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multiplied in order to bring it in accordance with the protein percentage found by the 
gravimetrie method. Slight deviations from case to case of factor 6.30 which we have 
taken now are possible, but a value of 7 is certainly too high. The too high value of the 
total protein percentage gives much too high va lues for the globulin percentage (this was 
then determined as thc difference betwecn total protein and albumin percentage) and 
consequently the spreading factor is much too high. This cause, however, is not sufficient 
to bring the factor found for globu'lin to the value of 0.93 found now. 

Summary. 

Serum albumin and globulin were determinl'd by means of ni trog en determinations 
according to thc KjELOAHL method and by means of spreading. Average spreading factors 
of 0.93 for globulin, 1.04 for albumin and 1.01 for total protein we re found. 

Physics. - Meson theories in live dimensions. By L. ROSENFELD. (Communicated by 
Prof. H. A. KRAMERS.) 

(Communieated at thc meeting of January 31, 1942.) 

In spite of the attractiveness of its basic idea, the meson field theory of nuclear systcms 
cannot be said to be firmly established in any definite form. Quite apart from the con~ 
vergence diffieulties inherent in any quantum field theory, one is here confronted from 
the start with a choice between four a priori possible types (1) of meson fields: scalar, 
vector, and the two dual types with respect to spatial reflexions, pseudoscalar and 
pseudovector. One may then try to examine which choiee provides the widest scope for 
the theory, including not only an account of properties of nuclear systems, but also a 
theory of fÏ-disintegration, which in particular involves a definite relation between fÏ-decay 
constants and the mean life time of free mesons. From this point of view, it appears 
necessary to adopt a particular combination of a pseudoscalar and a vector meson field, 
characterized by a simple relation between the constants which define the intensities of 
the nuclear sources of the meson fields (2) (3). 

Recently, M0L:LER (4) has pointed out that this "mixed theory" presents itself in a 
very natural way as a single type of meson field in a five~dimensional (pseudo-euclidian) 
space, viz. as a five-vector with respect to the group of ordinary five"dimensional 
"rotations" (of determinant + 1) 1). Moreover, such a representation of the mixed theory 
leads to an essential reduction of the number of arbitrary constants in the source densities 
of the meson field. The physicaI interpretation of the fifth coordinate introduces, however, 
an element of arbitrariness in the theory. One might. as originally proposed by M0LLER, 
identify the five-dimensional space with DE SITTER's universe, thus suggesting a some~ 
wh at unexpected connexion between nuclear forces and cosmological features. An a1tet~ 
native interpretation consists in considering the five~dimensional space as a projective one, 
according to VEBLEN's original suggestion (5): this has the advantage of pcrmitting a 
straightforward treatment of the interaction of the mesons and nucleons with the electro
magnctie field; a detailcd discussion of this possibility has recently been carried out by 
PAIS (6). 

The special position, thus recognized, of the mixed theory as a fundamental type of 
five-dimensional meson field raises at once the question as to which other types of sueh 
fjelds would also be possible a priori. A convenient starting point for diseussing this 
question is provided by the so-called "particle aspect" of meson theory, i.e, a linearized 
form of the field equations, involving a system of matrices subjected to suitable com~ 
mutation rules (7). In fact, the different possible types of meson fields are then 
immediately given by thc in equivalent irreducible representations of the algebra df these 
matrices. Thus, in four dimensions, we havè essen'tially 2) two irreducible representations, 
of degree 5 and 10 respectively, to which correspond the scalar and the vector type of 
mesons, or the two dual types, according to the reflexion properties imposed on the wave 
function (7). Such considerations are readily extended to five dimensions (8), with the 
following result: there are essentially 2) four inequivalent irreducible representations of 
the extended algebra, of degrees 6, 10, 10 and 15, corresponding to a five-sçalar, two 
distinct five~pseudovector and a five~vector type of meson field respectivel)':. 

1) This group inc1udes in fa ct both the Lorentz group and the spatial reflections, 
provided the latter are associated with a change of sign of the fifth coordinate, More 
accurately, the "mixed theory" appears as some degenerate or approximate form of the 
five-vector theory. 

