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Introduction. 
The purpose of this paper is to develop the differential geometry of 

curves in a conformal euclidean space Rn of dimension n > 2. in particular 
to obtain the intrinsic equations of a curve. which determine the curve 
up to a conformal pointtransformation in R n. and the analogue of the 
Frenet~Serret formulas. 

As to the method employed in this note. no polyspherical coordinates 
are introduced. by which the conform al transformations can be brought 
in a linear form . BLASCHKE ') and others have treated the problem for 

. R2 and R3 in that way looking upon a curve as a particular system 
of . 00 t spheres. Our method on the other hand is based upon the well~ 
known facto again proved in § 1. that the conformal properties are those 
properties. which are unaffected by a conformal transformation of the 
fundamental tensor : 

, 2 
a.lx = a a.lx (1) 

with a satisfying the differential equation 

(2) 

Although in ordinary differential geometry the extension to R1EMANNian 
spaces raises no essential difficulty as to the geometry of curves. it is 
not the case in conformal differential geometry. owing to the fact that 
in curved spaces a conformal property is defined as a property which 
is unaffected by a conformal transformation of the fundamental tensor : 
a!.x = 0 2 a).x. a being an arbitrazily chosen function of the coordinates. 
In curved spa ces it is impossible to impose on a the condition (2). this 
equation being not completely integrable. This essential difference 
between the conformal geometry of flat spaces and curved spaces is the 
reason why we restrict ourselves in this paper to flat spaces. 

I hope to treat the case n = 2 in a later communication. 

§ 1. Preliminaries. 
Let a)., be the fundamental tensor of an n~dimensional flat space Rn. 

in which the coordinates are denoted by x ' . We may of course assume 

1) W . BLASCHKE, Vorlesungen über Differentialgeometrie lIl , Springer. Berlin. 
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that the coordinate system is a rectangular Cartesian one. but we will 
not con fine ourselves to these systems. The transformation 

(3) 

is a conformal pointtransformation if 

(4) 

Suppose that in the region considered the transformation (3) is reversible. 
So we have 

(5) 

We now pass to another coordinate system (",') by the transformation 

(6) 

where the functions F" are identical with F'. Then the coordinates of 
the point y' with respect to the system (",') are from (6) and (5) 

(7) 

and the components of the fundamental tensor at the point y' with 
respect to (",') are by (4) 

ah' (y) = 0 2 a;., . (8) 

. Therefore if the pointtransformation (3) and the coordinate transformation 
(6) are carried out together each point keeps its own coordinates as a 
result of which the equations of transformed curves and surfaces remain 
the same. But from (8) we see that the fundamental tensor has become 
a factor 0 2• Now the space is assumed to be flat. Then the curvature 
afflnor defined by 

(9) 

will vanish both for a;.z and 0
2 

a l.,. This leads for n > 2 to the following 
equation for a 2) 

(SI" = à,t log a). (10) 

where the covariant differentiation is taken with respect to a;.,. There~ 

fore. if the coordinates are rectangular Cartesian. v,. is identical with à,t. 
Conversely. to every solution a of (10) a conformal pointtransformation 

can be found. such th at this transformation creates this special a 3). 
We thus have the result that in order to pnd the confol'mal properties 

of curves. surfaces etc.. one may as weil determine the properties which 

2) Cf. SCHOUTEN-STRUIK, Einführung in die neueren Methoden der Differential~ 

geometrie 11. (NoordhoH 1938). p. 205. In this book our factor 0 2 is denoted by o. 
3) SCHOUTEN-STRUIK. Einführung 11. p. 205. 
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are invariant under a conformal transformation of the fundamental 
tensor ai, = 0 2 a.l, . 0 satisfying the equation (10) . 

The equation (10) is completely integrable. There exists also only 
one solution for which Si. and 0 have given values (S.l)o and 00 at 
a given point x;. 

The CHRISTOFFEL~symbols computed from the tensor ai, are connected 
with the CHRlsTOFFEL~symbols belonging to ai., by the formulas 

~ " r _ ~ " i + AZ + AZ , ? f-l). ~ - ? f-l ). ~ ,. Si. i. S,. - a,.i. s • (11) 

where A~ is the unit afHnor. 

