in-a following communication in connection with results ‘obtained about the transport
of ‘other substances. ‘ : :

The data obtained on the strength of the transport enable us to calculate the strength
of the transport in the pedicels. When 6 leaves wih 1200 tentacles take up 300 y nitrogen

in 24 hours, ;1; 7 N. is transported per tentacle, i.e. ;L; y asparagine, The diameter of a

tentacle just below the gland amounts to about 0.04 mm. So % y asparagine is transported

through' a surface of 0.00126 mm? in 24 hours, i.e. 0.039 mg. asparagine per mm?2 per
hour. If the transport takes place through the protoplasm, this figure rises considerably.
Reliable dataon the transport in parenchyma cells in root, stalk or leaf are not known
to ‘me. So we come to comparing the transport in the tentacles with that in the sieve
tubes, For transport in the stalk (MUNCH) 10.7-—63.3 mg. per mm? per hour was found,
for transport of assimilates from a beanleaf (BIRCH~HIRSCHFELD) 5 mg. per mm?* per
hour, for supply of assimilates to fruit (MUNCH) 4.7—6 mg. per mm? per hour, for the
rate of transport of sugars in the stalk in cotton (MASON and MASKELL) 2.3 mg per mm?
pér hour. From this it appears that the rate of transport in the sieve-tubes is more than
100 times faster than the transport in the parenchyma cells of the tentacles. Therefore
it appears on_comparison with the transport in the sieve-tubes that the rate of the latter
is much greater. For the present there is no reason to assume that the transport in the
sieve-tube would be a process that is analogous with the active transport in the Drosera
tentacles.
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Hydrodynamics.b — On the influence of the concentration of a suspension upon the
sedimentation velocity (in particular for a suspension of spherical particles) *).
By J. M. BURGERS. (Mededeeling NO. 42 uit het Laboratorium voor Aero- en
Hydrodynamica der Technische Hoogeschool te Delff).

(Communicated at the meeting of December 27, 1941.)

15. With the aid of the results obtained in sections 11.—14, we will now attempt to
calculate the influence which a given particle experiences from all the surrounding
particles, in a field extending indefinitely in all directions and everywhere possessing the
same average number of particles per unit volume. It will be seen in 17. that a difficulty
still remains in the problem, in so far as there occurs an integral, the value of which

" depends upon the way the integration is carried out. By prescribing a certain definite

way a particular value is obtained, which to the author would appear the one best
adapted for the present purpose, but the problem cannot yet be considered as being
wholly settled,

We begin with the summation of the velocities induced in a particle A in consequence
of the presence of the other particles, (“particles B"). These particles can be taken
together in groups, each group being situated at some definite distance v; from A; the
number of particles per group being n;. The contribution by each group will be calculated
upon the assumption that we may use the mean value of (54) over a surface r — constant.
Restoring the factor F/8 # 5 the total amount becomes: -

5F3 .
(Su[“::Zu[:—~~~“i“2“n; R 5]

r;

In working out the sum it is not necessary to proceed far: from a certain distance T
onward it is sufficiently accurate to make use of the integral:

nJ4nr2dr(1/r4):4nn/r,,l B 1))

T
"m

where n is the average number of particles per unit of volume. The distance r,, i
defined by: V

n.(4xed 3)y=14+2n; . . . . . . . (57

the summation extending just as far as we take separate terms in (55).
For purposes of comparison we write:

duy=—rnsayg. . . . . . . . (58a)
where s =4 ® a%/3, up = F/6 an a (compare 30c), and:
15a 15a Y7 ny '
Ap— - e |
T 4, - 167n ‘Z rit (580)

16. The evaluation of (58b) is possible only when we possess a statistical theory of
the distribution of the particles in the neighbourhood of a given one. As it is not a part
of our task to develop such a theory here, we shall restrict to the consideration of a few
typical cases. .

