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the order a2; in that case the order of magnitude of the correction to be applied to the
sedimentation velocity remains the same as that given in equation (64), but the value
of the coefficient 1 is not known,

It is probable that the value of the integral //dSe 9P[on, occurring in (22), is con-

nected with the resultant of the frictional forces acting upon the walls of the vessel,
In general the weight of the suspension will be carried partly by pressures, partly by
frictional forces acting upon the walls, When the whole weight is carried by the
resultant of the pressures (this is the case for a suspension enclosed between two parallel
plane walls, perpendicular to the x-axis, as in the case considered in section 23.), it is
possible that formula (64) will apply with the value of 1;; as given in 17. When the
weight is partly or wholly carried by the frictional forces, the result perhaps may be
different, and in this way an influence of the shape of the vessel could be experienced.

The application of a point of view, related to that of section 10., does not appear to
be more promising, We might decompose the system of forces acting upon the liquid
and the particles into the following components:

a) a continuous field of force having the intensity og -}- nF per unit volume, acting
through the whole space, and balanced by a pressure gradient of magnitude 9p/dx =
= og -+ nF; .

b) a set of “equilibrium systems” of the type considered in 9., each system having its
centre at the centre of a particle;

¢) a continuous field of force acting in a thin layer along the walls, making up for
the “diffuse fields” of those “equilibrium systems” which would influence the field inside
the vessel, if the suspension was imagined to extend also through and beyond the walls,
It should be assumed again that the parameter # is chosen in such a way, that 1/», while
being large in comparison with the average distance between neighbouring particles, at
the same time will be small in comparison with the dimensions of the vessel and with the
radius of curvature of the walls.

In attempting to work out the equations for the motion of the liquid upon this basis,

there again occur difficulties with integrals of the type [/dSe u(dS, being an element of

the wall).

The difficulties probably will increase, when the number of particles per unit volume
in the immediate neighbourhood of the wall should be different from the number in the
more interior part of the vessel,

Provisionally the problem must be left here, in the hope that a more efficient method
may be found at some later time.

Mathematics, — A remarkable family. By J. G. vaN DER CORPUT.

(Communicated at the meeting of January 31, 1942,)

CHAPTER 1L

On analytical solutions of fanctional systems1).

Let us consider a functional system of the form

ge {.X', fv(lr(x))} == 0.

In this chapter # runs through the values 1, 2,..., k, where k denotes an integer == 2,
while », ¢ and o run through the values 1, 2,..., n, where n is a positive integer.
The functional system involves k given functions I (x)of a variable x, in addition n given
functions g, {x, y,,) of the | + kn variables x, y,, and finally n unknown functions
f, (x} of x. I say that the functional system possesses a solution (f,(x)), analytical and
vanishing at the origin x = 0, if the n funtions £, (x) are analytical at the origin, take
at that point the value zero and satisfy the considered functional system in the vicinity
of the origin.

The following examples show that several different cases are possible.

A. Dealing with the functional equation

] —x
fil)=F (;) + log ——,
1— %
2
we - have
n=1, k=2, [ (x)= -»325—, L{x)=x
and
] —x
g1 (% g1, Y1) =y —yu—log———.
=7
Trying
fl(x):o‘é’1 Flagx . . . . . . . (1)
we obtain
| | l -
F(a) (1 — —27«—> = (1 — 2;) (aZ=1),
hence
F(a) = —~ and  fi (x) =log (1 —x).

) Chapter I and the first part of chapter II have been published in Euclides 18
(1941—42), p. 50—78; the rest of chapter Il is about to appear in the same periodical.
For the well understanding of this paper it is not necessary that the reader is acquainted
with the chapters | and II. The remarkable family consists of the functions characterised
by functional equations. ’
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The functional equation possesses one and only one solution analytical and vanishing
at the origin.
B. Considering the functional equation

et =046 (5) =5

we obtain

X

n=1, k=3, [{x)=x+x% L{x)=x [ (x):7

and

X
gi (x, Y11s Yaus 931):!]11 Uy ~— Yz 5

Trying again (1) we find for e =22

F(q) = 2¢ > (2 /ﬁ_ a) F(f).

hence
Flo)=2*(a—1) Fa—1).
From F (1) =1 it follows that

F(a) = 2402 (a— 1) ] (a Z= 1),

The coefficients F(a) are defined unambiguously, but the radius of convergence of the
found power series equals zero. The functional equation does not possess any solution
analytical and vanishing at the origin.

C. Dealing with f (%) — fi (— x) = x? and trying (1), we find relations involving the
coefficients F (a), but these relations are contradictory. Indeed, consideration of the
coefficient of x? gives O==1. It is even clear that the functional equation does not
possess any solution in the vicinity of the origin, the left-hand side being an odd,
the right-hand side an even function of x.

D. The functional equation f(x)==— f{— x) possesses an infinity of solutions,
analytical and vanishing at the origin, for any odd function is a solution.

