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Infroduction.

In dealing with conformal differential geometry of surfaces in conformal euclidean
spaces various methods can be used. In most of the textbooks about this subject the
theory is based upon the isomorphism between the three-dimensional conformal group and
a subgroup of the projective group in four dimensions!). The coordinates employed are
the so called pentaspherical coordinates and a surface is considered as an envelope of a
two-parameter family of spheres.

The purpose of this paper is to develop the differential geometry by another method
based upon the theorem2) that the conformal invariant properties in a flat space are
those properties, which are unaffected by a conformal transformation of the fundamental
tensor

ghi=02ght, . « « « « « « « o« (1)

o satisfying the equation
0jsi—sjsi+¥gjisns"=0, (si=0iloga). . . . (2

In using this theorem we avoid the introduction of pentaspherical coordinates. Moreover
it appears to be unnecessary to look upon a surface as an envelope of a system of o 2
spheres.

§ 1. The conformal invariant fundamental tensors.

Let xh (h,i,j,... = 1,2,3) be rectangular cartesian coordinates in a three-dimensional
flat space Rs, in which the fundamental tensor is denoted by gj;. The equations of a
surface S may be written

xh = x (u*); o fsse=1:: =« 5= = = = B

By means of the unit vector nh, normal to the surface, and the quantity BZ =9, x" the
ordinary first and second fundamental tensor are defined as follows:

aﬁZQUMB#:§MB; O )

hog=np0« Bs=—B50nn. . . . . . . (5

These tensors are not conformal invariant. From (1) and (4) it follows immediately that

1) Comp. W. BLASCHKE, Vorlesungen iiber Differentialgeometrie III, Springer,
Berlin, 1929.

T. TAKASU, Differentialgeometrien in den Kugelraumen I, Tokyo, 1938.

2)  Comp. f.i. J. HAANTJES, Conformal differential geometry I, II, Proc. Ned. Akad.
v. Wetensch., Amsterdam, 44, 814—824 (1941); 45, 249—255 (1942), referred to as
CDG. I, IL
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the transformation of the first fundamental tensor under conformal transformations (1)
is given by

Gz =06%aus - - . - .« . . . . (6

In order to find the transformation of h,; we have to take into consideration that the
coordinate system (h) is not a cartesian one with respect to the fundamental tensor gy ;.
But if in (5) the ordinary derivative is replaced by the covariant derivative belonging
to the fundamental tensor considered the equation will hold for any coordinate system.
The parameters of the covariant derivative belonging to gj; are given by the CHRISTOFFEL
symbols constructed with this tensor:

hy h h
ji :AiSj+AjSi—gijSh. R (7)

where the unit affinor Af-' and s; are defined by
Al =0 (h#i); Al=1 (h=1i); s;=0dilogs. . . . (8)

Thus if g,; is considered as fundamental tensor in Rg, the second fundamental tensor
of the surface is given by

, o , A1)
haﬁ:—Bgaaﬂh:—Bg(saonh—_—_OBlg(aanh_Bi%jhgn(>§. . (9)

=0 (hap—aup s); s=s; n’.

From (6) and (9) it follows that the normal curvature » of a given direction transforms
under conformal transformations as follows

A=l g—sh « « « = « .= « (10

But since the principal directions at a point are conformal invariant as a consequence of
(6) and (9) the transformation of the principal curvatures too is given by (10). Hence
the transformations of the mean curvature ! and the scalar o, defined by

=%+ %) o=%|wy—xa| . . . o . (11)

are given by
I!'=06'(l—s); o'=010.3) . . . . . . (12

The quantity ¢ vanishes if %1 and #2 are equal, which happens only at an umbilical point.
In the following umbilical points will be excluded from our considerations. As a conse-
quence of this we have to exclude the case that the surface S is a sphere.