‘We might assume in the first place that the surrounding particles may take all positions

*)  Continued from these Proceedings 44, 1941, p. 1184. @
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relatively to A with equal probability, provided they do not penetrate into A. The
minimum distance of the centre of a particle B from the centre of A then will be: 2a;
hence we apply eq. (58b) with r,, = 2a, leaving out the sum. This gives:

A=15/8 . . . . . . . . . (59%)

A second assumption is that owing to the action of repulsive forces there may be a
minimum value fa for r,,, exceeding 2a, while otherwise there shall be no restriction,
nor any preference for the possible positions of B, In that case we find:

h=15/4p). . . . . . . . . (59b)

When the number of particles per unit volume becomes large, the repulsive forces
between them may enforce a type of distribution in which the average distances between
neighbouring particles become approximately equal. For purposes of calculation the
arrangement may be compared with certain types of regular arrangements. We may
assume, e.g., that the average values of r; and n; for the first few groups of particles
surrounding A approximately are the same as those which are found in a simple cubical
lattice with spacing I. In that case we have: nl® =1, while the first few groups are
determined by:

rn=1; r2:l[/j; r3:lV3; ry==21

n==6; n,==12; n; =38; ng = 6.

Equation (57) then gives: r,, == 1,990 [, and from (586) we obtain: A = 4,96 a/l =
== 4,96 a n's, Instead of the simple cubical arrangement we also might consider the face-
centred lattice as a possible picture for the average arrangement of the particles. If the
spacing has the value I, we have: n 3 = 4; and the first few groups are determined by:

rn==%11"2; r,=1; ry=11"3/2; ry=11"2
n; ———12, n2:6; n3——24, n4:——12.

In this case eq. (57) gives: r,, == 1,486 [; from (58b) we obtain: :;7,57 all = 4,77 an'ls,
As the latter value does not differ greatly from the one found with the simple cubical
arrangement, we can write:

A~ 49an . . . . . . . . (59)

as an approximate expression to be applied in the case of a more or less regular average
spatial distribution of the particles.

As will be evident from sections 2., 11. and 12., and from footnote 11), the resultant
effect of the “induced velocities” corresponds to what usually is described as the result
of an apparent increase of the viscosity. When the retardation du; had been calculated
by means of EINSTEIN’s formula for the specific increase of the viscosity, the result

would have been:
F 1
= — — -—2,5 ,
o 6nna (1—1—2,5 ns 1) st

so that in that case we should find: 21 — 2,5. It will be seen that the values of l[ given
by eqs. (59a)—(59¢) all are smaller. This is due to the circumstance that EINSTEIN's
formula refers to the motion in bulk of the suspension, and applies to those cases where
the field of flow does not change greatly over distances of the order of the mean
distance between two particles. In the case treated here it is otherwise: the wvelocity
gradients have their greatest values immediately around a given particle, i.e. in a part of

space where a second particle cannot penetrate as edsily as elsewhere. Hence in the
immediate neighbourhood of a given particle the “effective viscosity” remains below the

11

EINSTEIN value, and the difference becomes more marked when repulsive forces lead to
an increase of the extent of the “empty region’.

17. We now come to the summation of the velocities described by (37a). For this
purpose we consider a definite particle B, and take in view the velocities communicated
to it by all other particles, each of which in turn must be considered as a particle A. In
a similar way as was done in 16. the particles A surrounding a given particle B can be
taken together in groups, each group lying at a definite distance r; from B. The contri-
butions derived from all particles can be united into the expression:

5u11:2ni(ﬁ)i+nj4nr2drii. R (1))
T'm

where i is the mean value of u, over a surface r == constant; (ii); in particular being
the mean value for the surface r = r;; while r, is defined by (57).
The expression (60) can be written:

"'m w *
dun==1{3n; (ﬁ)i—nJ 4nr? dr i} 4 nj‘inrzdrii .. (60a)
p a

The last integral on the right hand side will be replaced by: n// / dxdydzu,, the

m:*

integration being extended over the whole space outside of the spherical surface r — a.
Making use of (37a) this integral can be decomposed into:

jj dxdydzu—+ % najfjdxdydz&u

The first integral of this sum is not a convergent expression: its value depends upon the
way in which the integration is carried out. This apparently means that the problem of
the unlimited field is not determinate in itself, and a particular condition must be supplied
to specify the value of this integral. We adopt the value given in eq. (34), which was
obtained by performing the integration with respect to dy and dz first, the integration
with respect to dx coming afterwards, as the value given in (34) is the same as the one
which is obtained for the case of a field enclosed by impenetrable walls (compare equation
(19), section 6.). In this way the first term of the sum becomes: —nsup?*), — The
second integral of the sum can be reduced to a surface integral, extended over the
spherical surface r == a, the integrand being: — 9ufor, the value of which can be derived
from (30b), This second integral reduces to: -+ 4 n s up. Combining the results we obtain:

n[‘lnrzdrﬁ::—};nsuo. . . . . . (60b)
P

14) When the mean value u over a surface r = constant is calculated immediately
from (29) one obtains: (F #/12 a7 %) e—o (1 4 2[0). Substitution of. this expression into

