
~ = 0,08475685 
2 

k3 k4 = 0,00030889 
4: 

1 + ~ + k~k~ = 1,08506574 
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-;.. log = 0,0354561 

log n = 0,4971499 

3 log k l ~,9800545 + 
0,5126605 

log 16 a~ a4 = 0.4384846 

log ki C 4 (kl) = 0,0741759 

ki C4 (kl) = 1.186249 

Fehlel' ;::::; ki ks C4 (kl);::::; ki C4 (kl)' ~~ = 0,000016 
-----+ 

ki Cs (kl) = 1.186265 

log ki C5 (kd = 0,0741816 

in genauer Uebereinstimmung mit MAXWELL (l.c. S. 319). 

Mathematics. - Conformal differential geometry. Ir. Curves in conformal two-dimensional 
spaces. By J. HAANTJES. (Communieated by Prof. W. VAN DER WOUDE.) 

(Communieated at the meeting of February 28, 1942.) 

Summal'y. 

In a former paper 1) a method has been introduced for developing the conformal 
differential geometry of curves in flat spaces of dimension n > 2. In this note it is proved 
that the same theory holds also for n = 2 if we restriet ourselves to the conformal trans
fcrmations of the Möbius group. In particular the conform al Frenet-Serret formulae, 
whieh give differential l'elations between the fundamental quantities of a curve, have 
exactly the same form. Furthermore geometrical interpretations are given of these 
fundamental quantities, whieh include among other things the conformal parameter and 
the inversion curvature. 

The fundamental theorem. 

Let a i.x be the fundamental tensor of a 2-dimensional flat space R2' in whieh the 
coordinates are denoted by x'. This coordinate system is assumed to be a rectangular 
cartesian one, though we need not to restriet ourselves to these systems. In C.D.G. 11) 
we have proved the foUowing theol'em: 

The conto/'mal invariant properties in a flat space are those properties, which are 
invariant under a confol'maJ tl'ansformation of the fundamental tensor 

al.x =--= 0
2 ai., • 

such that the space remains a flat space. 

(1) 

Therefol'e, the cul'vatul'e x' of the metrie tensor aÎ.x has to vanish. This cul'vature is 
given by the equation 

(2) 

taken from SCHOUTEN-STRUIK 2). Hence the function a in (1) must satisfy the equation 

af''' àf • S" = 0; s" = à" log o. (3) 

The above theorem applies to the whole set of conform al transformations and it enables 
us to develop the differential geometry of this set of transformations. 

In this paper however we will. restrict ourselves to those conformal transfol'mations. 
whieh transform circles into circles (the so called Möbius group). This restriction imposes 
an additional eondition on a. which ean be deduced by requiring that a circle remains a 

circle. if aÁx is taken as the fundamental tensor instead of ah' 

Let the árc-Iengths of a curve C with respect to a),x and aÄ, be denoted by s and s'. 
the corresponding covariant derivatives along the curve by ö/ds and ö'/ds' respectively. 
The coordinate system being a cartesian one for the metrie ah' the covariant derivative 
ö/ds is identieal with the ordinary derivative d/ds. If iX is the unit vector tangent to the 
curve. the curvature k of C may be found from the Frenet formulae 

o i' 
d~ =-ki\ . ( 4:) 

1) Conformal differential geometry. Curves in conform al euclidean spaces. Proc. Ned. 
Akad. v. Wetenseh .• Amsterdam. 44. 814-824 (1941). referred to as C.D.G. r. 

2) SCHOUTEN-STRUIK. Einführung in die neueren Methoden der Differentialgeometrie. 
II (Noordhoff, 1938) p. 291. forme! (19.1 (1). 
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where iX is a unit vector normal to i". Since i' and i' are unit vectors, they transform 
I I 

under a conformal transformation (1) of the aÀ' as follows 

i"=o-li'; i/z=O-li'. 
1 1 

These transformed vectors are related by the following differential equation 

o' ,1, 
1 -k' ,Ix 

-ds' - ~ , 

(5) 

(6) 

where k' is the curvature of C with respect to the tensor a~". Now if pZ is any contra
variant vector we have 3) 

o' , ~ 0 ' î 
-d~ = a-I ~ Is + (s,u il') p' + (S,u p,u) i" - a,u), pU i)' S' ~. (7) 