2) i.e. apart from a trivial rcpresentation of degree 1. 
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In a non-projective interpretation of the five~dimensional formalism. it is found (8) that 
these four types of meson fields uniquely reduce to only three types of four-dimensional 
theories; viz. the five-scalar is equivalent to the four-scalar theory, both five-pseudo
vector types give rise to the same four-pseudovector theory, while the five-vector type is 
just equivalent to the mixed theory with the reduced number of SOU1'ce constants. In fact, 
in each theory suitable covariant sour(e densities can be defined in the usual way by 
means of Dirac matrices. The projective interpretation, on the othe1' hand, leads to 
essentiaUy different conclusions. The discussion of this case, which has recently been 
worked out by PAIS (9), starts from the basic correspondence established in a well
defined way (5) between any five-pl'ojector and a set of four-tensors of all lower and 
equal degrees (e.g. a projective five-vector defines a four-vector and a four-scalar). 
It is, however, possible to de fine in a projective way the universal four-pseudoscalar 

"ijk I =± I detg l1l11 I ' f., and by means of this so to modify the correspondence just mentioned 

th at any membel' of the set of four-tensors be replaced by its dual with respect to spatial 
refle~tions (thus, instead of a four-vector and a four-scalar, one may, from a projective 
five-vector, also get a pseudovector and a scala 1', or a vector and a pseudoscalar, or a 
pseudovector and a pseudoscalar). It then follows that from the four irreducible types 
of projectivc theories for (ree mesons any one of the four-dimensional types can be 
dcrived, as weil as any combination of vector or pseudovector with scalar 01' fJseudo
scalar. But the number of possibilities is greatly reduced when due account is taken of 
thedefinition of the source densities by means of Dirac matrices. If one adopts for these 
sources the familiar definitions, eventually modified with respect to refll'ction properties 
by multiplication with the pseudoscalar ë ijkl , it is readHy seen that in every irreducible 
type of projective theory all different four-dimensional possibilities obtained in the way 
indicated above lead just to the same physical theory 1). So far we th us get exactly th~ 
same re sult as with the non-projective interpretation, viz. the scalar, the pseudovector and 
the mixed theory. 

Still, the projective interpretation allows of a greater freedom in the definition of the 
source densities than the non-projective standpoint, because it involves a unive'rsal 
projector, viz. the coordinate vector Xl', which may be combined in a covariant way with 
the Dirac matrices. While this circumstanee does not give rise to any essenÜaUy new 
possibility in the five-scalar and five-pseudovector theories, it leads for the five-vector 
type, in addition to the mixed theory, also to a pure vector and a pure pseodoscalar field. 
Summing up, we see that the five-dimensional point of vkw, in its widest interpretation, 
does not exclude any one of the four-dimcnsional types of meson theories, but singles 
out the mixed theory as the only combination of four-dimensional types whieh can be 
derived ~rom an iccedllcibl,e five-dimensional type of field 2). ' 

Whatever the formal aspect of the problem may be, the adoption of some particular 
form of meson theory (if any) can of course only be decided on physical arguments. If 
we first consider the application of meson theory to the phenomena of p'-disintegration, 
an essential requirement in this respect is to avoid the difficulty, pointed out by 
NORDHEIM (11), of reconciling on such a theory the empirical value of the mean life 
ti~e of t!;le ~:,ons with the p'-decay constants of light elements. This may be achieved 3) 

1) For the cases of the four-scalar and four-vector theories, a similar cOJ1clusion has 
a1so been reached by M. SCHÖNBERO in a recent note (10), He therefore proposes tó 
in.cl.ude imy pair of dual cases (scalar-pseudoscalar, vector-pseudoveetor) in a single type 
of meson theory. It would seem more practical, however, to re ta in the usual classification. 

2) The reduction of the number of source constants in the mixed theory, which was 
stressed by MoLLER (4) as an important feature of the non-projective point of view, is 
not 'strictly implied in the projective interpretation, though it still appears as à conse
quence of the simplest choice of source densities in th is case. 

