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l;é — 0,08475685
’_‘371’& — 0,00030889
1 o= 0ss06574 > log = 0.0354561

log 7 == 0,4971499
3 log ky = 9.9800545

0,5126605
log 16 a2 a; = 0,4384846

log I Cy (ky) = 0,0741759

1 Cy (ky) = 1,186249
k2
Fehler = ki ks Cy (k) = k5 Cy (k1) - 71‘—* = 0,000016
........ — ‘Jf‘
ki Cs (k) = 1,186265

log ki Cs (k;) = 0,0741816

in genauer Uebereinstimmung mit MAXWELL (Le. S. 319).

Mathematics, — Conformal differential geometry. II, Curves in conformal two-dimensional
spaces. By J. HAANTJES. (Communicated by Prof. W. VAN DER WOUDE.)

(Communicated at the meeting of February 28, 1942.)

Summary.

In a former paper?) a method has been introduced for developing the conformal
differential geometry of curves in flat spaces of dimension n > 2. In this note it is proved
that the same theory holds also for n = 2 if we restrict ourselves to the conformal trans~
fcrmations of the Mobius group. In particular the conformal Frenet-Serret formulae,
which give differential relations between the fundamental quantities of a curve, have
exactly the same form, Furthermore geometrical interpretations are given of these
fundamental quantities, which include among other things the conformal parameter and
the inversion curvature.

The fundamental theorem.

Let a,, be the fundamental tensor of a 2-dimensional flat space Rg, in which the
coordinates are denoted by x#. This coordinate system is assumed to be a rectangular
cartesian one, though we need not to restrict ourselves to these systems, In C.D.G. I1)
we have proved the following theoremu

The conformal invariant properties in a [lat space are those properfzes which are
invariant under a conformal transformation of the fundamental tensor

ab==0%am, . . . . . . . . . ()
such that the space remains a flat space.
Therefore, the curvature %' of the metric tensor aj, has to vanish. This curvature is
given by the equation
¥ =—02a" 0.0 logo, . . . . . . . (2
taken from SCHOUTEN-STRUIK 2), Hence the function ¢ in (1)} must satisfy the equation
a*”0,8,=0; s,=0logo. . . . . . . (3

The above theorem applies to the whole set of conformal transformations and it enables
us to develop the differential geometry of this set of transformations,

In this paper however we will restrict ourselves to those conformal transformations,
which transform circles into circles (the so called Mabius group). This restriction imposes
an additional condition on o, which can be deduced by requiring that a circle remains a
circle, if a), is taken as the fundamental tensor instead of a,,.

Let the arc-lengths of a curve C with respect to a;, and aj, be denoted by s and s,
the corresponding covariant derivatives along the curve by d6/ds and §/ds’ respectively.
The coordinate system being a cartesian one for the metric a;,, the covariant derivative
dlds is identical with the ordinary derivative dfds. If i is the unit vector tangent to the
curve, the curvature k of C may be found from the Frenet formulae

51 di*
. P _1_:_ ‘%
ds__.k:, ds ki, . . . . . . . (A

1) Conformal differential geometry, Curves in conformal euclidean spaces, Proc, Ned,
Akad. v. Wetensch., Amsterdam, 44, 814—824 (1941), referred to as C.D.G. L

2) SCHOUTEN-STRUIK, Einfithrung in die neueren Methoden der Differentialgeometrie,
I (Noordhoff, 1938) p. 291, formel (19.1 B).

@
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where i# is a unit vector normal to i#. Since i* and i# are unit-vectors, they transform
1

1
under a conformal transformation (1) of the a;, as follows

=07 li*; t=oti*. . . . . . . . (5
1 1
These transformed vectors are related by the following differential equation

i,
~ds,_~ktl,...,.....(6)

where &’ is the curvature of C with respect to the tensor aj,. Now if p# is any contra-
variant vector we have 3)

¢ p* d p* o g
_dgzg—lédi +(sﬂlﬁt)pz__l,(sﬂpu)lz_a‘lup‘ulls/.g' L. (7)

From the equations (4}, (6) and (7) follows by a simple calculation the relation between
k and &

K=ot (k—sui® . . . . . . . (8
1

Hence we have

= zgw@ﬁﬁﬁ?+%&W?.‘ N (),

Now suppose the curve C is a circle with respect to the metric a;,. Then k is constant
and so will be k' if a circle will remain a circle under the conformal transformation of
the fundamental tensor. This leads as is seen from (9) to the vanishing of