From the equations (4), (6) and (7) follows by a simple calculation the relation between 
k and k' 

k' = a-I (k-sl, i,u). (8) 
I 

Hence we have 

dk' __ I~dk (::' )'v',u+ "'yi 
ds' - 0 ? ds - Uy Sf' I: Si' S" l,u ~ ~. (9) 

Now suppose the curve C is a circle with respect to the metric ah' Then k is constant 
and so will be k' if a circle will re ma in a circle under the conformal transformation of 
the fundamental tensor. This leads as is seen from (9) to the vanishing of 

(
::. ) 'y 'i' 
UV S,u - Sv S,u I I (10) 

I 

for every pair of two mutually orthogonal vectors i" and iI' , which condition is equi
I 

valent with the equation 

(11 ) 

Multiplication by a,UV gives in connection with (3) 

Je = -~. a,n" s" Si' = -1 S,. s'·. (12) 

Hence Cf satisfies the equation 

(13) 

As (3) is a consequence of (13), this equation is the only condition imposed upon a. 
So we have arrived at the following result. 

The conformal properties, which are invaciant under the transrormations of the Möbius 
group, are those properties. which are invaciant under a conformal transtormation of the 

fundamental tensor a~" = Cf2 aicz ' Cf satisfying the equation (13). 
By comparing this th eo rem with the result obtained in C.D.G. I concerning the con

formal transformations in an R. n (n > 2), we see that for every n > 1 a satisfies the 
same equation, But only for n> 2 the equation (13) appears to be a direct consequence 
of the vanishing of the curvature affinor belonging to a~" As a re sult of tbis the con
formal theory developed in C.D.G, I may be applied to the case n = 2. We give here a 
brief summary of the results specialised for n = 2, 

3) Compare C.D.G, 1, p. 816. 
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Fundamental relations. 

a. Let the curvatures of a curve for the metrics a Àz and a ~z be denoted by k and k' 

respectively. From (9) and (13) it follows that 

dk' _ -2 d k 
ds' -0 ds' (14) 

d f . h dk. 't' Th I' (14) bi We choose the irection 0 mcreasing s so t at -- !s POS! !ve, e re atJOn ena es 
ds 

us to defjne on the curve a conformal invariant parameter 7: 

j ' - dk 
t = Ve ds + constant: e = ds' ( 15) 

This parameter of the third order is called the conformal parameter of the curve. 
b. Instead of i X and i" (comp. (4) we use the following conformal invariant vectors 

I 

(16) 

which have the direction of the tangent and the normal respectively. 
c. The covariant differentiation to s being not a conförmal invariant differentiation is 

replaced by a confOt'mal covariant difterentiation to the parameter 7:. This differentiation 

is defined by the connexion parameters 

(17) 

whcre A~ is the unit affinor and QI' is given by the equation 

Q --·k· +l(d Z ). ,u --- :/. '2 ds og e t,u. (18) 

Thc transformation of Q,u under conformal transformations is given by 

Q,~ = Q,u - S,u, (19) 

from which it follows at once that the parameters r~À are invariant. The conformal 
covariant derivative to the parameter 7: is denoted by the symbol D T • 

d. The conformal "Frenet-Serret" formulae for the curve are 

D 'z=dP+rz ',u'À-O TJ -- dr ;J!. ] ] -

(20) 

e. .The function her) is a conformal invariant of the fjfth order of the curve. It is 
called the inversion curvalture of the curve 4). The function h (7:) determines the curve to 
within conformal representations belonging to the Möbius group. So the equation of the 
curve may be written in the form 

h = h (r). (21 ) 

This equation is called its intrinsic equation. 

4) BLASCHKE IIses the invariant b = 2h. (Vorlesungen über Differentialgeometrie, lIl). 
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t. An important theorem concerning touching curves is the following one. A necessary 
and sufficient condition in order that two curves have at a point P at least a five-point 

(six-point) contact is that the quantities j", Q p. (and h) at P be the same for both curves. 
This theorem is an immediate consequence of the definition of the quantities involved. 

The loxod/:omic. 

