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§ 1. 1 ntraduci'ion. 

As early as 1899 an investigation was made by KNOTT J) about the relations between 
the amplitudes of plane waves, vibrating in the plane of incidence, which are reflected 
and refracted at a plane surface of separation of two infinite e1astic solids. 

In this problem we have always to do with 5 waves, namely the incident wave, the 
reflected longitudinal and transversal waves and the two refracted waves. Thc '4 boundary 
conditions (continuity of the normal and tangential componcnts of motion and those of 
tension) are expresscd by 4 equations, which are linear with respect to the amplitudes 
and the coefficients of which depend on the material constants and the anglc of incidence i. 
Therefore tbe 4 amplitudes of the refracted and the reflected waves (one longitudinal 
and one transversal) can generally be expressed in the amplitude of the incident wave. 

A partiClJlar wave system is obtaineC\ if of the two reflected types of wave only one 
exists, the amplitude of the other onc being zero. This occurs at that value of the angle of 
incidence i far which the determinant of the coefficients of the 4 remaining amplitudes 
figuring in the 1 boundary conditions is zero. 

KNOTT's calcuJations do not hold any longer when the amplitude of the incident wave 
b put equal to zero. The wave system then consists of two reflected waves and two 
rdracted wave;;, whil.e the angle i is, of course, determined again by a determinant 
cquation. It appears that this equation is equivalent to the equation of the generalised 
RAYLEIGH waves derived by STONELEy2) in 1924. 

This peculiar system of waves is seismologically of importance, because the amplitudes 
appeal' to decrease in this case in both media cxponential with increasing distance to 
the surface of separation. Strong earthquake waves which met an interface at which 
tl!ese STONELEY waves are possible reach the surface of the earth very much damped 
and are therefore registered as weak vibrations. Consequently it is of importance to 
investigate at wh at values of the material constants ofthe two media a STONELEY wave 
system can exist, i.e. the STONELEY equation can be solved. 

In the first part of this paper the above derivation of the STONELEY equation as an 
extension of the theol'Y of KNOTT will. be given; in the second part an enquiry wil! be 
made into the values of the material constants for which the STONELEY equation cau be 
solved. 

§ 2. Derivatian of the STONELEY equatian. 

We suppose the bounding surface between the two media to be the plane z = 0 (z> 0 
in medium 2) and the incident wave, beiug longitudinal, is propagated in medium 1. 
Putting the angle of incidence ij this wave can be expressed by Ae' F(pt---h j xsini j - hl zcasÎI); 
the remaining 4 waves are then: 

the reflected longitudinal wave: A,.. F (pt -- hl X sin i 1 + hl Z cos i l ) 

the reflected transvel'saI wave: 91,.. F (pt -- l\ X sin tI +fl Z cos tI) 

the l'efracted Iongitudinal wave: Ad. F (pt -- h2 X sin i2--h 2 Z cos i2) 

the refracted transversal wave: 

h
p 

h' w ere ---,' = t e frequency, 2][ 

21 

h =t, V Leing the phase velo city of the longitudinal waves 

f - _'2-, sn being the phase velo city of the transversal waves. __ ~ :v 

d 1 t d t are continuo us at z = O. The boundary conditions are that the isp acemen an s re ss 

We thus obtain: 

Ae sin i l +- Ar sin i l + 2C· cos tI = Ad sin i2 + snd cos iz 
(tangential component of the displacement) 

Ae cos i
l 

- A r cos i l + 91,. sin tI = Ad cos i 2 - 91d sin r2 

(normal component of the displacement) 

+ A 2 - 21 sin~ __ ~1 =: iL2_~? Adcos 21'2- C2 ~} snel sin 2 l'2 
Ae cos 2 l'1 I' cos rl ' r nl Cl VI Cl VI 

(normal component of the tension) 

f-l2 VI A . 2' +f-l2 VI ()( 2 
A . 2' A . 2i --sn n cos2l' =--=------ elSm 12 --\n"'dCOS r2 

esm 11-- r Sln I r I I lA.l V 2 lA.l ;.02 

(tangential component of the tension) 

in which 111 = ~~, i2 = the density and f-l = the rigidity. 

