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in a following communication in connection with results obtained about the transport 

of other sub stances. 
The data obtained on the streng th of the transport enable us to calculate the strength 

of the transport in the pedicels. When 6 leaves wih 1200 tentac1es take up 300 J' nitrogen 

in 24 hours, ~ J' N. is transported per tentaclc, i.e. ~ )' asparagine. Thc diameter of a 

tentacle just below the gland amounts to about 0.04 mmo So ~~)' asparagine is transported 

through a surface of 0.00126 mm2 in 24 hours, i.e. 0.039 mg. asparagine per mm2 per 
hour. If the transport takes place through the protoplasm, this figure rises considerably. 
Reliable data' on the transport in parenchyma cells in root, stalk or leaf are not known 
to me. So we come to comparing the transport in the tentac1es with that in the sievc 
tubes. For transport in the stalk (MÜNCH) 10.7-63.3 mg. per mm2 per hour was found, 
for transport of assimilates from a beanleaf (BmCH-HIRsCHFELD) 5 mQ. per mm2 per 
hour, for supply of assimilates to fruit (MÜNCH) 4.7-6 mg. per mm2 per hour, for the 
ra te of transport of sugars in the stalk in cotton (MASON and MASKELL) 2.3 mg per mm2 

ppr hour. From this it appears that the rate of transport in the sieve,tubes is more than 
100 times faster than the transport in the parenchyma cells of the tentacles. Therefore 
it appears on comparison with the transport in the sieve,tubes that the ra te of the latter 
is much greater. For the present there is no reason to assume that the transport in the 
sieve,tube would be a process that is analogous with the active transport in the Drosera 

tentac1es. 
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Hydrodynamics. - On the influenee of the concentration of a suspensian upon thc 
sedimentation velacity (in particular far a suspension of spherical particles) "). 
By J. M. BURGERS. (Mededeeling NO. 42 uit het Laboratorium voor Aero, en 
Hydrodynamica der Technische Hoogeschool te Delft). 

(Communicated at the meeting of December 27, 1941.) 

15. With the aid of the results obtained in sections 11.-14. we wil! now attempt to 
calculate the influence which a given particIe experiences from all the surrounding 
particles, in a field extending indefinitely in all directions and everywhere possessing the 
same average number of particles per unit volume. It will be seen in 17. that a difficul.ty 
still remains in the problem, in so far as there occurs an integral, the value of which 
depends upon the way the integration is carried out. By prescribing a certain definite 
way a particular value is obtained, which to the author would appeal' the one best 
adapted for the present purpose, but the problem cannot yet be considered as being 
wholly settled. 

We begin with the summation of the velocities induced in a particle A in consequence 
of the presence of the other particles, ("particles BH). These partic1es can be taken 
together in groups., each group being situated at some definite distance ti from A; tbe 
number of particles per group being l1i' The contribution byeach group will be calculated 
up on the assumption that we may usc the mean value of (54) over a surface r = constant. 
Restoring the factor FI8 n'7 the total amount becomes: 

5Fa3 \f ni 
Ö UI:"= 2 Ui- - 24-;-;i LJ l'; (55) 

In working out the sum it is not necessary to proceed far: from a certain distancc t 111 

onward it is sufficiently accurate to make usc of the Întegral: 

00 

n.l" 4:Tl l'2 dl' (1/l'4) = 4:Tl n/rm (56) 

rm 

where n is the avel'age number of pal'ticles per unit of volume. The distance tm is 
defined by: 

rz • (4:Tl l'~Il/3) = 1 + 2rzi 

the summation extending just as fal' as we take separate terms in (55). 
Fol' purposes of comparison we write: 

Ö UI = - 21 n S U o . 

where s = 4 :rr; aal3, u() = FI6 :rr; '7 a (compare 30e), and: 

(57) 

(58a) 

(58b) 

16. The evaluation of (58b) is possible only wh en we possess a statistical theory of 
the distribution of the particles in the neighbourhood of a given one. As it is not a part 
of our task to develop such a theory here, we shall restrict to the consideration of a few 

typical cases. 
We might assume in the first place that the surrounding pal'ticles may take all positions 

*) Continued from these Proceedings 44, 1941, p. 1184. 