@
the integral n ’ 47 r2dr u leads to the result: 4 n FI3 %2,

When in calculating nf/[dx dy dz u the integration first is performed over a surface

y == constant, the integration with respect to dy coming last, the result becomes: 2nF/x2y,
These results cannot have any sense, as both of them depend upon the parameter .z,
which to a certain extent is arbitrary., @
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In this way we have got around the difficulties encountered in section 7. It is possible;
however, that the result is not final, and the circumstance that in any actual case the
field is bounded by the walls of the vessel containing the suspension as yet may play a
deciding part, :

The value of i1 to be used in the expression between the { } in (60a) can be derived
from eq, (37b) of section 14. After restoration of the factor F/8 z # it becomes: i == ug afr.
Making use of this result and of (606) it is found that (60a) can be written:

Supy—=——lynsug. . . . . . . . (6la)

where:

3 r?n oy 1
/111——2'~57~1 4na’nZ e (01D)

This expression will be worked out for the same cases as have been considered in
connection with the caleulation of ;. When the surrounding particles may take all
positions relatively to B with equal probability, from a distance r,, = 2a onward, we can
discard the sum and find: 15)

‘ 21[ = 5. L (623)

In the case where the minimum distance is fa (with § > 2):
l][ == 1‘} /))2 — 1 . e . . PR (62b)
For a distribution of the distances of the nearest neighbours corresponding to that found
in a simple cubical lattice: Ay = 0,663 1#a® — 1 = 0,66 a=2 n~"ls — 1; and for a distribution
corresponding to that found in a face-centred cubical lattice: 2 I,,0267 2a? 1=

= 0,67 a~2n-*l— 1; giving as an average value:

ln e O 67 a=%n s 1 e e e (62C)

18, The quantity designated by 01y represents the velocity which would be acquired
by a particle B, of density equal to that of the liquid, in consequence of the fields of flow
which are produced by the sedimenting particles A surrounding it. When the original
density is restored to B, this particle moreover will acquire the velocity up = Fl6 a7 a
under the action of its own weight (compare eq. 30c); at the same time it will also
experience the resultant effect of the “induced velocities”, indicated by du;. Hence the
resulting velocity of the particle will become:

Ures —— F/6ﬂ77 a -+ duy -+ dun L. (63)

Although terms of the secorid order, such as may be called forth by the combination
of the effects considered, have not been taken into account, it is probable that the
accuracy of the result expressed by (63) will be increased, when in the expressions (58a)
and (6la), for du and duy respectively, we replace uo by the resulting velocity u,,
Indeed, the effects denoted by d u; and J uy; refer to fields of flow set up by sedimenting

18)  The same value is obtained from eq. (24) of the first part of this paper (these
Proceedings 44, 1941, p. 1051), when k2 and kg are replaced by zero. With the values
given in 7, we then have: :

(82| F) dun = (N/©) j [ [dxdy dz By = — .80 7 2?9,

where N is the total number of particles contained in the vessel, so that n = N/Q. Intro~
ducing s and uo we obtain: duy = —5n s ug,
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particles, and thus are proportional to the actual velocity acquired by a' particle, Making
this substitution, we obtain: |
Upes ™ F/67I77 a— (}‘I + ;”H) ns tres . . PN (633)
from which:
F 1
e . (64)

= 6anal+ (k- ) ns
where, according to (35): F=s(op—e0)g.

19. Now that we have obtained a provisional expression for the value of the sedi-
mentation velocity in an infinitely extending field, it would be necessary to return to the
case of a suspension enclosed in a vessel. However, we will first give attention to the
motion of a cloud of particles of finite extent, in a field which itself is unlimited. The
influence exerted by the particles upon each other’s motion in this case will increase the
velocity of fall, which may acquire values greatly exceeding the sedimentation velocity
of a single particle. It is possible — and it actually occurs in many cases — that the
velocity acquired by the whole mass becomes of such magnitude, that it is no more
allowed to leave out the inertia terms from the equations of motion. Nevertheless we shall
provisionally assume that the linear equations, in which the inertia terms have been
neglected, can be applied (cases can be constructed in which no serious error is to be
expected); afterwards some attention will be given to the possibilities for a more general
treatment.

