14a) now 
drives forward the fluid. and somewhat should diminish the chance for 
the occurrence of separation which is caused by the negative value of 
oU/ox. The flow along the convex surface. however. brings a decrease of 
turbulent intermixing. and it is possible that this effect is preponderant and 
increases the tendency towards separation. It must be remarked. moreover. 
that although in practice there are sometimes found cases in which the 
diameter of the interior boundary surface decreases over a short distance. 
it is customary to remave as far as possible the rotational velocity of the 
fluid before it enters a spa ce in which the interior surface retracts to zero 
radius (as at F in fig. 3). as the increase of the tangential velocity. which 
otherwise would be obtained near the axis. would bring about a loss of 
energy. 

5. Next we turn to the case where the surface itself is rotating. with the 
angular velocity w. while in the motion outside of the boundary layer there 
is na absolute tangential velocity. sa that C = O. Instead of eqs. (14a)­
(14b) we obtain: 

( u àu + v àu = U àU + (w + ~l')2 sin a + fx 
) àx ày àx l' 

? u ~= + v ~; = - ; (w + 2 wr) sin a + fz 

(15 a) 

(15 b) 

3) It is known that the efficiency of a diffuser (a pipe of increasing cross section. 
used for obtaining an increase of pressure through a decrease of the velocity) increases 
when a rotation is set up in the flow entering the diffuser. Compare e.g. H. PETERS. 

Energieumsetzung in Querschnittserweiterungen bei verschiedenen Zulaufsbedingungen. 
Ingenieur-Archiv 2. p. 92. 1931. 

2* 
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IE we introduce the absolute tangential velocity: 

wl=w+wr. 

eq. (15b) can be transformed into: 

OWl OWl UWl. f u--+v--=---sma+ z 
dx oy r 

(16) 

(17) 

As f z just as well may be considered as a function of Wl (within the 
boundary layer the derivative dr/dy is negligible in comparison with 
dw/dy) this equation is identical in form with eq. (14b). The boundary 
conditions associated with it are: 

Wl = wr at y = 0: Wl = 0 at y = 15. 

We may expect that again there will be found a monotonous course of Wl 

between these values. 
Now considering eq. (15a) it will be seen that the additional "impressed 

force" (w + wr)2/r. sin a is of the opposite sign as the one appearing in 
eq. (14a). Hence if we return to a case as was sketched in fig. 2, where 
sin a > 0, th ere now is obtained a forward driving force, which consequently 
diminishes the chance for the occurrence of separation. It will be evident 
that this forward driving force is due to the centrifugal effect of the Huid 
in the rotating boundary layer; hence it will always drive this fluid towards 
the section of the largest diameter. The presence of such an effect can be 
usefu~ in cases as that of fig. 2, where owing to the enlargement of the 
section of the channel dU/dx has a negative value. 

6. It may be of interest to make an estimate of the magnitude of the 
rotational velocity necessary to balance the retarding influence due to a 
negative value of dU/dx. Por this purpose it is convenient to transfarm eq. 
( 15a) by integrating it with respect to y over the thickness of the boundary 
layer. Passing over the details we obtain: 

where F x denotes the frictional force per unit area exerted on the wall. 
We assume the following approximations, which in most cases of turbulent 
flow in the boundary layer may be sufficiently accurate for deriving an 
estimate: 

u ~ U (yft5)''': Wl = wr-wr(y/t5)'/7. 

Equation (18) then can be transformed into: 

~ U2 ~ ( .t) = rPx _ .t ~ 23 U oU + sin a 2 ~ 
72 dx ru e ru ( 72 OX 36 w r ~ (19) 
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Hence in order that the retarding effect of a negative dU/eh may be 
balanced. the value of the circumferential velocity wr shouJd satisfy the 
inequality: 

( )
2. ____ 23 U àU wr Sin a ..-::: - - r -

::....- 2 àx (20) 

A similar calculation can be made for the more general case to which 
refers eq. (IOa). where the absolute tangential velocity W outside of the 
boundary layer is not zero. In that case the second term on the right hand 
sicle of eq. (18) must be replaced by: 

For Wl we must take the approximate formula: 

W, ~ wr + (Cfr-wr) (y/c5)'/,. 

and the second term of the right hand member of eq. (19) becomes 

-rèJ -U-+-- wr-- wr+- . ~ 23 àU sin a ( C) ( 8 C) ~ 
72 àx 36 r r r 

When the absolute tangential velocity W is in the same direction as the 
angular velocity w. it must be counted as positive (see fig. I). so that also 
e is positive. If we write e/r = k. wr. it is found that condition (20) is 
replaced by: 