3) A quite different possibility, involving, however, the cutting-off ofadivergentexpres
sion, has been pointed out by S.SAKATA, Proc. phys.-math. Soc. Japan 23, 283(1941). 
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either by adopting a purely pseudoscalar theory or by introducing two independent 
kinds of mesons of very different life times (3). Thc latter case may just be provided 
by thc mixed theory; more precisely (3), one has here to assume, taking the five
dimensional form of the theory with thl' redueed l1umber of soul'ce constants, that thl' 
pseudoscalar mesons have a much langer mean life than the vector mesons. Either anc 
or these two possibilities thus leads to the conclusion that cosmic ray mesons observed 
at sea-Ievel, being of pseudoscalar type, should have zero spin, - a conclusion strikingly 

supported by the analysis (12) of recent cosmic ray observations. 
While such phenomena thel'efore appeal' to be in harmony with the consequences of 

meson theory, they do not permit to decide between pseudoscalar or mixed theory. The 
adoption of the latter se ems to be claimed, however, for a rationa], treatment of nuclear 
forces (2). It is true that the issue in this respect is somewhat obscured by the inevitable 
OCCUlTence of the well-known divergences inherent in any quantum field theory. Still, 
adopting a point of view analogous to the ,"correspondence" methad of quantum electro

dynamics, it is possible first to discuss the convergence of the "classica]," meson theory 
obtained by neglecting all quantum effeets of the meson field, and then to examine how 
the validity of such classica I calculations has to be restricted in order to keep oEf quantum 
singularities. Tbe "classicaI" interaction potential betwew a pair of l1ucleons at (mean) 
distance c from each other is th us found to consist of a "static" potential and a series of 
non-static terms, the order of magnitude of which, in comparison with the static potential, 
is given by same power of the parameter TI (Xl') '~, where x-I denotes the range of nuclear 
forces and T '" g2/4nhc", 0.065. the intensity of nuclear sources of meson fields, while 
the exponent n depends on the type of meson theory considered. On pseudoscalar as 
weil as vector meson theory, there oceurs in the static potential a dipale interaction term 
in r-:1, which must be cut alf at some distance smaller than the range; owing to this 

singular term, one has in this case n = 3, from which it follows that the static potential 
in no way approximates the interaction in the region comprised between the cut-oH 
distance and the range, where a quantitativ'è expression for this interaction is at all. of 
any significance. The mixed theory, on the other hand, is just defined in sueh a way that 
the singular dipole interaction term is eliminated from the statie potential; one has then 
n = 1 and the inconsistency just mentioned disappears 1). Of course, the divergences 
arising from the quantization of the meson field severely restriet the domain of validity 
of the mixed theory; the critical distance for which it breaks down, however, may, 
according to Heisenberg, be defined by TI (xrO)'2 = 1, so that there still remains a region, 
between 1'0 and x-1 , where - in contrast to pseudoscalar or vector meson theory - it 

yields unambiguous results. 

1) Explicit calculations of non"static interaction terms, which very instructively 

illustrate the general argument here summarized. have been published by E. STUECKEL
BERG ,and J. PA TRY (13) and E. STUECKELBERG (14). As regards the numerical results 

given there, it must be observed that, owing to the assumption T = 0.1 instead of", 0.065, 
they perhaps convey an overpessimistic imp re ss ion of the convergence· of the mixed 
theory. The main interaction terms arising from the quantization of the meson fields 
have also been calculated by several authors;, see especially E. STlJECKELBERO and 
J. PATRY, loc. cito (13), § 7 and H. BETHE, loc. cito (15), p. 272; the calculations of 
M0LLER and ROSENFELD quoted by BETHE (from a verbal communication) have, 
however, not been published. For the vector theory, the ratio of thc quantum interaction 
terms of order TZ to the static potential is found, as mentioned by BETHE, to be of the 
order of magnitude TI (xr)2; for the mixed theory, however, according to the unpublished 
calculations just referred t~, this ratio becomes TI(xr)4. According to the "correspondenee" 

interpretation, all sl1ch terms have to be discarded. 



158 

REFERENCES. 