§ 2. The conformal parameter and the conformal orthogonal ennuple. 
Let a curve be given by the equation 

X Z = X X (t). . . (12) 

t being a scalar parameter. The arc-Iengths with respect to a.lx and aix 
will be denoted by s and s'. the corresponding co variant derivatives 
along the curve by djds and (j'jds' respectively. (These covariant 
derivatives are identical with the ordinary derivates with respect to 
euclidean coordinate systems belonging to the corresponding fundamental 
tensor). If pZ is a contravariantvector we have from (11) 

d' pZ _ _ \ (j pZ ( dX") z dxz dx i
. x i 

ds' - 0 I ( Cl S + s,. ds P + (S,. pI') ds - a,..l pi' ds s ~ . 

We now consider the vectors 

dxZ 
i

Z = ds . 
(j i' 

qZ= ds' 

(13) 

(14) 

It may be shown by direct calculation using (10) and (13) that these 
vectors transform under a conformal transformation (1) of the a.lx in the 
following way 

a) 

b) 

c) 

(15) 

Prom this we see that the two~direction determined by the osculating 
plane is not conformal invariant in contrast with the two~direction 

(Iocal plane) determined by i' and rX (thus for a euclidean system by 

~ and :;Z). This local plane. which shall be called conformal osculating 
plane. is unique except when iX and rX have the same direction. If th is 
happens at every point of the curve. the curve is a circle. We therefore 
for the present exclude the circles. 
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The vector defined by 

v' = r' + a,,,. q" q" i' (16) 

lies in the conformal osculating plane and is normal to i' as may be 
shown by multiplication by i'. The transformation of v' follows from (15) 

v" = a-3 v'. . ( 17) 

From v' can be derived a scalar. which is multiplied by a power of a 
under the transformation (1). namely 

e = V ai., Vi. v'; e' = a-2 e· ( 18) 

This scalar enables us to define on the curve a parameter 'I: invariant 
under conformal transformations 

(c constant). (19) 

This parameter is called the conformal parameter or the inversion
length i) of the curve. It is as follows from the definition of (! of the 
third order. 

Let us now turn to the orthogonal ennuple. The question is to 
complete the directions . of i Z and v' to a system of n mutually orthogonal 
directions. which are conformal invariant. 

Consider a unit vector-field p' along the curve normal to i'. Then 
the transformation of pZ under a conformal transformation is 

p" = a-I pZ .. (20) 

From this relation and (13) follows at on ce the transformation of the 
covariant derivative of p': 

éJ' " (d ' l 
~ - a-2 ) L + (s p.") ,., ( 
ds' - (ds I" ~ •• 

(21) 

éJ p' 
So we see that the local plane determined by - and i' is a conformal 

ds 
invariant plane and therefore the direction in this plane normal to i' 
will be a conformal invariant direction. It is easy to see that this 
direction is determined by the vector 

éJpi. Z .,. _ éJp' (. Jpi.) 'z 
ds (Ai. - I l!.) - ds - I!. ds ,.. (22) 

éJ p' 
Now p' is supposed to be a unit vector. So di and with it the 

vector (22) are orthogonal to p'. 

4) H. LIEBMANN, Beiträge zur Inversionsgeometrie der Kurven, Münchner Berichte 
.(1923). 

Proc. Ned. Akad. v. Wetenseh .• Amsterdam. Vol. XLIV. 1941. 53 
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Let us apply this result to the unit vector i' in the direction of v' 
2 

· (23) 

We get 

tJ ij. 

_2 (AA - i' i;.) = e2 i X 

ds - 3 
· (24) 

where i' is a unit vector normal to i X and i' . The algehraic sign of e2 
3 2 

is not determined hy the Jatter equation, hut we may choose i' so as 
3 

to make e2 positive. If e2 ~ 0 the same operator can he applied to i'. 