. 23 àU 
(l-k) (1 + 8 k) (wr)2 Sin a ~-2 rU àx' 

The left hand member has a maximum for k = 7/16 ~ 0.44; with this vaJue 
we Eind: 

81 ( )2' ~ 23 U àU 
32 wr Sin a ::;:::; - 2 r àx' (21) 

Experiments on the influence of rotation on the behaviour of the 
boundary layer along a sphere have been carried out by LUTHANDER and 
RVD BERG 4). As the authors state the effects of the centrifugal force of the 
rotating boundary layer. tending to drive the fIuid towards the equator of 
the sphere. c1early come out in many details of their results. but the whole 

4) S. LUTHANDER und A. RVDBERG. Experirnentelle Untersuchung über den Luft­
widerstand bei einer urn eine rnit der Windrichtung paraIIele Achse rotierenden Kugel. 
Physik. Zeitschr. 36. p. 552. 1935. 
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phenomenon appears to be complicated very much by the influence of the 
rotational velocity upon the state of turbulence in the boundary layer. 
A comparison with eq. (20) cannot be made, as in the case of the flow 
along a sphere dU/ox and sin a both are positive at the front side, and 
negative at the back side. 

7. We now leave aside the consideration of boundary layers along 
surfaces of revolution, and turn to those parts of hydrodynamic or aero~ 
dynamic machinery, where the field, owing to the presence of the blades, no 
longer possesses perfect rotational symmetry. In th is case the simplified 
equations (toa), (1 Ob). (11) cannot be used. and we must revert to eqs. 
(6a). (6b). (7). The conclusions that can be drawn with regard to the 
flow in the boundary layers reduce to a discussion of the influence of those 
terms in the right hand members of (6a) and (6b) which are due to the 
rotation. 

By way of example we may consider a highly ~implified type ofaxial 
pump, as indicated in fig. 4. lt has been supposed that the four blades are 

--Cm 

Fig. 4. 

mounted on a disk (shaded in the diagram), which in the direction indicated 
by the arrow rotates between two fixed cylindrical surfaces. In the diagram 
the case has been imagined where the parts in the neighbourhood of the 
leading edges and of the trailing edges of the blacies move over the non 
rotating surfaces. 

We first consider the flow in the boundary layer along the cylindrical 
surfaces limiting the field. With reference to a rotating system ofaxes 
(introduced in order that the flow may appear stationary). the y~axis, as 
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before, being normal to the surface, the motion of the fluid is governed by 
the equations: 

u du + v àu + w àu = _ ~ àp + fx I 
àx àg àz e àx 

u à_w + v àu.> + w à_w = - _l _àp + fz 
àx àg àz e àz j 

àv àu àw 
dg -àx - àz 

(22) 

In these equations the angular velocity does not appear. Hence in the 
boundary layer along the rotating part of the interior surface (i.e. along the 
cylindrical surface of the disc or hub which carries the blades) , where the 
boundary condition for the relative tangential velocity is w = 0, no direct 
influence of the rotation is to be perceived. 

At the non rotating cylindrical surfaces the boundary condition for tv 

becomes: tv = -wr. Consequently along these surfaces th ere exists a 
tangential flow (in the negative direction with reference to the rotating 
coordinate system). In so far as such a flow is found in the spa ces between 
the blades it wiII strike upon the under sides of the blades (which in the 
diagram have been taken as practically flat). The blades, so to speak, 
"scrape off" the fluid from the outer cylindrical boundary. and from those 
parts of the inner boundary which they overlap. Considering with reference 
to the cylindrical surfaces we may expect that this arrangement has the 
effect of a forward driving force upon the Huid in the boundary layer. On 
the other hand, considering with reference to the blades, we see that a 
certain amount of fluid is heaped up before the under sides of the blades, 
while fluid is drawn away from the upper sides (the convex sides in the 
diagram). These effects may have a certain influence upon the boundary 
layer flow along the blades themselves 5). 

In the boundary layers along the blades the centrifugal force wilI tend 
to produce a motion in the radial direction. The effect of this centrifugaI 
force , however, cannot be discussed without giving attention at the same 
time to the pressure distribution generated by the motion of the blades. 
An approximate picture can be obtained by means of the reasoning indicated 
in the next section. 

