Chemistry. — On the Resolution of a-Phenylpropylamine into Its Optically-active Antipodes (2nd Part). By F. M. JAEGER and W. FROENTJES.

(Communicated at the meeting of January 25, 1941.)

§ 1. In a former paper 1) the preparation of this base and that of its someride *benzedrine*, as well as the resolution of the latter into its antipodes, have been described in detail. In the present one we communicate the results of our investigations concerning the resolution of *a-phenyl-propylamine*: C_6H_5 . $CH(NH_2)$. CH_2 . CH_3 and of the phenomena therewith observed.

Purest racemic a-phenylpropylamine of the boilingpoint 62° — 63° C. under 3 m.M. pressure was converted into its bi-d-tartrate and the anhydrous salt obtained subjected to repeated fractional crystallisations from absolute alcohol, — first at room-temperature and later in an exsiccator at 35° C., - this being the most adequate temperature for still obtaining well-crystallized fractions from the last mother-liquors. The principal fraction (of $[a]_D = +22^\circ$, 5) was thus obtained from the solution at 18° C. and recrystallized from absolute alcohol; but it proved impossible also to isolate the final fraction (of $[a]_D = +7^\circ$) from the mother-liquors in this way. Therefore, — as no other solvent proved to yield better results, we finally made the experiments at 35° C. in the way described. As the difference in solubility of the components proves to be much less than in the case of benzedrine; and because their power of crystallisation is rather poor, --the complete resolution happens to be a much more tedious task and involves a greater sacrifice of material than in the case of benzedrine; the more so, because the bi-tartrates, which in cold alcohol are only sparely soluble, could never be obtained in the form of well-developed crystals, notwithstanding many tentatives were made and after other solvents had been tried. They always were deposited as felt-like, very thin and feathery needles or, from the final mother-liquors, as a slimy aggregation. Moreover, the substance has a disposition to "creep" against the walls of the vessel to a considerable distance above the surface of the solution.

Finally a fraction could be obtained which, after repeated crystallisations, did not change its specific rotation for sodium-light any more. This constantly rotating fraction showed $[a]_D = + 22^{\circ},5$; its meltingpoint was 176° C.²). The base set free from this salt (boiling at 67° C. under

¹⁾ F. M. JAEGER and J. A. VAN DIJK, Proc. Ned. Akad. v. Wetensch., Amsterdam, 44, 26 (1941).

²) P. BILLON, Compt. rend. Paris, 182, 472 (1926). The meltingpoint: 176° C. is 10° *higher* than that given by BILLON (166° C.); this again demonstrates the *in*completeness of the fission by this author.

5 m.M. pressure), proved to be the *levo*gyratory component. The rotations observed were *less than half* those of *benzedrine*; but they were *not less than 50 % higher* than those indicated by BILLON ²), whose resolution evidently must have been still very *incomplete*. The mother-liquors of the final recrystallisations of the mixed *bi-d-tartrates* did not crystallize very well and yielded a kind of semi-colloidal product; but a final fraction thus obtained, showing a (lowest) specific rotation: $[a]_D = +$ 7°,0 proved to be *homogeneous* and, on further recrystallisations, did no longer alter its rotation any more. This *bi-d-tartrate* showed a meltingpoint of 123° C.; and the base set free from it, proved, indeed, to be the *dextrogyratory* component, constantly, boiling at 64° C. under a pressure of 4 m.M. The rotatory dispersions of the two antipodes thus observed are given in Tabel II, whilst the same has been done for the *bi-d-tartrates* themselves in Table I.

	persion of <i>l-a-</i> Phenylpropylamine-b ylamine-bi- <i>d-</i> Tartrate (123°C.) in		
Wave-length λ in A.U.:	Specific Rotations [a] of		
	<i>l-a</i> -Phenylpropylamine-bi- -d-tartrate (176° C.):	<i>d-a</i> -Propylamine-bi- - <i>d</i> -tartrate (123° C.)	
6980	+16 [°] .0	_	
673 0	17.8	+5 .°2	
6480	18.8	5.9	
6262	19.8	6.1	
6074	20.8	6.5	
5893	22.3	7.0	
5735	23.6	7.2	
55 92	24.5	7.7	
5463	25.8	8.0	
53 1 0	27.1	8.0	
5 224	28.1	8.0	
5126	29.3	8.1	
5036	30.1	_	
49 50	31.5	8.3	
4861	32.4	_	
4793	35.0	_	
4724	36.8		
4 596	39.0	_	
4537	42.1	_	
4483	(47.0)	_	