10 

relatively to A with egual probability, provided they do not penetrate into A. The 
minimum distance of the eentre of a particle B from the centre of A then wil! be: 2a; 
hence we apply eg. (58b) with r m = 2a, leaving out the sum. This gives: 

}'I = 15/8 . (59a) 

A second assumption is that owing to the action of repulsive forces there may be a 
minimum value (Ja for r m' exceeding 2a. while otherwise there sha11 be no restriction, 
nor any preference for the possible positions of B. In that case we find: 

ÀI = 15/(4,8). (59b) 

Wh en the number of particles per unit volume becomes large. the repulsive forces 
between them may en force a type of distriblltion in which the average distances between 
neighbouring particles become approximately egual:. For purposes of calculation the 
arrangement may be compared with certain types of regular arrangements. We may 
assume, e.g., that the average values of ri and ni for the first few groups of particles 
surrounding A approximately are the same as those which are found in a simple cllbical 
lattice with spacing Z. In that case we have: n [3 = 1. while the first few groups are 
determined by: 

r2=IV2; 
n2 = 12; 

r3=tV3; 
n3=8; 

Eguation (57) then gives: cm = 1,990 l, and from (58b) we obtain: ÁI = 4,96 a/I = 
= 4.96 a nt/j. Instead of the simple cllbical arrangement we also might consider the face
centred lattice as a possible picture for the average arrangement of the particles. If the 
spacing has the value 1, we have: n [3 = 4; and the first few groups are determined by: 

rj =tlV2; 
nj = 12; 

C3 = l V3/2; 
n3 = 24; 

r4 = tV2 
n4 = 12. 

In this case eg. (57) gives: r m ~~ 1.486 1; from (58b) we obtain: Ar =/,57 all = 4,77 a nIk 
As the lat ter value does not differ greatly from the one found with the simple cubical 
arrangement, we can write: 

(59c) 

as an approximate expres<sion to be applied in the case of a more or less regular average 
spatial distribution of the particles. 

As wil! be evident from sections 2., 11. and 12., and from footnote 11), the resultant 
effect of the "induced velocities" corresponds to what usually is described as the result 
of an apparent increase of the viscosity. Wh en the retardation ,I UI had been calculated 
by means of EINSTEIN's formula for the specific increase of the viscosity. the res111t 
would have been: 

sa th at in th at case we should Eind: ÀI = 2,5. It wil! be se en that the values of }'l given 
by egs. (59a)-(59c) all are smaller. This is dl1e to the circumstance that EINSTEIN's 
formula refers to the mot ion in bulk of the suspension, and applies to those cases where 
the field of flow does not change greatly over distances of the order of the mean 
distanee between two particles. In the case treated here it is otherwise: the velocity 
gradients have their greatest values immediately around a given particIe, i.e. in a part of 
space wh ere a second particIe cannot penetrate as easLly as elsewhere. Hence in the 
immediate neighbol1rhood of a given particIe the "eHective viscosity" remains below the 
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EINSTEIN value, and the difference becomes more marked wh en repuJ.sive forces lead to 
an increase of the extent of the "empty region". 

17. We now come to the summation of the velocities described by (37a). For this 
purpose we consider a definite partic1e B. and take in view the velocities communicated 
to it by all other partic1es, each of which in turn must be considered as a particle A. In 
a similar way as was done ·in 16. the particles A surrounding a given particle B ean be 
taken together in grOllps, each group lying at a clefinite distance ei from B. The contri
butions derived from all particles can be united into the expression: 

00 

aUn = 1: ni (ïi)i + n j'4nr2 dr ïi . (60) 

r m 

where ü is the mean value of urn over a surface r = constant; (ü)i in particular being 
the mean value for the surface r = r i; while r m is defined by (57). 