5) Experiments on the infIucnce of "scraping off" the boundary layer have been carried 
out by H. P . J. VERBEEK, Bepaling van den luchtweerstand van een bol met draaiende 
wieken, De Ingenieur 48. p. W 157, 1933. The rotating vanes moving over the back si de of 
the sphere used in these experiments were straight. so that they did not exert a forward 
driving force upon the fIuid in the boundary layer. It was found that at those REYNOLDS 

numbers. where the flow in the boundary layer still is laminar and separation normally 
occurs before the equator. a decrease of resistance. pointing to a dela:y of the separation. 
could be obtained by scraping oH the boundary layer. A satisfactory interpretation of all 
the results found in these experiments is difficult . however. and perhaps more exact 
investigations will be necessar,y. 
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8. The blades of the pump can be considered as vort ex sheets; in the 
case of blades bearing a constant circulation the vortex lines from the 
interior cylindrical surface run to the exterior one, of ten in a nearly radial 
direction, so that they are all cut by any cylindrical surface imagined 
between the interior and the exterior boundary of the field. We shall write 
y for the strength of the vortex sheet per unit length, measured along the 
intersection of the blade with such a cylindrical surface; the integral of y 

along the whole length of the line of intersection is equal to the circulation 
T around the blade: Usually y has a maximum somewhere in the neigh­
bourhood of the leading edge of the blade; in certain cases the maximum 
may be found actuallyon the leading edge, but with suitable forms of the 
blade it can be displaced more towards the centre for the normal working 
condition of the pump. 

Now let W re1 be the effective relative velocity of the fluid in the neigh­
bourhood of the blade, which quantity is given by: 

(23) 

Here it has been assumed that upstream of the blades the absolute tangentiaJ 
velocity is zero, so that C = 0, there being only an axial velocity of 
constant magnitude Cm; tL.. Cu represents a correction due to the presence 
of the other blades, which with sufficient approximation is given by: 
NT/4nr (N being the number of blades) . It may be remarked that in a 
pump of the simple type sketched in fig. 4, the flow outside of the boundary 
layer practically is confined to cylindrical surfaces, so that any radial 
component may be neglected. 

The pressure difference between the two sides of the blades is given by: 

(24) 

and when the blades are not too thick the excess of pressure at a point of 
the under side will have the value: 

PI = teWrel y-t e y2 . (25a) 

and the defect of pressure at a point of the upper side: 

(25b) 

Combining these amounts with the potentialof the centrifugal forces we 
have, at the under side: 

(26a) 

and at the upper side: 
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For a pump with simple blades in the normal working condition the 
value of r. although being a function of the distance from the leading edge. 
does not change very much with r. Hence. as W rel • according to (23). 
increases with r. it \ViII be scen that at the upper side of the blade the fluid 
in the boundary layer is actcd upon by a centrifugal field of force. and that 
the same effect may be found at the under side pravided the value of r is 
not too high. In the neighbourhood of the leading edge. however. locally 
rather high va lu es of y may occur (unless the bladel' are speciaIly de,,;gned 
so as to avoid such values. which can be done for a particular working 
condition only); in that case the pressure excess can amount to ~ (} W rel 2 • 

Nevertheless the quantity [71 - -! (! (t)2 r 2 wiII not increase with increasing 
values of r. provided the situation is not of such kind. that the high value 
of r is to be found only at the outer part of the blade. 

We may conclude that in general there wiII be a tendency towards a 
centrifugal flow of the fluid in the boundary layers along the blades. a 
marked one at thc upper sides and a less significant one at the under sides. 

9. Thus far we have given attention to motion in the radial direction 
only. When the distribution of the pressure over the blade surface should 
be known in detail. it wiII be possible to find out whether there may be 
marked tendencies for the appearance of a bou!1dary layer flow in a 
direction opposite to that of the flow outside of the boundary layer. Such 
a tendency may be found at the upper side. from the trailing edge towards 
the reg ion of minimum pressure; and in certain cases at the under side 
from the region of maximum pressure towards the leading edge. As is weIl 
known separation of the boundary layer flow may occur at the upper side 
when the pressure distribution is of an unsuitable type. as wiII occur wh en 
the angle of incidence of the effective relative velocity of the fluid upon the 
blade is too high. (In de5igning the blades care is taken that such a 
situation wiII not occur in the normal working range of the pump.) 

It is further known that with a weIl rounded off leading edge th ere is 
no danger for separation at the under side of the blade when the region 
of high pressure is near to the leading edge. In those cases where the blade 
is designed so as to have the reg ion of maximum pressure more towards 
the centre. the maximum pressure wiII not be so high as to cause serious 
danger for the occurrence of separation. 

It must be noted finaIly that the compound centrifugal acceleration of 
CORIOLIS wiIl produce a curvature of the streamlincs in the boundary !ayer. 
In the case pictured in fig. 4 the flow along the under side of the blades 
e.g. continuaIly will suffer a deviation to the right. 