(Gys,&#s.ys,t)i”li” I £ (0)!

dK’ qfk
gy o

for every pair of two mutually orthogonal vectors i* and i#, which condition is equi-
1
valent with the equation
aa' Sy — Sy s[u:/laluv. ve e e e e (11)

Multiplication by a#» gives in connection with (3)

(12)

A== — 4 a8y su=—%8 8. . . . .
Hence o satisfies the equation
O Sy —— Sy Su + ur Sp §2=0, . . . . . . (1 3)

As (3) is a consequence of (13), this equation is the only cond1t10n imposed upon o.
So we have arrived at the following result. :

The conformal properties, which are invariant under the transformations of the M&bius
group, are those properties, which are invariant under a conformal transformation of the
fundamental tensor a), == ¢®a,,, o satisfying the equation (13). )

By comparing this theorem with the result obtained in C.D.G. I concerning the con-~
formal transformations in an R, (n>>2), we see that for every n>1 ¢ satisfies the
same equation, But only for n > 2 the equation (13) appears to be a direct consequence
of the vanishing of the curvature affinor belonging to aj,. As a result of this the con~
formal theory developed in C.D.G. I may be applied to the case n = 2, We g1ve here a
br1ef summary of the results specialised for n = 2,

3) Compare C.D.G. 1, p. 816.
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Fundamental relations.
Let the curvatures of a curve for the metrics a;, and aj, be denoted by & and 4

a.
respectively. From (9) and (13) it follows that
I4
%:w%.u.....‘w
S N

We choose the direction of increasing s so that glf is positive, The relation (14) enables
s

us to define on the curve a conformal invariant parameter 7

1“::‘] I/Eds%—constant;gz%.. R (15)

This pararﬁeter of thé third order is called the conformal parameter of the curve,
b. Instead of i#and i (comp. (4) we use the following conformal invariant vectors
1

ﬂ:w—¥:@hﬂf:@4f,... ... (16)

which have the direction of the tangent and the normal respectively.

¢. The covariant differentiation to s being not a conférmal invariant differentiation is
replaced by a conformal covariant differentiation to the parameter 7. This differentiation
is defined by the connexion parameters

]‘u/i — % % "I" Qu Al { Q}. A;_“a‘ul a” Qw . e e s (17)
where Af iS the unit affinor and QM is given by the equation
d ;
wahu+—(gﬁm@> L. (8)

The transformation of Q,, under conformal transformations is given by
Q=Qu—sw « « « « .« .« . . (19

from which it follows at once that the parameters I, are invariant. The conformal
covariant derivative to the parameter 7 is denoted by the symbol D_.
d. The conformal “Frenet-Serret” formulae for the curve are

it =0

DT]"‘
Dzj: B (20)

1

D: Qi+ (7 Qo) Qi—+ Qu Q2= (/)™ (Rja + Ji)-

e. 'The function R{7) is a conformal invariant of the fifth order of the curve. It is
called the inversion curvature of the curve 4), The function h(7) determines the curve to
within conformal representations belonging to the Mobius group. So the equation of the
curve may be written in the. form

h=h@). « .« . . . . . . . ()

This equation is called its infrinsic equation.

4)  BLASCHKE uses the invariant b = 2h. (Vorlesungen ijber Differentialgeometrie, I1I).
(}jz
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I An important theorem concerning touching curves is the following one. A necessary
and sufficient condition in order that two curves have at a point P at least a five-point
(six-point) contact is that the quantities j*, Q# (and h) at P be the same for both curves,
This theorem is an immediate consequence of the definition of the quantities involved.

The loxodromic,

An isogonal trajectory of a system of circles passing through two fixed points is
called a loxodromic, In order to find the intrinsic equation of a loxodromic we choose the
fundamental tensor a;, so that the family of circles with respect to the metric a,, is a
pencil of straight lines through a fixed point P. If the constant angle under which the
curve x* == x*(s) meets the lines is denoted by a, the coordinates of P are given by

y* = x* -+ Acosai* 4 Lsinai® e e . (22)
1

By differentiating (22) we obtain the following two equations for 4 and k, the curvature
of the loxodromic,

di .
g = cosa, Me=sina . . . . . . (23)
from which we get
A=—scosa, k:——tgﬁ. %—ﬂ;‘_@ ’). . (29)

Consequently

tga, 1,
el T T 17
Qu s i/ﬁ PG (25)

Then the invariant i can be calculated from (20). It appears to be

h = cotg 2 a. B /1))

Hence we have the theorem
The curves of constant inversion curvature are loxodromics.
Consider a point x* of the loxodromic. Besides the osculating circle at x* there exist

several other circles connected with the curve at this point fi. the circle through x*

belonging to the coaxial system by which the loxodromic is defined and the circle ¥arough
x* normal to this system.