The expression (60) can be written: 

rm 00 

aUn =! 1: ni (ïi)i - n.F4 n r2 dr ïil + n J'4nr2 dr ïi (60a) 

a a 

The last integral on the right hand side will be replaced by: nI.lJ dx dy dz urn' the 

integration being extended over the whole space outside of the spherical surface r = a. 
Making use of (37 a) this integral can he decomposed into: 

The first integral of this sum is not a convergent expression: ibs value depends up on the 
way in which the integration is carried out. This apparently meal1S that the problem of 
the unlimited field is not determinate in itse.!f, and a particular condition must be supplied 
to ,specify the value of this integraL We adopt the value given in eg. (34), which was 
obtained by performing the integration with respect to dy and dz first, the integration 
with respect to dJx coming afterwards, as the value given in (34) is the same as' the one 
w hich is obtained for the case of a field enclosed by impenetrable walls (compare eguation 
(19), section 6.). In thi,s way the first term of the sum becomes: -nsuo14). _. The 
second integral of the sum can be reduced to a surfaee integral, extended over the 
spherical surface r == a. the integrand being: - au/ar, the value of which can be derived 
from (30b). This second integral reduces to: +} n S HO. Combining the results we obtain: 

00 

n. r 4 n r 2 dr ïi = - ~- n S Ua 

a 

(60b) 

H) Wh en the mean value tl over a surface r ,= constant is calculated immediately 
from (29) ane obtains: (Fu/12:n:rj) e--' (1 +210). Substitution of this expression into 

"-? 

the integral n .f 4:n: r2 dr u leads to the ~esult: 4 n F/3 U21). 

a 

Vlhen in calculating n III dx dy dz u the integration Eirst is performed over a surface 

y = constant, the integration with respect to dy coming last, the result becomes: 2nFlu2r}. 
These results cannot have any sense, as both of them depend upon the parameter .u, 

which to a certain ex tent is arbitrary. 
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In this way we have got around the diHiculties encountel'ed in section 7. It is possible. 
however, that the re sult is not final, and the cil'cumstance that in any actual case the 
field is bounded by the walls of the ve,ssel containing the suspension as vet may play a 
deciding part. 

The value of ü to be used in the expression between the { } in (60a) ean be derived 
hom eq. (37b) of section 14. Aftel' restoration of the factor F/8 n ry it becomes: lÏ ,,= Uo a/I'. 
Making use of this result and of (60b) it is found that (60a) can be written: 

ou]] = - J,u n S Ua . (61a) 
where: 

(61b) 

This expression wm be worked out for the same cases as have been considered in 
connection with the calculation of À,]. When the sul'rounding partides may take all 
positions relatively to B with equal probability, from a distance I'Ill = 2a onward, we can 
discard the sum and find: 15) 

.Îcu =5. (62a) 

In the case where the minimum distance is fJ a (with fJ> 2): 

.ÎcJl = ~- (32 - 1 (62b) 

For a distribution of the distances of the 11(~arest neighbours corresponding to that found 
in a simple cubicallattice: All ,= 0,663 12/a2 -- 1 = 0,66 a-2 11-"/" -- 1; and for a distribution 
corresponding to that found in a face-centred cubical lattice: AJI = 0,267 /2/a 2 -- 1 = 
=c 0,67 a- 2 w .. 2 /,, __ 1; giving as an average value: 

(62c) 

18. The quantity designated by i5 Uu represents the velocity which would be acquired 
by a particle B, of density equal to that of the liquid, in cOl1sequence of the fields of flow 
which are produced by the sedimenting particl:es A surrounding it. When the original 
density is restored to B, this particle moreover will acquire the velo city ua = F/6 n '7 a 
under the action of its own weight (compare eq. 30c); at the same time it will also 
experience the re sul ta nt effect of the ''jnduced velocities", indicated by 0 u]. Hence the 
resulting velocity of the particle will become: 

Ures = Ff6n'I'Ja + OUr + oUu (63) 

Although terms of the second order, such as may be called forth by the combination 
of the effects considered, have not been taken into account, it is probable that the 
accuraey of the result expressed by (63) will be increased, when in the expressions (58a) 
and (61a), for öurand oullrespectively, we replace Ua by the resulting velocity u 