(Sge

Let us now return to the original functional system, By 6[;*) I denote the value
rY
0

of that partial derivative at the origin x=y,, =0 of the (I 4 kn)— dimensional

espace; A denotes the determinant of n rows and columns, in which the constituent in

og
the oth row and »th column has the value (;5?;£> ; finally D, denotes the determinant
0

kv

of n rows and columns, in which the constituent in the gth row and »th column is

0 ge O e
2(op o

Theorem I. Conditions. (1) Suppose that the k given functions I, (x) are analytical
at the origin x =0 and assume at that point the value zero, that g,(x.y,,) is analytical

and vanishes at the origin.x =y, =0, that AF0 and

1O <]l (O] (u=1,2,...,k—1).
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(2) Let us suppose in addition
Du#zo (a:1,2,...)‘

Then the functional system possesses one and only one solution analytical and
vanishing at the origin.
The proof runs as follows. The notation

p(x) < < q(x)
signifies that
px)=P0O)+P(1)x+P2)x?+...
and
gxX)=QUO)+ Q) x+ Q) x>+ ...
are functions of x analytical at the origin with the property

|[P(@)|=Q(a) (a=0,1,...).
The notation
p (%, g2r) << q (%, yxo)
signifies that

P gy = 3 P(Bye)xf IT y'tr

ey
and

q (x, yxv) = 2 Q(/gv 7xv) xB 1T y::v
f ’yxv X’W
are functions of the 1--kn variables x, y,, analytical at the origin x =y, == 0 with
the property )

PB )| = QB e

B and y,, (¢==1,..., k; v=1,..., n) run through the sequence of the integers =0.

By hypothesis there exists a (1 -}- kn) — dimensional vicinity of the origin x =g, =0
with the property that the n functions g, (x,y,,) are defined and analytical at every
point (x,y,) of V. The determinant A being 7 0, there exists a (1 -+ (k — 1} n)-dimen-
sional vicinity V; of the point x=y, =0 (in this chapter g runs always through the
values 1, 2,..., k — 1) such that n analytical functions A, (x, yW) may be found in Vi with

the following properties; (1) if (x, y,,} is an arbitrary point in V} and we put
Yre == ho (X, Yus),
then the point (x, y,,) lies in V and satisfies the n relations
ge (%, y2) =0.

{2)° The n functions h, (x, y,,) assume at x =y, =0 the value zero.

(3) The n analytical functions h, (x, y,,) are defined unambiguously in V; by lthe
properties (1) and (2).

The given functional system is in the vicinity of the origin x == 0 equivalent to

fo (lk (x)) == ho {2, £, (L (%)), .
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in other words: any system of n analytical functions £, (x) vanishing at the origin and

satisfying one of both functional systems, satisfies also the other.
From condition (1) it follows that I}, (0) % 0, so that the substitution I (x) == £ gives in

the vicinity of the origin an analytical (1,1) transformation. Hence x=¢(f) and
L, (x)= w, () are analytical functions of f at t+ = 0 and the functional system reduces to

[o () = he {q (£), £ (wu ()}

We can write

wy (£) = 2 W) tf and q()=2 Q)¢
» ?
where § and y run through the sequence of the positive integers, and

h&’ (x’ yﬁ”’) = «.27 H@ ((S, Clu,'y) xa 1 y‘;l“,
¥

wy !
»Suw

where 6 and ( u» Tun through the sequence of the integers = 0.

First, assume that the functional system possesses a solution

[ (€)= ng (a) £,

analytical and vanishing at the origin; o runs through the sequence of positive integers.
Then we have in the vicinity of the origin

TE ) 1= % Ho0,00) (ZQ) Y X C)

Y

o, Cpv 4
where
X (G = I (ZF(0) (2 Wi (B) £ e

7 runs through the sequence of the positive integers. The expansion of the right-hand

side in powers of ¢ produces the coefficient F, (%) of ¢ written as a sums of terms. To

find one of these terms I consider a certain # (1 = pu =Xk — 1) and a certain v (1 = v =S n)
and I take 60 =0, f =1, a =7, =1, the other exponents £ ==0. In the term found

in this manner we have

Wﬂ (:8) = w;c (0) and H, (9, Cﬂ“’) - ( 0he )

0 Yuv Jg

and the term in question is therefore

In this manner we find that r, () is equal to

2 (5 ) P w0

v Yuv o

augmented {by the sum of the other terms; this sum is a polynomial u, (F,(e) in the
numbers F_(a), where ¢ runs through 1, 2,...,n and_a runs through 1, 2,...,9— L

Thus we obtain

Fol)=X3F, (")‘,‘?(aa :;)0 @, O + o (Fo (@), . . . 2)