An isogonal trajectory of a system of circles passing through two fixed points is 
called a loxodromic. In order to find the intrinsic equation of a 10xodromic we choose the 

fundamental tensor a"x so that the family of circles with respect to the metric a"x is a 
pencil of straight Iines through a fixed point P. If the constant angle under which the 
curve XX = XX (s) meets the Iines is denoted by a, the coordinates of Pare given by 

yX = XX + À cosai" + Àsinai". (22) 
I 

By differentiating (22) we obtain the following two equations for Á and k, the curvature 
of the loxodromic, 

from which we get 

dÀ 
-=-cosa, 
ds 

Àk = sin a 

À=-scosa, k--~5! 
- s' 

dk _ tga _ 5). 
ds -7-e 

Consequen tI y 

tga . 1. 
QI'=-- ll'--II" 

SIS 

Then the invariant h can be calculated from (20). It appears to be 

h =catg 2a. 

Hence we have the theorem 
The curves of constant inversion curvature are loxodromics. 

(23) 

(24) 

(25) 

(26) 

Consider a point XX of the loxodromic. Besides the osculating circle at XX there exist 
several other circles connected with the curve at this point f.i. the circle through XX 

belonging to the coaxial system by which the loxodromic is defined and the circle 'tJ.rough 
XX normaJ, to this system. 

The center of the cirde through the point XX orthogonal to the pencil is yX. Hence 

its curvature with respect to a}.x is 

IÀI-I = -~- = Qf' (-sinail'-casai'u) = QI' vI', 
s cas a I 

(27) 

wh ere vP, is the unit vector pointing towards the center of the circk This equation 
however is conformal invariant as may be seen from (8) and (19). So (27) gives the 
curvature with respect to any metric tensor obtained from a}," by a conformal trans
formation. 

The circle through XX belonging to the pel1CiI by which the loxodromic is defined is a 
straight !ine with respect to the fundamental tensor a},x' lts direction is given by the 
vector 

sin ai" + cosajx. (28) 
I 

5) Here tg a is supposed to be positive. 
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lts curvature c with respect to the metric tensor a"x vanishes. With respect to any other 
metric tensor obtained from a },x by a conformal transformation the curvature is given by 

the following invariant equation 

C = Q,u (cas a il'-sin a il') = Q,u wi', . (29) 
1 

where w,u is the unit vector normal to the tangent of the circle. Indeed, th is expression 
vanishes if Q" is replaced by the value (25), whereas both sides of (29) transform under 
conformal transformations in the same way as a consequence of (8) and (19), wp· being 

a uni t vector. 
We shall use these results in the following section. 

Geometrical interpretations of z, Qr< and h. 

The parameter z. If d denotes the distance between the centers of two circles Cl and 
C2 with radius /:1 and /:2, the expression 

1= 1 /EI---~2)~ __ ~~ (30) 
V 2 Cl C2 

is a conformal invariant of the curve. This invariant I is a function of the cross-ratio of 
the points of intersection of the two cirdes with an arbitrarily chosen circle orthogonal 
to Cl and C2 6). When the expression (30) is calculated for the osculating circles of the 
curves at the points s and s + Ls, we obtain 

(31) 

Consequently we have from (15) to within terms of higher order 

(32) 

which gives us at the same time a geometrical interpretation of -c. 

The quantity QI" Before we turn to the geometrical interpretation of Qw we ask for 

the geometrical figure, which corresponds to a covariant vector wl' at a point P(x8l. 
transforming under conformal transformations as follows 

(33) 

Let e" be any contravariant unit vector at P. Then. the transformation of the scalar 

p = ef'w I' is given by 

(34) 
By comparing (34) with (8) we see that this transformation is identical with that of the 
curvature of a cirde through p, whose tangent at P is orthogona1 to e.v.. Therefore er' 

and w I' together define a circle through P with the center 

(35) 

In varying the unit vector e" we obtain a family of 001 circles all passing through the 
point P. 1t is seen from (35) that the locus of the centers of these circles is a straight 

!ine given by 

(36) 

Hence this family of circles is a coaxial system, whose axis (36) is orthogonal to the 

vector W". 
Now the transformation of Qf' is identical with that of w 1" Henee we have the 

theorem 

Comp. W. BLASCHK.E, Voriesungen über Differentialgeometrie, UI, p. 41. 
~ 
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The co variant vector QI' corresponds geometrical/y to a coaxial system of eircles. 

Heneeforth this system of dreles wil! be denoted by (Q). It may be noted th at the 
curvature of the drele of the system (Q), which is tangent to the curve at the point 
under consideration is given by 

(37) 

from which it follows that this drcle is identical with the osculating drcle of the curve. 
Hence the pel1Cil (Q) contains the osculating circle. So its axis passes through the center 

of curvature and is normal to the vector Qz. 