When we keep to the linear equations of motion, the resulting velocity of any particle
in principle can be found by adding together (a) the velocity it derives from the force
acting upon the particle itself; (b) the velocities induced in consequence of the presence
of the surrounding particles; and (c) the velocities which it will derive from the fields of
flow set up by the surrounding particles. This third contribution is given by:

(SLZH = 2 Um . . - - B . . . . (65)

where the sum exténds over all particles of the cloud, with the exception of the particle
B for which the velocity must be found. The value of this sum depends upon the
dimensions and the form of the cloud; upon the distribution of the particles through the
cloud; and upon the position of the particle B within the cloud. We assume that the
number of particles per unit volume (n) has the same value everywhere in the cloud, and
that the form of the cloud is spherical, with radius Ry, When the particle B is situated
not too mear to the surface of the cloud (in the following lines we will limit ourselves
to the consideration of such particles), the expression (65) can be written:

5u11:2’ni.(ﬁ)i«{-nj]aj‘dxdydzum. R (1))

r>rm
where the integral extends over the space outside of a spherical surface with radius r,,,

again defined by (57). On account of (37a) we have:

ff dvdydzumwfffdxdydzu-{—-—aff dxdydz N u.

r> l"m > rm r> rm
By means of a direct calculation it is found that the second integral on the right hand side
has the value zero in the case considered. Consequently it is possible to transform (66)

m
61111:§2n,-.(ﬁ)i—~nf4nr2drﬁ§+ nfjfdxdydzu . (67)
0 LY

@

into:
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The triple integral here is extended over the whole cloud; in the integral occurring
between the { ) it is necessary therefore to take r=0 as the lower limit (instead of
r = a, as was done in (60a) above). As i1 = upalr, this latter integral remains convergent
for r == 0, and has the value: 2w ar?, uo; hence the quantity between the { } in (67) can
be written:

—Mnasuy . .+ - .« .« .« . . . (68a)

where:

T N (1.1%)!

20. In calculating the value of:

U:ZUJM@wm“....(w

it is to be observed that in the present case, where/the number of particles is finite,
difficulties concerning the convergence will not occur, Hence it is not necessary to make
use of the solution applied in the case of an infinitely extending assemblage of particles,
which was given in 10., and we can base our calculations immediately upon the formulae
developed by STOKES,.

The most convenient way is to make wuse of the expression for u, given in 9., viz.
u = up A ug = AV 0 [0x% -+ 0%pf0x?. We first calculate the integrals of the func-
tions ¥ and ¢; the velocity U afterwards can be derived by means of differentiations.
Instead of working with the function ¥ given in (26} we now can use the much simpler
expression: 16)

Yyores = Fef8any . . . . . . . . (70)

It must be cbserved that a construction of the type as was proposed in 10. can be
applied also to the present case; we come back to this point in 22.
An elementary calculation gives:

® E F 9 1 4

Fa? _ —Fa® py | po

where R is the distance of the particle B from the centre of the spherical cloud (Rp being
the radius of the cloud itself). The necessary differentiations can be performed when we
write: B2 — x2 4 y2 - 22, the origin of the system of coordinates being taken at the
centre ‘of the cloud. We then find:

_nF IR N, N v n Fa? 2
U—1577(5Ro x?—2y? —22%) + 8y (72a)
and in a similar way for the components in the directions of the other axes:
nF nF
= ; =TT e e e e 72[),
\% 15nxy, w 1577xz ( c)

21, The quantities U, V, W are of an order of magnitude quite different from that
of ‘the quantities which thus far have played a part in our calculations. Discarding all
terms of less importance we can say that the motion of the particles of the cloud to a
first approximation is described by the equations (72a)—(72¢), in which, moreover, the

16)  Compare eq. (30a).

fast term of (72a) safely can be neglected. This motion can be decomposed into a general
motion of the whole cloud with the constant velocity:

4nF 4 1 :
Ucloud =— TS—T? R?) :‘3““ NR?) . nF T ) (73)

and an inferior motion with the components:

nF
Uinterior =— m (R(Z)_RZ__yZ___zZ)

nF nF

Vinterior == M15477 XY, Winterior — 75 XZ

S....m)

These latter quantities satisfy the equation of continuity. At the surface of the cloud:
X Uinterior + y Uinterior + Z Wipterior — O . . ¢ * . (75)

from which it appears that the interior motion is tangential to this surface. Hence the
spherical form of the cloud and the constant value of the number of particles per unit
volume are retained during the motion.