Wave length λ in A.U.:	ry Dispersion of Optically-active a-Phenyl- Specific Rotations of		
	d-a-Phenyl- propylamine	<i>l-a-</i> Phenyl- propylamine	- Mean values of the Dispersion :
69 80	_	_11°.7	(11.7)
6730	+11 .4	-12.2	11.8
6480	+12.2	-12.7	12.5
6262	+13.0	-13.3	13.2
607 4	+13.9	-14.2	14.1
5893	+14.8	-15.1	15.0
5735	+15.7	-16.0	15.9
5592	+16.7	-16.9	16.8
5 4 63	+17.6	-17.9	17.8
53 1 0	+18.4	-18.7	18.6
5224	+19.2	-19.5	19.4
5126	+20.2	-20.4	20.3
5036	+20.9	-21.2	21.1
4950	+21.9	-23.0	22.5
4861	-	-23.8	23.8
4793	-	-24.7	24.7
4724	-	-25.5	25.5
4658	-	-26.3	26.3
4596	-	-27.2	27.2
4537	-	-28.0	28.0
4483	-	-28.8	28.8

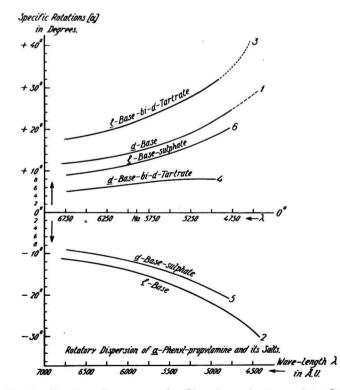


Fig. 1. Rotatory Dispersion of α -Phenylpropylamine and its Salts.

§ 2. From these data it becomes clear that the two optically active bases, when present in the form of the *bi-tartrates* exhibit a rotation of the opposite algebraic sign as compared with that of the free bases themselves: they thus manifest this phenomenon, when they are electrically charged as *ions*. For the purpose of corroborating this conclusions, we have prepared the (anhydrous) *sulphates* ¹) and in Table III we give the corresponding data of the rotatory dispersion for these salts in a 2 % molar (= 1,842 % in weight) aqueous solutions:

TABLE III. The Rotatory Dispersion of the Sulphates of the Optically-active a- Phenylpropylamines in aqueous Solutions,			
Wave-length λ in A.U.:	Specific Rotations [a] of a-Phenylpropylamine-sulphates		
	<i>l-a-</i> Phenylpropylamine- sulphate	d-a-Phenylpropylamine- sulphate	
6730	+ 9°.4	-10°.0	
6480	+10.5	-10.7	
6262	+11.4	-11.5	
6074	+12.0	-12.0	
5893	+13.2	-13.5	
5735	+14.0	-14.0	
5 5 92	+14.4	_14.7	
5463	+15.3	-15.3	
5340	+16.2	-16.2	
522 4	+17.2	-16.7	
5126	+18.1	-17. 2	
5036	+19.2	-17.7	
4950	+20.2	-18.3	
4861	+20.8	-19.5	
4793	+21.7	-20.5	

¹) Analysis yielded 25.82 % SO₄ (calc.: 26.07 %); the salt melts at 200° to 223° C. under partial decomposition. The results, which are graphically represented all-together in Fig. 1, leave no doubt whatsoever about the correctness of the conclusion drawn. The behaviour of the bases, therefore, is in this respect exactly the *opposite* one to that of the isomeric *benzedrine*. Probably the sterical configuration round the asymmetrical carbon-atom in the two isomeric substances may be supposed to be enantiomorphous.

Groningen, Laboratory for Inorganic and Physical Chemistry of the University.