If the coefficients F, (a) (¢ < %) are already known, we find n linear equations with n
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unknown coefficients F, (7)., The determinant E () of this system of equations possesses

n rows and columns; the constituent in the oth row and »th column is

dh, )
=3 o).
% %(aym‘)o (w}L( ))

where
gor==1 for p==v
=0 for oFw
Using
' 1. (0)
wy (0) = IZ )’

we observe that the constituent in the oth row and #th column of the determinant

(l}f(O))m’E(n) has the value

O e =2 (g‘)yi) (L O,

Since yg, = h, (x, ym,) satisfies the system g, (x, y,,) =0, we have

) 0 oh ‘
9gs. I 3 et i L0}
ay,uv 0 e aykg 0 Gyw 0
A being a determinant of n rows and columns, in which the constituent in the oth row
dg ,
and oth column equals ('5;]—5> , the product of (I ()™ E(n) and A is the determinant,
ke -

4]
whose constituent in the oth row and »th column has the value

dgs , , agg>
= (292 @0 99z,
(ayk,,)()("( w2 (g

D () =E @) L ©)" A n=12,...). . . . . (3

D (n) being # 0, we find E (n) # 0. Hence: if the coefficients F, (a) (« <) are already
known, the n coefficients F, () are defined unambiguously by the n relations (2). In this

hence

manner we have proved:
The functional system possesses at most one solution analytical and vanishing at the

origin.
By means of the recurrent relations (2) we can determine the coefficients F, (n). Thus

we obtain n formal power series = F,(a)¢*. To prove the theorem it is sufficient to show
o

that each of these power series possesses a positive radius of convergence. In fact, these
power series give then a solution, analytical and vanishing at the origin.
As we have shown, the determinants E {5) (yp = 1,2,...) differ from zero. It follows

from [w; {0)| <1, that for - oo each constituent in the principal diagonal of E ()
tends to 1, each other constituent to zero. Therefore E(3) tends to 1 and @JE(n)!



134

possesses a positive lower bound independent of 7. Each constituent of E (y) being
bounded, we deduce from (2)

(B =2 2 e (Bl o ()

where 4 denotes an appropiate number independent of 7,
Since | wl’,4 (0)| <1, we have
lw. (O)| =0 <1,

where @ is a conveniently chosen positive number < 1. Since w, (x) and q(x) are analytical

atx = 0, and A (x, y/w) at x=y,, = 0, we have for sufficiently large K and B

0] B
w#(x)<<fj_“§%;_» ; q(x)<<»i:%}
and
he (x' Yur) << s

(1—Kx) I(1—Kgy,»)"

Y

I choose the positive number r'so small and then the positive number 4 so large that
(1+2P)(@+7)<1 and I'K+A6G)=KB . . . (5

1
For each z with absolute value < ﬁ:}; the function

(1—2)t+k=0n ] — (1 - I7) g} =1 tk—1)m

possesses an expansion in powers of z. This expansion being valid for z = 1o e
obtain for sufficiently large ™M
(1 —z)iHk=Dn {1 (] o ) z} 1= tk—0n & & _“_“*]_'_q'_,,,___‘ . (6)
1—(1+20)z

From (5) it appears that
.. K\V+1
ABJHK(I—{—ZF)N“(@+;I—> <r . . .. (7)

for sufficiently large positive integer N, Finally I choose H == 4 so large that the ine-
quality ‘

r ,

B =S H . (8
holds for »=1,2,...,nand =1,2,...,N. It is sufficient to show that this ine-
quality holds for v =1,2,..., n and every positive integer #. In fact, then the n power
series £ F, (a) £* possess a radius of convergence =g I may assume  =N-1 and

24

suppose that the inequalities
H* . . . . . . . .09

rare proved already for any a<7.

135

The following argument is based on inequality (4): u, (F_{a)) is the coefficient of

¢! in the expansion of h, {q (0,7, w, (lm where

jrx)= 2 F,(a) x*,

o<1

From (9) it follows that

hence
Y
- PH 5 raee Iz
K jo (wa () << 6t  1—(K+ H6)t 1—2
I=H9—gy

where z = (it -} H ) t. Also from (5)
N'K-+HO)Z=ZI'(K-+ AB)=K B,

hence

KB r
qu<<p4é<<1z

_..._z *
In this manner we obtain

B

Tz 1+tk—1)n
()
1—2z

— B (1 _mz)w(k—l)n { 1 ____(1 - ‘p) z}“ I—(k~1)n <..1.w

he § q (t), Jr (wp (t))§ <<

by (6)
B M B M
= <<
1—(14-20)(K+HO)t 1mu+azuﬂ<@+§%y
e . N 1“ 37 Hd t.(x
<<BM0(£0}I t “f"'A? e

according to (5) and (7). Tl'1e absolute value of the coefficient u, (F_(a)) of t7 in this

ZI}' u” for every >N, so that it follows from (4), that (8)
3
holds for every » > N. This establishes the theorem.

expansion is therefore =

To be continued.