The scalar ¢ enables us to define on the surface a conformal invariant fundamental
tensor Gj; together with its induced tensor A, 3

Ghi=0 gni: Aus=Gn Bt Bi=0*ass. . . . . (13)

The tensor Aa,a is called the first conformal invariant fundamental tensor of S.
We shall adopt the convention that a conformal invariant quantity will be denoted
by a capital letter. The raising and lowering of a suffix of a conformal invariant quantity

will be done by means of Gp;, A,; and the inverse tensors Ghiand A%3. For other

(3]

3) In the following o is supposed to be pasitive.
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quantities the raising or lowering of a suffix proceeds by means of g,; and 5, 3 1),

The tensors G,; and A,g may be used to introduce several conformal invariant notions.
We have for example

a) the conformal invariant “length” of a curve u* = u* (¢) upon the surface, defined

by
3
—f/A d“ditdt U P

“* dt

b) the conformal invariant normal vector Nh, unit vector with respect to G; (compare
footnote %)).

c) the conformal invariant derivative of affinors of the surface. This covariant
derivative is defined by the equation

V», AaISZO e e e e e e e e e (15)

Its parameters I’ ;‘ﬁ are therefore the CHRISTOFFEL symbols constructed with the tensor
Aa,;. From (13) it follows that

F;‘,,_g ﬂg+q7A3+q:’ y—agq*;  (qe=0zlogo), . (16)

where 3 a};g are the CHRISTOFFEL symbols belonging to ay3
24

Because of (15) the process of raising and lowering of suffixes by means of Aa‘; is
commutative with the process of covariant differentiation.

The covariant derivative in R3. A conformal invariant derivative of affinors in Rj3
can be defined if we have at our disposal a quantity q; with the transformation

Qi=—qi—Si- « « « « . . . (17)

Then the parameters of this covariant derivative are given by

h h h h "
Fji: ji +Qin+inj—gijq, o e e (18)

where zhi are the CHRISTOFFEL symbols constructed with gp;. These CHRISTOFFEL
Jt
symbols vanish with respect to the system (h), but in writting ghz on the right hand
ji

side of (18), the equation (18) will hold for any other coordinate system and in this

form the conformal invariance of the parameters I' ; is at once clear,
From (12) it follows that the q;, defined by

qi=Ini+q.B%: . . . . . . . . (19

transforms in the right way. It should be remarked that q;is a function of u%, which

4) Is the unit normal vector with respect to Gj; denoted by N/ we have f.i.
Ni=Gn N*; ni=ginn"; Ni=pn;; Ni=¢~'nh.

Other conformal invariant quantities are B and B} = a3 Bf;' ghi = A8 Bg Ghi.
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means that I ?i is only defined on the surface S. In the following we use the covariant

derivative defined by (18) and (19). It will be denoted by the symbol V.
The covariant derivative of G; along the surface appears to be

BiV;Ghi =0 Gn—B. I'js Gi—BL I'fi Guy=0 . . (20)

as follows at once from (18). Hence it is immaterial whether a suffix is raised or lowered
by means of Gp; before of after the covariant differentiation.

The covariant derivative in R3 induces in S a covariant derivative with the para-
meters 3)

B B:Bi+B;o,B:. . . . . . . (21)

These parameters are however identical with I’ ;',‘[3 as may be seen from (16) and (18).

This is the reason why we use the same symbol V¥ for both the covariant derivatives in
R3 and on S.

The conformal geodesics. A curve, for which

fdz:fl/mzﬁ. N 7))

is stationary, is called a conformal geodesic. The differential equations for these curves are

2 .0 c
dd:; LI du’ du —0

73 'E' E — (23)

In a following paper we shall define the geodesics geometrically.
The second conformal invariant fundamental tensor. This tensor H,; is defined by
the following equation

H.s=NyV.Bi=—B}VuNy=—BiBiV:Np . . (24

In comparing this definition with that of h 8 (formel (5)) it may be proved, that Ha‘;
is equal to

Halazg(harg—laa,a). L (25)
From equation (24) we obtain the following:
VsBY=H:Nt . . . . . . . . (26
VueNt=—HBS . . . . . . . (27)
In consequence of (25) the tensor Ha,a satisfies a few algebraic equations. We have
a) H,,;a: xﬁA“B:O
b) Det(Hus)=— Det(Ae)=—U s . . . . (28)
’ C) Hay H?’ﬁ:Aara-
Since the determinant of H,g is negative the two directions defined by

H.zsdu*du?=0. . . . . . . . . (29

5) Comp. J. A. SCHOUTEN and D. J. STRUIK, Einfiihrung in die neueren Methoden
der Differentialgeometrie I, Noordhoff, Groningen 1935, p. 93.
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are distinct and real for real surfaces. It is seen from (28a) that these directions are
orthogonal.