Indeed, the effects denoted by cl u, and cl Uu rder to fields of flow set up by sedime~;t~g 

15) The same value is obtained from eq. (24) of the first part of this paper (these 
Proceedings 44, 1941, p. 1051), wh en k2 and ka are replaced by zero, With the values 
given in 7. we then have: 

(8n'I'J/F) OUu = (N/,Q)J~rrdx dy dz qJlll = - n. 80 n a 2/9, 

a 

wh ere N is the total number of particles contained in the vesseJ, so th at 11 = N/Q. 1ntro
ducing s and ua we obtain: ij Uu = - 5 11 S Ua. 
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particles, and th us are proportional to the actual velocity acquired by a particle. Making 

this substitution, we obtain: 

Ures = F/6n1) a -- (J'l + J,u) ns ures (63a) 

trom which: 

F 1 
U - --- --.----... --.. --. 

res - 6 n 'I'J a 1 + (1, + .Îcu) ns (64) 

where, according to (35): F = s(ep-e)g. 

19. Now that we have obtained a provisional expression for the value ofthe sedi
mentation velocity in an infinitely extending field, it would be necessary to return to the 
case of a suspension enclosed in a vessel. However, we will first give attention to the 
Illotion of a doud ot partic1cs ot finite exte11t, in a field which itself is unlimited. Thc 
influence exerted by the particles upon each other's motion in this case will increase the 
velocity of fall, which may acquire va lues greatly exceeding the sedimentation velocity 
of a single particle. 1t is possible - and it actually occurs in mal1:Y cases - that .thc 
velo city acquired by the whole mass beeomes of sueh magnitude, that it is no more 
allowed to leave out the inertia terms from the equations of motion. Nevertheless we sh3ol1 
provisionally assume that the linear equations, in which the inertia terms have been 
neglected, can be applied (cases can be constructed in which no serious error is to be 
expected); 3jfterwards some attention wilI be given to the possibilities for a more general 
treatment. 

When we keep to the linear equations of motion, the resulting velocity of any particle 
in principle can be found by adding together (a) the velocity it derives hom the force 
acting upon the particle itself; (b) the velocities induced in consequence of the pl'esence 
of the surrounding particles; and (c) the velocities which it will derive from the fields of 
flow set up by the surrounding particles. This third contribution is given by: 

OUn = J)U11l • (65) 

where the slim extends over all particles of the eloud, with the exception of the particIe 
B JOl' which the velocity must be found. The value of this slim depends up on the 
dimensions and the form of the eloud; up on the distribution of the particles through the 
cloud; and upon the position of the particle B within the cl:oud. We assume that the 
number of particles per unit volume (11) has the same value everywhere in the eloud, and 
that the form of the eloud is spherical, with radius Ra. Wh en the particle B is situated 
not too near to the surface of the eloud (in the following lines we wm limit ourselves 
to the consideration of ,such partieles ), the expression (65) can be written: 

dUn = J)n[ • (a)[ + n Jj~J dx dy dz U11l • (66) 

r>r m 

where the integral extends over the space outside of a spherical sllrface with radius rm , 

again ddined by (57). On account of (37a) we have: 

By means of a direct calculation it is found that the second integral on the right hand si de 
has the value zero in the case considered. Consequently it is possible to transform (66) 
into: 

rm 

bun = j2,' n[ • (a)[ - n J 4nr2 dr al + n JJJ'dX dy dz u (67) 

a 



14 

The triple integral here is extended over the whole cloud; in the integral occurring 
between the { } it is necessary therefore to take r = 0 as the lower limit (instead of 
l' = a, as was done in (60a) above). As ü = uoa/r, this latter integral remains convergent 

for r = 0, and has the value: 2 n a r:n uo; hence the quantity between the { } in (67) ean 

be written: 

-}.* ns Uo . (68a) 

where: 

}.* =}.II + 1. (68b) 

20. In ealculating the value of: 

u=nJjJ dxdydzu. (69) 