In doing so we ohtain 

tJ iJ. 

d
3 (A ~ - i X i;.) = - e2 i X + e3 i'. 
s 2 4 

3 

· (25) 

where again e3 is chosen to be non~negative. This equation defines a 
unit vector ;X normal to iX

, iX and r-x, as may he. seen hy multiplying 
4 2 3 

(25) by ix, ix and ix respectively. We have f. i. 
2 3 

tJ ij, b ij. 
3 (AX :x ') , ,2 -d J.-r l). lx=-U -

d 
=-e2 

s 2 . 3 S 
(26) 

Proceeding in this way we get (if none of the 'quantities e2' e3' , .. 
appears to he zero) 

(27) 

d
n 
(A~ - i' i;.) = - en - l i' . 

S n- l 

diJ. 

If ej vanishes the set of equations breaks off with is' The directions 

of the vectors iX
, iX

, ••• , i' are as we have seen confarmal invariant. 
2 n 

Together they farm at each point of the curve what is called the 
conformal orthogonal ennuple. 

It may he noted that the quantities e2' e3' ... are not conformal 
invariant. In fact we have from (25), (26) and (27) 

(i = 2, 3, ... , n - 1) (28) 
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But this states that the quantities 

h i =e- I ei 

are n - 2 conformal invariants of the curve. Since the vee tors 

are unit vee tors it is c1ear that the vectors defined by 

d ' l = e-! i' = d
X 

; l = e- I i' 
t i i 

(i = 2 ..... n) 

(29) 
'l( 'X 
I , I •••• 

(30) 

form a system of n mutually orthogonal conformal invariant vectors 
all of the same length. 

§ 3. The conformal covariant derivative along the curve. 
We have hitherto used the covariant derivative belonging to the 

metric ai.>.. As has been pointed out in § 1 this derivative is not invariant 
under conformal transformations. the CHRISTOFFEL-symbols transforming 
in a way given by (11). H. however. we have the disposal of a covariant 
vector QI" which transforms as follows 

Q;.=QI'-SI' (31) 
the quantities 

(32) 

are conformal invaria'nt as a consequence of (11) and (31). They can 
be used as parameters of a conformal connection. 

It may be noted that the parameters 01. only define a covariant 
derivative along the curve if Qi" is a function on the curve. It is of 
course necessary in this case to use the invariant parameter T in order 
to obtain conformal invariant derivatives. 

Now it can be shown at once from (1). (15. b) and (18) that the 
Q,u defined by 

Q _ ~ b ii. 1 (d I ) '1. ~ _ bi,. 1 (d ) . 
i" - al'l. ~ d s + 2 d s og e I ~ - d s + 2 ,d s log el,. (33) 

transforms under conformal transformations in the right way. The 
covariant derivative along the curve defined by (32) and (33) will be 
denoted by D~. It is a conformal invariant derivative. We have f.i. 

D 'r l = [i - I ~ ~i: -~ (dds log e) t + 2 (Q,. i-") i' - Q' ~ j. 
(34) 

= e-I ~ IJ i' +! (!i. log e) i' - Q' l = O. 5) 
~ds 2 ds ~ 

5) Coriversely the Of' may be defined by the assumption DTr = O. It may be 
remarked that this covariant derivative is not commutative with the process of raising 

and lowering of indices defined by the tensor BI.>. because of DT Bl.x = -2 (Ol' 'I') Bl.x * O. 
The processes are commutative jf for the raising and lowering of indices is used the 

conformal invariant tensor bI.>. = e 81.>.' 

53* 
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The transformation of QI' under conformal transformations is given by 
(31). Now it lies on the surface to inquire whether it is possible to 6nd 
a conform.al transformation such that Q~ becomes zero. From (10) we 
derive as a necessary and sufficient condition the vanishing of 

t5 Q l ( '1' Q ) Q + 1 • Q Q I' d s - I I' I. 2" 11. I' . · (35) 

But from the de6nition of Q I. we derive by a sm all calculation 

t5d~l. - (i" Q ,,) Q I. + t i l. 0." Q I' = e (~I. + hl i;.) · (36) 

where 

· (37) 

-So we see that the expression (35) is different from zero. It may be 
shown by direct calculation from (15. b) and (18) that the quantity hl 
is a conformal invariant of the curve . 