d to be trallsversal and vibrating in the plane of inci~ If we suppose the inci ent wave 

Ij! 
I 

Fig. 1. 
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dence (figure 2), th is wave can be expressed by 21e' F (pt - ti x sin cl - 1'1 Z cos Cl). 
Writing the boundary conditions in the same order of following às above we get: 

21e cos rl + ~(r cos rl + Ar sin il = md cos r2 + Ad sin i2 

21e sin rl - 21 r sin rj + Ar cos i l = 21d sin r2 - Ad cos i 2 

()Y • 2 + (W • 2 A 2 --. Ih ~2 ()Y • 2 (12 V 2 A ,,"le sm rl '<lrSm rl - r nl cos rl- ----m- ,,"ldsm r2- ·-ffi-·- d cos 2r2 
121 ;.0 I l?t ;.0 I 

()Y 2 ()Y 2 A sin 2 i l !h2 ~I ()Y !h2 ~I • • '<-leCOS rl-,,"lrCOS rl- r------=---;udcos2r2+-----AdSm212. 
nj !hl ~2 ftl V 2 

WllUI.~2. 
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Fig. 2. 

By means of such a set of equations the amplitudes of 'I waves can be expressed in 
the amplitude of the Hfth, unless the latter is equal to zero. In that case the determinant 
of the coefficients of the homogeneous set of equations should be zero. If therefore we 
put Ae ,= 0 (fig. 1), then: 

sin ij cos l'l sin i2 cos r2 

cos i l sin rl cos i2 - sin (2 

cos 2 Cl 
sin 2 (I 112 V 2 121 ~2 . =0. ----- ------ cos 2 C2 -- ---- sm 2 C2 

nj el VI e1VI 

sin 2 ij cos 2 Cl 
!h2 VI . 2' !h2 VI 

-ni -V sm 12 -- COS21'2 
!hl 2 !hl ~2 

Expanding the determinant in terms of the minors of the second order formed by the 
first and the third row, we ob ta in 

(1) 
where 

23 

P = nl n2 sin2 
1'2 (~; COS 2 (2- COS 2 I'j)2, 

S = 4 cos ij cos i2 cos I'j cos C2 sin2 
I'j (~~ _ 1 )2 , 

Qj = nj cos i2 COS r 2 ~ 2 sin2 
rl (~~ --- 1) + 1 r, 

Q2 = n2 cos ij cos 1'1 ~ 2 sin
2 

1'2 (~; - 1 ) + 1 r ~~ ~:~ 
and 

If we multiply these terms by fl1/e2, it wiI.I be at once obvious that Pand S are sym
metrical with respect to the two suffixes 1 and 2, while Ql and Q2, Rl and Rz, if we 
interchange these suHixes, change into each other, so that equation (1) is symmetrical 
with respect to the two media. 

The same equation is obtained by putting the amplitude 21e = 0 in the second of the 
two cases mentioned above (fig. 2), which is evident, because we have then the same 
system of waves, namely {Ar Ill r Ad 21d} in both cases. 

Other special wave systems are possible, at wieh not the incident wave, but one of the 
reflected waves disappears. H, for instance, in case of a longitudinal incident wave j Ae l 
we put the amplitude of the longitudinal reflected wave equal to zero, we get the system 

~ Ae 21 r Ad 21d l; reducing the determinant equation we obtain here: 

