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§ 1. Introduction.

As early as 1899 an investigation was made by KNOTT %) about the relations between
the amplitudes of plane waves, vibrating in the plane of incidence, which are reflected
and refracted at a plane surface of separation of two infinite elastic solids,

In this problem we have always to do with 5 waves, namely the incident wave, the
reflected longitudinal and transversal waves and the two refracted waves, The 4 boundary
conditions (continuity of the normal and tangential components of motion and those of
tension) are expressed by 4 equations, which are linear with respect to the amplitudes
and the coefficients of which depend on the material constants and the angle of incidence i,
Therefore the 4 amplitudes of the refracted and the reflected waves (one longitudinal
and one transversal) can generally be expressed in the amplitude of the incident wave,

A particular wave system is obtained if of the two reflected types of wave only one
exists, the amplitude of the other one being zero, This occurs at that value of the angle of
incidence i for which the determinant of the coefficients of the 4 remaining amplitudes
figuring in the 4 boundary conditions is zero.

KNOTT's calculations do not hold any longer when the amplitude of the incident wave
is put equal to zero, The wave system then consists of two reflected waves and two
refracted waves, while the angle i is, of course, determined again by a determinant
equation. It appears that this equation is equivalent to the equation of the generalised
RAYLEIGH waves derived by STONELEY 2) in 1924,

This peculiar system of waves is seismologically of importance, because the amplitudes
appear to decrease in this case in both media exponential with increasing distance to
the surface of separation. Strong earthquake waves which met an interface at which
these STONELEY waves are possible reach the surface of the earth very much damped
and are therefore registered as weak vibrations. Consequently it is of importance to
investigate at what valueg of the material constants of the two media a STONELEY wave
system can exist, ie. the STONELEY equation can be solved.

In the first part of this paper the above derivation of the STONELEY equation as an
extension of the theory of KNOTT will be given; in the second part an enquiry will be
made into the values of the material constants for which the STONELEY equation can be
solved.

§ 2. Derivation of the STONELEY equation.

‘We suppose the bounding surface between the two media to be the plane z==0 (z >0
in medium 2) and the incident wave, being longitudinal, is propagated in medium 1.
Putting the angle of incidence iy this wave can be expressed by A, F(p¢—hy xsinii —hy zcosiy);
the remaining 4 waves are then:

the reflected longitudinal wave: A, . F (pt — hy x sin i,-+hy z cos i;)
the reflected transversal wave: 91, , F(pt — ty x sin v+t z cos )
the refracted longitudinal wave: Ay, F (pt — h, x sin iy—h, z cos i)

the refracted transversal wave: U, , (pt — Y, xsinr,—t, 2z cos l‘2)

‘where 2p7 = the frequency,
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h= i’/ V being the phase velocity of the longitudinal waves

f:;%' 3 being the phase velocity of the transversal waves,
The boundary conditions are that the displac

We thus obtain:

A, sini, + Ay siniy -+ Ar cos vy = Ay sin iy + Wy cos iy
(tangential component of the displacement)

ement and stress are continuous at z = 0.

A,cosiy—A,cosiy 4 Wy siney = Agcosiy—Ugsinr,
(normal component of the displacement)

sin2r __ 02 vV, 028,

A ‘ = Y, 4 e ; 2 r
A,cos2r, + A, cos2 r— A, o o V, Agcos2r, oV, asin2r,

(normal component of the tension)

. M Via oo /“2V1 \
A,sin2i,— A,sin2iy—Urnycos 2= Vs Agsin2i, - 8, Ny cos 2y

(tangential component of the tension)

in which n; = %’1‘, o = the density and p = the rigidity.
s

1f we suppose the incident wave to be transversal and vibrating in the plane of inci-
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dence (figure 2), this wave can be expressed by U, F (pf — | x sin r; — ¥t zcosri).

Writing the boundary conditions in the same order of following as above we get:
Ay cosry + W, cosry + Ay siniy =Wy cosr, + Agsini,

A, siney — N, sin vy -+ Ay cos iy = Wy sin v, — Agcosi,

Wesin 20,4+, sin2r; —A, nycos2r, = gz_gz Wasin2ry— gz__v2 Agcos2r,
1701

' - . S
Wocos2r—N,cos2r,— A, sin2i = 2L} Nycos2r, -+ t2 By Agsin2 iy
n B, H

medicr &

medivimms 1

Fig. 2.

By means of such a set of equations the amplitudes of 4 waves can be expressed in
the amplitude of the fifth, unless the latter is equal to zero. In that case the determinant
of the coefficients of the homogeneous set of equations should be zero, If therefore we
put A, =0 (fig. 1), then:

Sin i cos r; sin i, cos r,
cosiy sin r €os iy — sinr,
sin 2 Ty 02 V2 % . -
cos 2z, ——— o, €os 2r, - 9222 sin 2 r, | =0.
ny 01 Vi 01V

. . wa Vi, . : V

sin2i, —nycos2r; . sin 21, #2 V1 cos2r,
N My Va py By

Expanding the determinant in terms of the minors of the second order formed by the
first and the third row, we obtain

PtS+Q+Q+R-+R=0, . . ...

where
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P = n, n,sin’r, (g cos2ry,—cos 2 rl) ,
1

2
S = 4 cos i, €OS i; cOS ry COS ry Sin’ ry ( — 1) .

Q,=—n,;cosi;cosr,

Q,=n, cos i, cosr

2
2sintr, (Y1) 410, 02
M2 Q1 My

Sin i cosiycosr 0, SIf {, COS {; COS T
R, = ! 2 ! and R,y 2L COSHCOIE 2

Wy sin ry 01 Sin

If we multiply these terms by wuyfes, it will be at once obvious that P and S are sym-
metrical with respect to the two suffixes 1 and 2, while Q1 and Qg, Ry and Ra, if we
interchange these suffixes, change into each other, so that equation (1) is symmetrical
with respect to the two media,

The same equation is obtained by putting the amplitude 2, =0 in the second of the
two cases mentioned above (fig. 2), which is evident, because we have then the same
system of waves, namely {A, U, A, A ;} in both cases.