If the covariant derivative de6ned by (32) is used. the equation (36) 
can be written as follows 

D7 QI. + r 0.,. QI. - t j l. QI' Q,u = e al., UZ + hl j') . . . (38) 
2 

§ 4. The "Frenet~Serret" formulas. 
We return to the equations (24). (25) and (27). This set of equations 

may be written in a form involving the conformal covariant derivative. 
Let p' be a unit vector normal to i'. Then e- ~ p' is conformal 

invariant. From (32) and (33) we get 

~ t5 ' ) 
D7 (e- I p' ) = e- l 

( Is + (Q" pI') f ~ . 

Moreover since (comp. footnote 5)) 

Dor al, = - 2 (O."r) al., 

we have as a consequence of (34) 

i, D7 (e-! p' ) = O. 

. . (39) 

(40) 

. . (41) 

From (39) and (41) it follows that the vector (39) apart from a factor 
t5p' 

e- l is equal to the component of ds normal to i'. 

Applying this result to the set of equations (2-4) . (25) and (27) we 
have from (29) and (30) 

D -r j'=h2 F 
2 3 

D -r}' = - h2 }' + h3r I 
3 2 i 

~-r~X • ~h~- l >. ' . ( 
n n-l ) 

. . . (42) 
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These equations together with the equations (34) and (38): 

DTr=O ; r-d:r' ~ (43) 

D Q + ( 'Il Q ) Q I' Q Q i< _ aÀx (hl j' + j;) 
or i. } , f' i.- 'i } À I ' - ',,' y 

a ll"} ' } 

will be called the conformal H Frenet-Serret" formulas . 

§ 5. The intrinsic equations of the curve. 
In this section we shall show. that the curve is determined. to within 

conformal representations. by the expressions hl . ... • hn-l in terms of 
the conformal parameter l . 

When we substitute the expressions for hl' h2 ••••• hn -I in the 
Frenet-Serret formulas . a system is obtained of N = n (n + 2) differen
tial equations of the form 

(x= I. . .. . N) . (44) 

where the (X x represent the N unknown quantities 

. . (45) 

We know that a system (44) admits a unique set of solutions. whose values 
for l = 0 are given arbitrarily. These values are chosen so that the 
vectors r = r. r ... .. r for l = 0 are mutually orthogonal and all have 

I 2 n 

the same length ao. From (42) and (43) it follows 

d j = 0 (a =t= b) (a. b = 1. . ..• n) 
-d (aÀ,/"r)=DT(aÀ,/"r) --2(Q .,.) ·i.·' (b- ) 
lab a b - i<} a i.,}} - a 

a a 

(46) 

which proves that for all values of l the solutions rare mutually 
orthogonal and have the same leng th a. Furthermore it has to be shown 
that this system of orthogonal vectors is identical with the conformal 
ennuple of the curve given by the solution 

(47) 

From the definition of conform al invariant ennuple (§ 2) and our system 
of differential equations (42) and (43) it is easy to see that this will be 
the case if the parameter l in (47) is the conformal parameter of the 
curve. 

In order to prove that l is indeed the conformal parameter we 
introduce the arc-Iength s defined by the fundamental tensor aÀ>. Since 

'1. . , _ dx i
. dx' _ 2 

a l x } } - ai" Tt Tt - a • (48) 
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tand s are connected by the equation 

dt=a- I ds. 

Then equation (43) may be written as follows 

. (49) 

a) :5 iZ = QZ_2 (Q~ i~) i Z
- (;s log a) i X

, (ix = ~Z) ! 
b) d<5 Q;. = (Q~ U') Q;. -t i;. Qz Qz + a-2 (hl Ï;. + h), (i;. = a-I j;.) (50) 

s 2 2 2 

wh ere iZ is a unit vector. Multiplying (50. a) by ix we get 
2 

Q~ i~ = - 1s log a. (51 ) 

Using the relations (50. b) and (51) it may be shown by direct calculation 
fr om (50. a) that 

152 • <5i~ bi;' . . 
- l x +a1p.- -,z=a-2 , x. 
ds 2 ds ds 2 

(52) 

So the vector UZ (comp. (16)) belonging to the curve (47) is equal to 
a-2 i X from which it follows by (18) that 

2 

(53) 

A comparison between (19) and (49) then shows that the parameter t' 

is indeed the conformal invariant parameter. 
The values of Q~ and a for t' = 0 may be chosen arbitrarily. The 

question arises what happens if we choose for these quantities other 
values. It is always possible to express the new values in terms of the 
old ones in the following form 

(54) 

Generally these values will lead to another solution for XX and therefore 
to another curve. In the following it will be shown that this latter 
curve, obtained with the initial values (54), is a conformal representation 
of the curve (47). 