Further it is possible th at the incident wave is propagated in the secOlld medium (such 
a wave will be denoted by an accent) and that then one of the reflected waves does not 
exist. Therefore the following cases of special reflection occur: 

j Ae, m r , Ad, md l; the corresponding equation being: P--S+Qj--Q2+RI-R2=0 

j21e, Ar, Ad. 21d l; the corresponding equation being: P--S+QI--Q2-Rd-R2=0 

! A~, md,Ar, 21 r l; the corresponding equation being: P-S-Qd-Q2--Rr+R2=O 

!~(~,Ad,Ar,21rl; the corresponding equation being: [.J-S--Qj+Q2+R j -R2=0 

(changing the suffixes 1 and 2 the first equation is identical with the third). 
These 5 equations are all irrational, as will be obvious if we express all the circular 

fl1nctions in say sin il. If we attempt to make one of the equations rational, roots are 
generally introduced; as all terms of these equations only differ in sign these intro
duced roots are roots of one of the other equations. Therefore if we rationalise equation 
(1) the roots introduced will be the roots of the equations for special reflection; these 
roots are however irrelevant. In conseql1ence if we want to determine the value of ij, 

where the wave system {Ar' 21 r, Ad' 2ld jis possible, we must solve equation (1) without 
squaring. 

Now this equation can be transformed into a more comprehensible farm on account of 
the following remarks: 

1. All terms of the left-hand side are positive if the circl1lar functions occurring in it 
are rea!. Then equation (1) has no Soll1tion. 

2. If one of the sines is imaginary, th en they are all so, according to SNELLlUS' law; 
the terms are then partly positive partly riegative, so there is a solution à priori 

possible. 
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3. If some, but not all, of the casines are imaginary, the coefficients of equation (1) 
are partly real partly imaginary. In this case too a solution is impossible. If however 
all cosines are imaginary then the terms are partly negative partly positive, and the 
equation can, therefore, be solved. Consequently the sines of all occurring angles must 
be greater than 1, which is certainly true if the sinus of the smallest of these angles is 
greater than 1. 

sin il VI sin iz Vz 
As --:- -- = \- and -.~- = - and VI > Q31' Vz> SBz, Cl and 'z wil! always be smaller 

SIn Cl SB I SIn 1'2 ~lh 

than il and iz. 
Equation (1) being symmetricaI with respect to the suffixes 1 and 2, we can hence

forth assume SB2 > ~nl without restricting the problem; th en Cl is the smallest angle. 
So wh en all cosines are imaginary sin Cl > 1. 

Summarizing these above remarks, we can assert that a solution of equation (1) is 
only possible if sin '1 is imaginary or is greater than 1; or putting it otherwise: 
SIn2 Cl < 0 or sin2 '1> 1. 

We can condense these two inequalities into the following one: < 1. 
si"z 'I 

1 
Therefore it is advisable to use -:-2--- as a new variable, which we shal1 call C. 

Sl/l' 'I 

If 

. _ 1 h " nl ,. mI. mz 
SUl Cl - --cc, t en sIn II = ~-_', sIn 12 = ----=, SII1 C2 =--= V( V( V( V( 

V2 SBz 
where mI = ill~ and m2 = ill~' 

Hence 

iVl~E 
COS Cl == -------=--. V( 

. i mI Vl-a( 
cos 12 = -~----=---- , V( 

im2 VT-~-( 
COS C2 :--'--= --------= V( 

in which 

(J'l and )'2 being the constants of incompressibility) 

Equation (1) then becomes 
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W 
" th quation derived by STONELEY in this notation we get: [1t111g e e 

V;' 1 (el-{?2)2_(el xrl- e2 XI) (el Yz + ez YI)! + 
+4 V; lel Xzyz-e2 XI YI-(er-ez)! + 4 (,uI-,u2)Z(XI YI-l)(xzyz-l) = 0 

where ------- V----z V-------Z 
V; V r _ V r 

Xz = l/l-a-z ' YJ = 1-- m2 'Yz- l-w~, V mI ;Ol I 

V 2 

V being the phase velocity of the STONELEY waves. 
r 

Putting -~ = r; this equation is 
~IZ 

identical with equation (2). 
This equation reduces to a very simple form if we take 

1°. e2 = 0: (2- 1-~~I~J z = 4 V(T·=;;;1) -Cl--() ; 
with ['2 = 0 this is the RA YLEIGH equation. 

3°. VI = V z and mI = m z (WIECHERTS' medium): 

1 (2--()-2 V(f=-vI ()n=EW -== (}~t~ ~~j~; ( Y . V(T-=-(f(f-=--;;-I 1;). 