In the following a geometrical property wil\, be given of this particular system of 

drcles, which leads at the same time to a geometrical interpretation of Qf" 

Consider a loxodromic having at P at least a five-point contact with tIk given curve C. 

Then as we have seen the quantities j", j" and Qp, at Pare the same for both the curve 
1 

and the loxodromic. If besides that the inversion curvature of both curves are equal we 
have at P a six-point contact. Now a curve is determined by the values of the quantities 

j", j" and Q at one point together with the function h( 't) 7), which is a constant for a 
1 ,u 

loxodromic. Therefore, there exists only one loxodromic, which has at P a six-point 

contact with C and a system of 00 I loxodromics, which have at P at least a five-point 

contact with the curve C. Each of these 00 1 loxodromics meets a coaxial system of cireles 
under a constant angle a, which is connected by the inversion curvature of the loxodromic 
by formel (26). Now con si der the drele through P normal to one of these coaxial systems. 

lts curvature is according to (27) given by 

Qu (- sin a il' - cos a il') = Q(i vI', (38) 
, 1 

its center by 

(39) 

from which it follows that this drele belongs to the system (Q) at P. But to every value 
of a corresponds according to (26) one value of h, thus one loxodromic having at P a 
five-point contact with the curve. Hence each drck of the system (Q) can be obtained 
in this way. This result enables us to state thc following theorem. 

There exists a family ot ool loxodromics having at least a five-point contact with a 
given curve at a point P. Each of these loxodromics meet-s a peneil of eircles under a 
constant angle. The system of circles through P each ot which is normal to one of these 
pene/Is form the coaxial system (Q) at P. ',é\i 

Another geometrical interpretation of the peneil (Q) is obtained as follows. C~nsider 
again a loxodromic which has at P a five-point contact with the curve, together with the 
coaxial system of drcles, which are cut by this loxodromic under a constant angle a. 

The center of the drcle through P belonging to this system is aecording to (28) and (29) 
given by 

(40) 
where 

W Z = cos a i Z 
- sin a i". (41 ) 

1 

Hence this drcle too belongs to the system (Q) at P. If we had started with another 
loxodromic having a five-point contact with the curve, we should have obtained another 
cirele of (Q). We may state this result thus: 

Of each pencil of eircles belonging to a /oxodromic. which has at P at least a five
point contact with a curve. one circle passes through P. These eircles through P 
together form the coaxial system (Q) ot the curve at P. 

7) This theorem has been proved in C.D.G. 1. 
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The invariant h. A geometrical interpretation of the inversion curvature h is obtained 
by considering the loxodromic, which has at P a six-point contact with the given Icurve 
and whose invers ion curvature is therefore equar to that of the curve at P. We then 

arrive at the theorem. 
The loxodromlc which has 'at P a six-point contact with a given ,curve C meets a 

peneil of eircles under a constant angle a. The inversion curvature of C at the point P 
is connected with this angle by the formel 

h = cotg 2a. (42) 

Another geometrical interpretation of the invariant h is obtained by considering the 
drck of the system (Q), which is normal to the curve at P. This drele is called thc 
normal eircle of the curve at P. In the following it will appearthat if h is negative 
two consecutive norm al drcles have real points of intersection 'and therefore meet under 
a real angle. The center of the normal circle is given by 

(43) 

Then if 0 ('t) is the angle between the normal drcles .of the curve at the points P( 'tol 
P'(-r:) we have at P 

(H) 

Since 

(45) 

the equation (44) reduces to 

(46) 

From the' fundamental formulea (20) we obtain 

(47) 

When this expression is substituted in (46) it is found that the invers ion curvature h 
satisfies the equation 

(48) 

This relation bears out the statement that 0 only exists for negative h. So we have 
arrived' at a geometrical interpretation of h, expressed by the following theorem 8) 

The normal eil'cles at the p.oints -r: and t + L:-,1: ot a curve of negative inversion 
cluvature meet under an angle Ij, 0 for which we have to within terms of higher order 

(49) 

For curves of positive invers ion curvature we obtain in much the same way 

(50) 

wh ere I is the conformal invariant of the two normal cirdes at Pand P', defined by (30). 

8) This geometrical interpretation of h has been given by J. MAEDA, Geometrical 
meanings of the inversion curvature of a plane curve. Jap. J. Math. 16, 177-232 (1940). 
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