/ 

it is to be observed that in the present case, where the number of particles is fini te, 
difficulties concerning the convergence will not occur. Hence it is not necessary to make 
use of the solution applied in the ease of ani infinitely extending assemblage of particles, 
which was given in 10'., and we can base our calculations immediately upon the formulae 

developed by STOKES. 
The most convenient way is to make use of the expression for u, given in 9'., viz.: 

u = uI -t Uil = L,'P - 021P/OX2 + o2cp/oX2• We first calculate the integrals of the fune
tions, 'p and cp; the velocity U afterwards can be derived by means of differentiations. 
Instead of working with the function '1' given in (26) we now can use the mueh simpIer 

expression: Hl) 

lJfStokes = Fr /8 :Tl 17 

It must be observed that a eonstruction of the type as was proposed 
applied also to the present case; we come back to this point in 22. 

An elementary calculation gives: 

J jJ dx dy dz ::~ = ~ (Ró + -~ R 2 
R6 -15 R1) 

JJJ d d Fa2 -Pa2 
(R2 1 R2) - dx y z = ---- - "3 

24:Tl17 r 121] 0 .. 

(70) 

in 10. can be 

(71a) 

(71 b) 

where R is the distance of the particIe B from the centre of the spherical cloud (Ro being 
the radius of the eloud itse1f). The necessary differentiations can be performed wh en we 
write: R2 = x2 + y2 + Z2, the origin of the system of eoordinates being taken at the 

centre of the eloud. We then Eind: 

and in a similar way for the eomponents in the direetions of the other axes: 

nF 
v= 151] xy: 

nF 
w= 151] xz . 

(72 a) 

(72b, c) 

21. The quantitie,s U, V, Ware of an order of magnitude quite different from that 
of the quantities which th us far have played a part in our cakulations. Discarding all 
terms of less importanee we can say that the motion of the particles of the eloud to a 
first approximation is deseribed by the equations (72a)-(72c). in which, moreover, tbe 

16) Compare eq. (30a). 
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last term of (72a) safely can be negJected. This motion can be decomposed into a general 

motion ot the whole c/oud with the constant veJocity: 

_ 4 nF R2 _ 4 R3 F 1 
l1c1oud - T 51] 0 - -:f:Tl O' n . 5;';-~-Ro 

and an interior motion with tbe components: 

_ nF (R2 R2 2 2) ) 
Uinterior - ~ 0- -y -Z ( 

nF 
Vinterior = T5~ xy ; Wlnterior = f~ XZ ~ 

(73) 

(74) 

These Jatter quantities satisfy the equation of continuity. At the surface of the eloud: 

X Uintcrior + Y Vinterior + Z Winterior == 0 (75) 

from which it appears tbat the interior motion is tangential to tbis surface. Hence the 
spherical form of the eloud and the constant value of the number of particles per unit 
volume are retained during the motion. 

It wil! be evident that the quantities given by (72a)-(72c) do not only represent the 
velocities of the particles in the cloud, but also that ot the liquid itselt. The liquid in the 
interior of the c10ud th us is carried along by the particlesit contains. 

The motron described by eqs. (72a)-(72c) is the same as which is faund for a liquid 

sphere of radius Ro, acted up on by a continuously distributed force of effective magnitude 
n F per unit volume, and fal!ing in another liquid, provided both liquids possess the same 
viscosity 17). Actually we must expect that owing to the presence of the partieles in the 
sphere, the I.atter will possess an effective viscosity greater than that of the surrounding 
liquid. That this is not apparent from the.equations developed must be ascribed to the 
circumstance that in calculating Ö uj[ by means of (65) we simply have summed the 
amounts u

l11
' without considering the influence of all the other partieles upon each term 

of this sum. Now that the sum has assumed a magnitude much larger than all other 
velocities, th is influence certainly can no longer be neglected. 