It will be evident that the quantities given by (72a)—(72c) do not only represent the
velocities of the particles in the cloud, but also that of the liquid itself. The liquid in the
interior of the cloud thus is carried along by the particles it contains.

The motion described by eqgs. (72a)—(72c) is the same as which is found for a liquid
sphere of radius R, acted upon by a continuously distributed force of effective magnitude
n F per unit volume, and falling in another liquid, provided both liquids possess the same
viscosity 17), Actually we must expect that owing to the presence of the particles in the
sphere, the latter will possess an effective viscosity greater than that of the surrounding
liquid, That this is not apparent from the. equations developed must be ascribed to. the
circumstance that in calculating duy; by means of (65) we simply have summed the
amounts u,,, without considering the influence of all the other particles upon each term
of this sum, Now that the sum has assumed a magnitude much larger than all other
velocities, this influence certainly can no longer be neglected.

22. The results arrived at make it appear more promising to start from a different
point of view, related to that of section 10, The system of forces acting upon the liquid
and the cloud of particles can be analysed into the following components:

a) a force o g per unit volume, acting throughout the whole field, and balanced by a
pressure gradient 9pfox — ¢ g (assumed to be present alsé in the particles);

b) a continuous force of magnitude nF per unit volume, assumed to act throughout
the volume of the cloud of particles;

c) a set of “equilibrium systems” of the type considered in 9., each system having its
centre at the centre of a particle, .

In order to reduce as far as possible the difficulties which may arise at the boundaries
of the cloud, it is necessary to choose the parameter x, which occurs in the formulae
describing the equilibrium systems, in such a way that 1/%, while still being large in
comparison with the average distance between neighbouring particles, at the same time
is small compared with the dimensions of the cloud.

17)  Compare H. LAMB, Hydrodynamics (6th Ed., Cambridge 1932), Art. 337, 20
(p. 600). The resistance experienced by a liquid sphere, moving with the velocity LI in
another liquid, is given by: 6 xyallg (29 - 37')/(39+3%'), %' being the viscosity of
the liguid of the sphere. When 7' =1, this formula reduces to: 5w 7 a U,

The “effective force” n F mentioned in the text is the total force acting per unit volume
of the cloud, diminished by ¢ g, as follows from: nF =ng (¢p—0) s.
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We will not work out . the calculation of the field of motion according to the scheme
indicated, and restrict to the following observations: .

The field of force considered under ) will produce a motion of the cloud as a whole,
which motion will be the same as that of a mass of liquid with density o -+ nFlg —
= 0 + ns (ep—¢), moving amidst a liquid of density o. It is reasonable to assume that
the liquid represented by the cloud will possess the effective viscosity %' = 7 (1 4+ 2,5n3s),
In many cases which are encountered in actual circumstances, the motion of this mass of
liguid will be such that inertia effects, both in its interior and in the surrounding liquid,
cannot be neglected. A theoretical calculation then may become impossible, and experi-
mental investigation often must be called to assistance,

Superposed upon the motion of the cloud as a whole, there will be the motion of the
particles relatively to the liquid under the action of the force systems, mentioned under c).
When the particles are sufficiently small, the sedimentation wvelocity usually will be
extremely small in comparison with that of the cloud as a whole, The relative motion
then can be calculated upon lines, similar to those followed .in 15.—18. There may be
found some difference in the value of 1, connected with the fact that the cloud is of
finite extent; also the corrections for particles near to the boundary of thé cloud will be
different.

Examples of the motion of such clouds of particles, carrying along with themselves
the liquid contained in the cloud, are often found in nature. We mention the motion of‘
the fog; that of clouds heavily loaded with dust particles (beautiful demonstration
experiments can be made with cold smoke); the phenomena presented by certain clouds
which sometimes emerge from volcanic lavas and are loaded so heavily with ashes or
scoriae, that they flow down the slopes of the mountain with very great velocities 13);
water currents loaded with silt such as have been considered in DALY's theory of the
formation of submarine canyons and are -illustrated by beautiful experiments made by
KUENEN 19), Attention also should be called to the phenomenon known as eviction 29).