The center of the circle through the point x* orthogonal to the pencil is y*. Hence
its curvature with respect to a,, is

| A1 = ;C%);E = Q, (—sin af”~—cosai4“) =Quv*, . . (27)
where v/ is the unit vector pointing towards the center of the circle. This equation
however is conformal invariant as may be seen from (8) and (19). So (27) gives the
curvature with respect to any metric tensor obtained from a,, by a conformal trans-
formation, ‘ ]

The circle through x* belonging to the pencil by which the loxodromic is defined is a
straight line with respect to the fundamental tensor a,,. Its direction is’ given by the
vector

sinai*+cosai® . . . . . . . . (28)
1

:6) - Here fg:a is supposed to be positive.
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Its curvature ¢ with respect to the metric tensor a,, vanishes. With respect to any other
gietric tensor obtained from a;, by a conformal transformation the curvature is given by

the following invariant equation

c=Qu(cosait*—sinai’) = Qu.uw", . . . . . (29
1

where w# is the unit vector normal to the tangent of the circle. Indeed, this expression
vanishes if Q,, is replaced by the value (25), whereas both sides of (29) transform under
conformal transformations in the same way as a consequence of {8) and (19), we being
a unit vector.

We shall use these results in the following section,

Geometrical inferpretations of z, Q” and h.

The parameter 7. 1f d denotes the distance between the centers of two circles Cy and
Cs with radius ry and rg, the expression

N g2
I:l/gt,}_ﬂ_f!_ e e e e e (30)

is a conformal invariant of the curve. This invariant I is a function of the cross-ratio of
the points of intersection of the two circles with an arbitrarily chosen circle orthogonal
to Cy and C26). When the expression (30) is calculated for the osculating circles of the

curves at the points s and s /s, we obtain

dk
AT=Fpnsg 3
ds
Consequently we have from (15) to within terms of higher order

Ar=V"AT, . . . . . . . . (32

which gives us at the same time a geometrical interpretation of 7.

The quanfity Q. Before we turn to the geometrical interpretation of QW we ask for
the geometrical figure, which corresponds to a covariant vector w, at a point P(xé),
transforming under conformal transformations as follows

W= Wu~—Su. « « « « « « . . (33
Let e* be any contravariant unit vector at P. Then, the transformation of the scalar
p = etw, is given by

F o .

p=otp—e's). . . . . o . . (39

By comparing (34) with (8) we see that this transformation is identical with that of the
curvature of a circle through P, whose tangent at P is orthogonal to e#. Therefore e#
and w, together define a circle through P with the center

xt=xtbptet oo L o o L (35)

In varying the unit vector e* we obtain a family of ool circles all passing through the

point P. It is seen from (35) that the locus of the centers of these circles is a straight
line given by

wy (P —xl)=1 . . . . . . . . (36

Hence this family of circles is a coaxial system, whose axis (36) is orthogonal to the

vector w*.,
Now the transformation of QH is identical with that of w,. Hence we have the

theorem

6) Comp. W. BLASCHKE, Vorlesungen iiber Differentialgeometrie, III, p. 41‘;&
@
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The covariant vector QM corresponds geomefrically fo a coaxial system of circles.