22. The results arrived at make it appear more promising to start from a different 
point of view, related to th at of section 10. The system of forces acting up on the liquid 
and the elöud of partieles can be analysed into the following components: 

a) a force 12 g per unit volume, acting throughout the whole field, and balanced by a 
pressure gradient op/ox = 12 g (a&sumed to be present also in the particles) ; 

b) a continuous force of magnitude n F per unit volume, assumed to act throughout 
the volume of the eloud of particles; 

c) a set of "equilibrium systems" of the type considered in 9 .. each sy,stem having its 
centre at the centre of apartiele. 

In order to reduce as far as possible the difficulties which may arise at the boundaries 
of the cloud, it i,& necessary to choose the parameter ", which occurs in the formulae 
describing the equilibrium systems, in such a way that 1/", while still being large in 
comparison with the average distance between neighbouring particles, at the same time 
is smal! compared with the dimensions of the eloud. 

17) Compare H. LAMB, Hydrodynamics (6th Ed., Cambridge 1932), Art. 337, 20 

(p. 600). The resistance experienced by a liquid sphere, moving with the velocity Us in 
another liquid, is given by: 6n1)aUs (21) +31)')/(31)+31)'), 1)' being the viscosity of 
the liquid of the sphere. When 1)' = 1), this formula reduces t~: 5 n 1) BUs' 

The "effective force" n F mentioned in the text is the tata I force acting per unit volume 
of the eloud, diminished by 12 g, as fol!ows from: n F = n g (ep - e) s. 
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We wiL! not work out the calculation of the field of motion açcording to the scheme 
indicated, and restrict to the following observations: 

The field of force considered under b) will produce a motion of the' elaud as a whoLe, 
which motion will be the same as that of a mass of Iiquid with density C +- nFlg = 
= c +- 1!S (Cp-C), moving amidst a Iiquid of density C. It is reasonable to assume that 
the Iiquid represented by the eloud will possess the effective viscosity r;' = ') (1 +- 2.5 n s). 

In many cases which are encountered in act'Ual circumstances, the motion of this mass of 
liquid wil! be such that inertia effects, both in its interior and in the surrounding Iiquid, 
cannot be neglected. A theoretical ca1culation th en may become' impossible, and experi
mental investigation of ten must be cal!ed to assistance. 

Superposed up on the motion of the eloud as a whoIe, there will be the motion of the 
partieles relatively to the liquid under the action of the forcesystems, mentioned under c). 
When the partieles are sufficiently small:, the sedimentation velocity usually will be 
extremely smal! in comparison with that of the eloud as a whoIe. The relative motion 
then can be cakulated upon Iines, simiLar to those followed in 15.-18. There may be 
found some difference in the value of }'II' connected with the fact that the eloud is of 
finite extent; also the corrections for particles near to the baundary of thè eloud will be 
different. 

Examples of the matian of such ela'Uds of partieles, carrying alang with themselves 
the Iiquid contained in the e1aud, are of ten found in nature. We mention the motian af 
the fog; that of elauds heavily loaded with dust partieles (beautiful demonstratian 
experiments can be made with cald smoke); the phenomena pre·sented by certain clauds 
which sometimes emerge from valcanic lavas and are loaded so heavily with ashes or 
scoriae, that they flow down the slopes of the mountain with very great velocities ~8); 
water currents loaded with .si1t such as have been considered in DAL y' s theory of the 
formation of submarine canyons and are iIIustrated by beautiful experiments made by 
KUENEN 19). Attention also should be called ta the phenomenon known as eviction 20). 

In many of these cases the particles will be so heavy that STOKES' law of resistance 
no longer can be applied to them, and a different law (ultimately aquadratic law) of 
resistance should be used, Moreover, in the motion of such elouds and currents turbulence 
usually play's a large part; apart form the influence it has up on the motion of the mass 
as a whole, it is of importance as it brings about an intense mixing and diffusion, which 
counteracts the sedimentation of the particles and thus keeps them much longel' suspended. 
In all these cases a decomposition of the system of forces into three parts in the way as 
indicated above, and the consideration of the general motion of the suspension as th at of 
a Iiquid of increased density and viscosity, will afford a valuable help in analysing the 
phenomena presented. 