Other special wave systems are possible, at wich not the incident wave, but one of the
reflected waves disappears, If, for instance, in case of a longitudinal incident wave gAe}
we put the amplitude of the longitudinal reflected wave equal to zero, we get the system
$A, AU, Ay ‘QId}; reducing the determinant equation we obtain here:

P—S+Q—Q,+ R —R,=0.

Further it is possible that the incident wave is propagated in the second medium (such
a wave will be denoted by an accent) and that then one of the reflected waves does not
exist, Therefore the following cases of special reflection occur: )

{ A, Aga}; the comesponding equation being: P—S--Qy— Q-+ Ry—R,;==0
§Ue, Ay, Ag, Ug}; the corresponding equation being: P—S--Q—Q,—R+R,=0
{ A %y, Ay, U, 1; the corresponding equation being: P §— Q-+ Qy— Ry - Ry=0
(90, Ay A, 3, }; the corresponding equation being: P S—Q; +Qy--R)—Ry==0

{changing the suffixes 1 and 2 the first equation is identical with the third),

These 5 equations are all irrational, as will be obvious if we express all the circular
functions in say sin i1, If we attempt to make one of the equations rational, roots are
generally introduced; as all terms of these equations only differ in sign these intro-
duced roots are roots of one of the other equations. Therefore if we rationalise equation
(1) the roots introduced will be the roots of the equations for special reflection; these
roots are however irrelevant, In consequence if we want to determine the value of iy,
where the wave system (A, 2, A, 91d§is possible, we must solve equation (1) without
squaring.

Now this equation can be transformed into a more comprehensible form on account of
the following remarks:

1. All terms of the left-hand side are positive if the circular functions occurring in it
are real. Then equation (1) has no solution, .

2. If one of the sines is imaginary, then they are all so, according to SNELLIUS' law;
the terms are then partly positive partly regative, so there is a solution a priori
possible,
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3. If some, but not all, of the cosines are imaginary, the coefficients of equation (1)
are partly real partly imaginary. In this case too a solution is impossible. If however
all cosines are imaginary then the terms are partly negative partly positive, and the
equation can, therefore, be solved. Consequently the sines of all occurring angles must
be greater than 1, which is certainly true if the sinus of the smallest of these angles is
greater than 1.

s :ll: :: ;Tll and erll :2 ;2 and Vi > By, V2 > By, r1 and rp will always be smaller
than i1 and ip.

Equation (1) being symmetrical with respect to the suffixes 1 and 2, we can hence-~
forth assume B,>>B, without restricting the problem; then ry is the smallest angle.
So when all cosines are imaginary sin rq1 > 1.

Summarizing these above remarks, we can assert that a solution of equation (1} is
only possible if sin ry is imaginary or is greater than 1; or putting it otherwise:
sin? vy <O or sin? r; > 1.

We can condense these two inequalities into the following one: o <L
1
Therefore it is advisable to use - sin? oo @s anew variable, which we shall call £,
. 1
If
.. 1 mp
Simnryg—_——: then SNy ===, SNy, = —— Sll‘l Uy = —=
s Lt L
V2 By
where m = B, and my = T,
Hence
ll/l'—é in l/l_"’lf
COS 1y == e, COs i) = -,
s L
im, L 1—al im V1=l
COSiy= —" i , CoS 1y = — e —
3 s
in which
B2 m B e
V1 '1 + 2 u 8,2 M2 02

_ B2 B2 My
TVR T8 42,

(A1 and Ao being the constants of incompressibility)

Equation (1) then becomes

02001 #\° | L S — -
(2"1—ﬂ2/#15 + 4 L (1= (1= ) (1—w ) (1—a ) =

L i—al) (1= 0). (2—~~~~1< a) + =0 (14),(“ or/or_ :)2+ 2

L= oy

e (TG aD + L Tel) (T 0).
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" WWriting the equation derived by STONELEY in this notation we get:

V;i- §(@1——92)2~(@1x2 40, x1)(Q1y2+ €2 g} +

+-4 Vﬁ%m XpYa—02%1 !Jl“(@xf@z)% + 4 () (1 yi—1)(x2y,—1) =0
where s
O R T _w]/ }{ﬁ ‘/ oY
x =) 1= Pl x= | l—a Pl 'yz w2

Vi : N

V, being the phase velocity of the STONELEY waves. Putting %Tz.: ¢ this equation is

identical with equation (2).
This equation reduces to a very simple form if we take

1°. 9,=0: (Z—J ******* > =4 [/ 1*~—V 1—~—C)
with ue == 0 this is the RAYLEIGH equation.

20, qu-:o; (2“@ ‘Il/l—'l’lé I_C)——CV MC(A‘

3. V= Vv, and %1_%2 (WIECHERTS' medium):
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