Henceforth this system of circles will be denoted by (Q). It may be noted that the
curvature of the circle of the system (Q), which is tangent to the curve at the point
under consideration is given by

Qui*=k . . . . . . . . . (3]
1

from which it follows that this circle is identical with the osculating circle of the curve,
Hence the pencil (Q) contains the osculating circle. So its axis passes through the center
of curvature and is normal to the vector Qz,

In the following a geometrical property will be given of this particular system of
circles, which leads at the same time to a geometrical interpretation of Q,,

Consider a loxodromic having at P at least a five-point contact with the given curve C.
Then as we have seen the quantities j*, {/ and Q,, at P are the same for both the curve

and the loxodromic, If besides that the inversion curvature of both curves are equal we

have at P a six-point contact, Now a curve is determined by the values of the quantities

7% j¢ and Q, at one point together with the function hA(z) 7), which is a constant for a
4 :

loxodromic. Therefore, there exists only one loxodromic, which has at P a six~point
contact with C and a system of oo! loxodromics, which have at P at least a five~point
contact with the curve C, Each of these oo! loxodromics meets a coaxial system of circles
under a constant angle &, which is connected by the inversion curvature of the loxodromic
by formel (26). Now consider the circle through P normal to one of these coaxial systems,
Its curvature is according to (27) given by

Qu(—sinai* —cosai’)y=Quv" . . . . . (38)
1

its center by .
= xt - (Quut) e, oo o o o (39)
from which it follows that this circle belongs to the system (Q) at P. But to every value
of a corresponds according to (26) one value of A, thus one loxodromic having at P a
five-point contact with the curve. Hence each circle of the system (Q) can be obtained
in this way, This result enables us to state the following theorem,

There exists a family of o' loxodromics having af least a five~point contact with a
given curve at a point P, Each of these loxodromics meets a pencil of circles under. a
constant angle, The system of circles through P each of which is normal to one of these
pencils form the coaxial system (Q) af P.

Another geometrical interpretation of the pencil (Q) is obtained as follows.
again a loxodromic which has at P a five-point contact with the curve, together with the
coaxial system of circles, which are cut by this loxodromic under a constant angle o.
The center of the circle through P belonging to this system is according to (28) and (29)
given by :

onsider

X (Quuwy wr, .. . . . . .. (40)

where

w*==cosai*—sinai’ . . . . . . . (41)
1
Hence this circle too belongs to the system (Q) at P. If we had started with another
loxodromic having a five-point contact with the curve, we should have obtained another
circle of (Q). We may state this result thus:
Of each pencil of circles belonging fo a loxodromic, which has at P at least a five~
point contact with. a curve, one circle passes through P. These circles through P
together form the coaxial system (Q) of the curve at P.

7) This theorem has been proved in C.D.G. L
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The invariant h. A geometrical interpretation of the inversion curvature A is obtained
by considering the loxodromic, which has at P a six-point contact with the given'curve
and whose inversion curvature is therefore equal to that of the curve at P. We then
arrive at the theorem,

The loxodromic which has‘at P a six-point contact with a given curve C meefs a
pencil of circles under a constant angle a. The inversion curvature of C at the point P
is connected with this angle by the formel

‘h=cotg2a. . . . . . . . . . (42

Another geometrical interpretation of the invariant A is obtained by considering the
circle of the system (Q), which is normal to the curve at P, This circle is called the
normal circle of the curve at P. In the following it will appear ithat if A is negative
two consecutive normal circles have real points of intersection ‘and therefore meet under
a real angle. The center of the normal circle is given by

yr=x*+pi*; p=(Q.i% N . . . . . (43)
Then if 6(7) is the angle between the normal circles of the curve at the points P(zp)
P'(7) we have at P

(o)

dy’* e 1 dp 1 /
d_[ =1 (9 + dT »‘I"Q kpll r
the equation (44) reduces to

do\? _ o1 ydp
(—;j—;) —;j“%l—f—zg 'Ez+k2p2§. .‘ . . . . (46)

Since

™
O
&

(47)

l
i .
[
i
i
;
-+
o
~
!
/;\
=
[N}
+
N! -
N

When this expression is substituted in (46) it is found that the inversion curvature h

satisfies the equation
doN?
(‘(-ﬁ-) ——2h . ... ... .. (48

This relation bears out the statement that 6 only exists for negative h. So we have

arrived ‘at a geometrical interpretation of h, expressed by the following theorem 8)
The normal circles at the points ¢ and v + A7 of a curve of negafive inversion

curvature meet under an angle /\6 For which we have fo within terms of higher order

A=V —2hAv. . . . . . . (49

For curves of positive inversion curvature we obtain in much the same way

dIy
(-d—t>:h,........(50)

where [ is the conformal invariant of the two normal circles at P and P’, defined by (30).

8) This geometrical interpretation of h has been given by ]. MAEDA, Geometrical
meanings of the inversion curvature of a plane curve, Jap. J. Math. 16, 177232 (1940).
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