I t must be remarked that wh en it is necessary to consider the frictional forces due to 
the turbulent motion, attention should be given also to the influence of the suspended 
particles 'Up on the magnitude of these forces. 

In the last part of this paper we hope to come back to the problem of the sedimentation 
in a suspension enclosed in a vessel. 

(Ta be continued.) 

18) The explanation of the "nuées ardentes" as the flow of turbulent clouds of ashes 
down the slopes of the mountain in consequence of the force of gravity has been given 
by G. L. L. KEMMERLlNO; compare e.g. his paper: "De controverse uitgeschoten gloed
wolken (nuées ardentes d'explosion dirigées) of lawinen gloedwolken (nnées ardentes 
d'avalanche)", De Ingenieur 47, 1932, p. A 129. 

19) Compare: PH. H. KUENEN, Experiments in connection with DALY's hypothesis 
on the formation of submarine canyons; Leidsche Geologische Mededeelingen 8, 1937, 
p. 327; Density currents in connection with the problem of submarine canyons, Geological 
Magazine 75, 1938, p. 241. 

20) Compare: N. SHAW, The air and its ways (Cambridge 1923), p. 103. 

Mathematics. - ZUl' [1l'Ojektiven Dif[erentialgeometrie der Regelflächen im R4. (Achte 
Mitteilung). Von R. \;VEITZENBÖCK und W. J. Bos. 

(Communicated at the meeting of December 27, 1941.) 

Wir behandeln in diesel' Mitteilung einige Sätze über die Flächen P23 des R,t. die durch 
drei gegebene Geraden allgemeiner Lage gehen. 

§ 24. 

Es seien a 2 , a2 und [12 drei Geraden allgemeiner Lage. Ihre Transversale L schneidet 

sic in den drei Punkten 

und 

PI =-~ (a2 p2 a) (au') = 0, Pz = (p2 a 2 a) (au') ~ ° t 
(a2 (12 p) (pu') =CC - PI - P2 = ° ) 

(221) 

Es seien Ps, P4 und Pó drei weitere Punkte mit (P1P2P:1P4P5) * 0, Pa auf a2 , P4 auf 
a2 und P5 auf der dritten Geraden [12 gelegen. AU'f ieder Regelfläche P23 , von del' a2 , 

(I~ und [12 Erzeugende sind, liegt cin dUl'ch PH und P4 gehender Kegdschnitt K, der p2 

in einem Punk te Pj + P2 +- aP5 trifft. Die Punkte von K sind dann durch die drei 
Erzeugenden a2 , a2 und [12 pl'ojektiv auf die del' Leitlinie PI P2 = L bezogen. 

Als Parameterdarstellung für K erha.Jten wir, wenn t == 0 dem Pl1nkte P3 , t == DO dem 
Punkte P4 l1nd t = 1 dem Punkte PI +- P2 +- aP5 entspricht: 

Für die Punkte von L setzen wir 

(223) 

sodass der aIlgemeine Flächenpl1nkt x auf F23 gegeben ist durch 

à.h. wir haben 

Àt) -+ P2 • (t ),t) -+ P3 • (lfJ -lt fJ) -+ ~ (224) 
P 4 • (- 1 t Y -+ 1 t2 y) -+ Ps . 1 t a ) 

Nehmen wir also das Simplex der fünf Punkte Pi als Koordinatensimplex, so sind 
die Pl1nkte X (t, A) del' allgemeinsten Fläche F23 durch die dl'ei Geraden a2 , a2 und p2 

dargestelJt durch 

aXI = 1 -+ J,t 

aXz = t -+ Jet 

a X 3 = 1 fJ (1 - t) 

a Xi =lt y (t-l) 

a X s = lt (1 

Die dl'ei Erzeugenden a2, a2, [12 gehören 
zu den Werten t cc=O,oo,l; y=O gibt 
die Leitlinie L. 

. (225) 

~ 
Es gibt also DO 3 Plächen F23 dtlrch die clrei gegebenen Geraden, entsprechend den drei 

Parametern a, (3, y. 
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