The lines of curvature. The principal directions at a point are given by the well-known
equation

hapiagsdu*du?=0. . . . . . . . (30
Because of (13) and (25) this equation may be written in the form
H.p Aysdu*du®=0, . . . . . . . (31)

from which the conformal invariant character of the principal directions and therefore of
the lines of curvature is evident, The equation for the principal directions may be put in
still another form, using the bivector 123 defined by

Ie—J2=94% . ., . . . . . . (32
Equation (31) is namely identical with
Cazdu*du®*=0 . . . . . . . . (33
where C, 5 is defined by

Caﬁ:Hay IW; Aaﬁ:Ha'r Iyﬁ . . . B . . . (34)

Identities. The components of the quantities A,5 H,s C,z and I,; satisfy a few
algebraic equations, which follow immediately from the definitions of the quantities
involved. We give here the equations without proof.

a) Cog=Cgse d) H.,Cs=I.s
b) Cus A¥=0 e) HpzC*¥=0 ... (39
¢) Det(Cupg)=— A [d) Ca C/p = Aap.

The equation (b) expresses that the lines of curvature form an orthogonal system.

If the unit vectors (with respect to Aaﬁ) in the principal directions are denoted by P«
and Q@ respectively, the quantities A 8 Haﬁ, Ca‘a and la/; may be expressed in terms of
P= and Q* We have as a consequence of (32) and (41)

Aap: b, P,Q-I-Qa Qﬁ: Ca,3=pa Q,a+ Q- P,a o (36)
Ha,:Pap,’s‘—QaQﬁ; Iaﬁ:PaQ,B'—Qapﬁv

As the quantities (36) are linear independent every affinor of order 2 can be expressed

as a linear form in A, ;, H,; C,z and s

§ 2. Geometrical interpretations of A,; and H,s.
The null-directions of Ha,a- From the equations (28c) and (35e) it follows that

He C.y=H* Ci3=0,. . . . . . . (37)

which means that the null-directions of H,; defined by (35) are conjugate with respect
to the principal directions. But we know already that they are orthogonal. So the null-
directions of H, ;. are bisecting the angle formed by the lines of curvature 6).

6) From this property it follows that H,; is proportional to the tensor ij used by
BLASCHKE, l.c. p. 313. '
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Another geometrical property of the null-directions of H,; at the point P is obtained
by considering the spheres, which are at P tangent to the surface. The curve of inter-
section of such a sphere and the surface has a double point at P. It can be shown that

the directions of the tangents at P to this curve are given by
(hap—xaug) du* du®=0,. . . . . . . (38)

where x is the curvature of the sphere considered. The directions (38) are perpendicular
if the curvature x» is equal to the mean curvature of the surface. The sphere, which has
this property, is called the central sphere. From (25) and (38) it is seen that the directions
at P of the curve of intersection of the central sphere and the surface are identical with
the null-directions of H,; 7).

It is easily seen that the directions determined by equation (38) coincide (principal
directions), if » is equal to one of the principal curvatures of the surface. The cor-
responding spheres are called the curvature spheres. To each principal direction belongs
one curvature sphere.

The quadratic form A, 5 du* duB, Consider the angle between the central spheres at
the points u* and u* + du*. If the coordinates of the center of the central sphere are
denoted by y', we get the following expression for the angle dg

/[ Dgglt ygh —1 j[—1
dop = 3 (g2 o 5 o) A o 09

Ou® 0u®  Ou* Ou?
which leads to
(dp)? = Hus H’s du* duP = Ausdu* duf. . . . . (40)
This formel gives a geometrical meaning of the quadratic form A, 3 du* du®8).
7) BLASCHKE, lc. p. 313.

8) It may be seen from this result that Aoq'i is identical with the tensor g; ; used by
BLASCHKE, l.c. p. 312,