Suppose that the coordinate system (x) is euclidean with respect to 
the fundamental tensor a ;.x. The (s~)o and 0 0 in (54) determine a function 
0, namely the unique solution of the differential equation (10) for which 

s~ and 0 have the values (s~)o and 00 at the point x~ (t' = 0). We now 
pass to the coordinate system (x/) which is euclidean with respect to 
0 2 a;.x and whose directions of the coordinate lines at x; coincide with 
the directions of the coordinate lines of the system (x). So we have 

~
= 0 , 2/ =f x/ 

a;. ,x, = 0 - 2 b;.' z' _ -2 1/ _ /' 
- O,A-% 

z' (àx z
') x' (Az )0 = <lxx 0 = 00 bx • 

(55) 

(56) 
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It may be noted that the transformation 

x " = x x' (xl.) . 

is a conformal coordinate transformation. 

· (57) 

By (55) the CHRlsToFFEL~symbols of al. with respect to the system (x') are 

x " ~ , ~ '/1-'). ' = - s,.' A~, - SI.' A;~, + s·' a,u' i.' . . . (58) 

where s,.'. as a consequence of (10) satisfies the equation 

· (59) 

The parameters of the conformal connection are therefore from (32) 

r~"i.' . (Q,u,-s,.,)A1: +(QI.'-SI.,)A~, -(Qz' -sY.' )a,u'l" . (60) 

From th is we see that the equations (42) written with respect to (x') 
can be obtained from the same equations with respect to (x) by replacing 
Q ,. by Q I<' - S ,u" The same is true for the first equation (43). We 
proceed to show that the same can be said of the second equation (43): 

ai.x (hl i' + P) 
dQi. _ ( ï' Q ) Q + .t . Q Q" _ 2 
dl ) I' I. ~ )). ,u. - 'f' ' " a,,,, ) ) 

· (61) 

With respect to the system (x') the left hand side of th is equation runs 
as follows 

dQ I.' n><' Q ., + ( .. ' Q ) Q I' Q Q ' Tt - 1 f" i.' ,, ) 1< ) ' !L' i.' - "2 )I,' ", 1< . · (62) 

As a consequence of (59) and (60) th is expression may be written in 
the form 

d (Qi.'-Si.' ) ' u' (Q ) (Q ) + I . (Q ) (QI" "') (63) ~--)' I<' -SI<' )., -s)., "2 )1.' ,u' -s", -s 

which is the same expression in Q,u' - SI"~ as the left hand side of (61) 
is in Q IL' 

The initial va lues of the vectors l' and Q ,u' - S,II'. are by (54) and (56) 
a 

P' : 
a 

0 0 (JZ)o = (r)o J 
a a f (64) 

001 (Q,,-s,,)o = (Q,I.l)O" 

Therefore. the Frenet~Serret formulas (42) and (43) written with 
respect to the coordinate system (x') can be obtained from the system 
with respect to (x) by replacing QI< by Q I<' - S I<" In the second case 
we have chosen the system (x') so as to obtain the same initial values 



824 

for l' and QI" - Sp! as we had in the first case for land Qp. But 
a a 

then the solution XX' (t) will he the same function of t as our original 
solution XX (t). Since the transformation (57) is a conformal one the curve 

XX' = xx' (t) (65) 

is therefore a conformal representation of the curve (47). 
From this it follows that a curve is determined to within conformal 

representations hy the expressions for the conformal invariants 
hl. h2 ••••• hn - I in terms of the conformal parameter. So the equations 
of a curve may he written in the form 

hl = hl (t). h2 = h2 (t) ....• hn- I = hn-I (t). (66) 

They are called its intrinsic equations. 