In many of these cases the particles will be so heavy that STOKES' law of resistance
no longer can. be applied to them, and a different law (ultimately a quadratic law) of
resistance should be used, Moreover, in the motion of such clouds and currents turbulence
usually plays a large part; apart form the influence it has upon the motion of the mass
as a whole, it is of importance as it brings about an intense mixing and diffusion, which
counteracts the sedimentation of the particles and thus keeps them much longer suspended.
In all these cases a decomposition of the system of forces into three parts in the way as
indicated above, and the consideration of the general motion of the suspension as that of
a liquid of increased density and viscosity, will afford a valuable help in analysing the
phenomena presented. . '

It must be remarked that when it is necessary to consider the frictional forces due to
the turbulent motion, attention should be given also to the influence of the suspended
particles upon the magnitude of these forces.

In the last part of this paper we hope to come back to the problem of the sedimentation
in .a suspension enclosed in a vessel,

(To be continued.)

18} The explanation of the “nuées ardentes” as the flow of turbulent clouds of ashes
down the slopes of the mountain in consequence of the force of gravity has been given
by G. L. L. KEMMERLING; compare e.g. his paper: “De controverse uitgeschoten gloed-
wolken (nuées ardentes d'explosion dirigées) of lawinen gloedwolken (nuées ardentes
d'avalanche)”, De Ingenieur 47, 1932, p. A 129.

19} Compare: PH, H. KUENEN, Experiments in connection with DALY's hypothesis
~on the formation of submarine canyons; Leidsche Geologische Mededeelingen 8, 1937,
p. 327; Density currents in connection with the problem of submarine canyons, Geological
Magazine 75, 1938, p. 241.

20)  Compare: N, SHAW, The air and its ways (Cambridge 1923), p. 103,

Mathematics, — Zur projektiven Differentialgeometrie der Regelflichen im Rq. (Achte
Mitteilung). Von R, WEITZENBOCK und W. J. Bos.

(Communicated at the meeting of December 27, 1941.)

Wir behandeln in dieser Mitteilung einige Satze iiber die Flichen Fo® des Ry, die durch
drei gegebene Geraden allgemeiner Lage gehen.

§ 24,
Fs seien a2, o2 und p? drei Geraden allgemeiner Lage. Thre Transversale L schneidet
sie in den drei Punkten
Pi=(pa) ) =0, Py=(pae) () =0
und L 21
(@ 2 p) (p') = — P, — P, =0 3
Fs seien Pz, Py und Py drei Weitefe Punkte mit (P1PoPsPsPs) 3 0, Py auf a2, Py auf
o2 und Py auf der dritten Geraden p? gelegen, Auf jeder Regelfliche Fo?, von der a2
o? und p? Erzeugende sind, liegt ein durch P3 und Py gehender Kegelschnitt K, der p?
in einem Punkte Py} Ps-}-aPy trifft. Die Punkte von K sind dann durch die drei
Erzeugenden a2, o2 und p? projektiv auf die der Leitlinie Py P2 =L bezogen.

Als Parameterdarstellung fiir K erhalten wir, wenn £==0 dem Punkte Pj, = o dem
Punkte P4 und ¢ =1 dem Punkte Pi - Ps -} aPs entspricht:

oPr=f.Py+t[—p.Ps—y.Py+ P+ Py-+a. Ps]+ 2y . Py (222)
Fiir die Punkte von L setzen wir ’
oPr=P +t.P,, . . . . . . . (223
sodass der allgemeine Flichenpunkt x auf Fs? gegeben ist durch
x=Pp -} 1.Pyg;
d.h. wir haben
0x== Py (14 2)+ Py (t+ 1) - Py . (Ap — At f) + 2
Py (—dty-+Af2y) -4 Ps. dtal

Nehmen wir also das Simplex der finf Punkte P; als Koordinatensimplex, so sind
die Punkte X (¢, 1) der allgemeinsten Flache Fo3 durch die drei Geraden a% «® und p?
dargestellt durch

224)

o X, =12t

o X, =t 1t Die drei Erzeugenden a2, o2, p?2 gehéren
6X3Zlﬁ(l—~t) zu den Werten £=0,00,1; y=0 gibt . (225)
6 X, =21ty (t—1) die Leitlinie L.

6 Xs—=1ta /

Es gibt also o8 Flichen Fo3 durch die drei gegebenen Geraden, entsprechend den drei
Parametern «, §, 7.
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