1. N. KEMMER, Proc. Roy. Soc. A 166, 127 (1938). 
2. C. MoLLER and L. ROSENFELD, Proc. Copenh. 17, no. 8 (1940). 
3. C.MoLLER, L. ROSENFELD and S. ROZENTAL, Nature 14:4, 629 (1939); in this note, 

the possibility of a consistent account of p-disintegration and meson decay. 
on a purely pseudoscalar theory is erroneously disregarded. 

S. ROZENTAL, Proc. Copenh. 18, no. 7 (1941); in th is paper, the first paragraph 
on p. 42 must be cancelled; see a forthcoming note by S. ROZENTAL in 
Phys. Rev. 

See also S. SAKATA, Proc. phys.-math. Soc. Japan 23, 291 (1941). 
4. C. MoLLER, Proc. Copenh. 18, no. 6 (1941). 
5. See especially W. PAULI, Ann. d. Phys. 18, 305, 337 (1933). 
6. A. PAIS, Thesis, Utrecht (1941), Physica 8, 1137 (1941), and other forthcoming 

papers in Physica. 
7. N. KEMMER, Proc. Roy. Soc. A 173, 91 (1939). 
8. J. LUBANSKI and L. ROSENFELD, Physica 9, 117 (1942). 
9. A. PAIS, Physica, in the press. 

10. M. SCHÖNBERO, Phys. Rev. 60, 468 (1941). 
11. L. NORDHElM, Phys. Rev. 55, 506 (1939). 
12. R. CHRISTY and S. KUSÛ:A, Phys. Rev. 59, 405,414 (1941). 

J. QpPENHEIMER, Phys. Rev. 59, 462 (1941). 
13. E. STUECKELBERO and J. PATRY, Helvet. Phys. Acta 13, 167 (19iO). 
14. E. STUECKELBERO, Helvet. Phys. Acta 13, 347 (1940). 
15. H. BETHE, Phys. Rev. 57, 260, 390 (1940). 

Geophysics. - On the STONELEY-wave equation. Il. By J. G. SCHOL TE. (Communicated 
by Prof. J. D. V. D. WAALS.) 

(Communicated at the meeting of November 29, 1941.) 

§ 3. Discussion of the STONELEY equation. 

In the preceding paragraph we fOllnd th at the roots I; of this eqllation must be Iess 
than 1; we shal1 now prove that these roots cannot be negative. 

Putting 

or 

v(r-=c)(T=V1 t)= 1-1::1', 

VCi-~)~-ZrCf=:"w,)= I-epI C, 

V(1::....:~;t) (l--wC) cc::: l-w 102 c, 
VU=;:;E)(i =C) = l-IP2 C, 

, ~ ftl 1::2 + (l1 BI + epi + ep2 l = 4 ~ 1-1::1 (1- ,Il2) + 
( 1),1 el ~? PI 

+ E2 G:~ -1) - El ë<;~ ( 1- ~; Y ~ 
hence ;; = ~!1-=1::.1.~~..:::::,u21ttLH!l~~2(~_-.-.-fl:d,L'2)j, which is positive, El and e~ being 

e2! el 1::1 1),1 I,U2 1::2 + epi + IP2 
Iess than 1. 

As we have now pl'oved that 0 < I; < I, it follows that sin Cl is reaIl and greater than 

1 (I; = -;.t-).hence the cosines of the angles occurring in equation (1) are imaginary, 
sm2 /"1 

and the wave fllnction 

F (pt - hl x sin i1 - hl Z cos il) becomes F (pt - hl x sin il - i hl Z V-;i;:;2-i~::':'::.-f)~ 
The waves of the system IA r.2t r A([ \21([1 are therefore exponentially damped in the 

Z direction. 

It is convenient on ce more to choose a new variabIe, namely 1)~"" 1 = sin2 rl. 

Equation (2) is then: 

(211- ~-/~;f7~;Y + 4 V(li= fn1)~-=lJ;f(17=~f(;7~-=~) = 

'V ~t~~~\1) .... (l)l . ( 217 - i=!:;!/~J 
2 

+ i01~=~~~~=~i) . (21) + rg~~;-Ji~J 2 + (3) 

+ (T!7!;;;;~1)2' CI/E-~;~~)}} +1/G~.1~~~~i·~) 
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