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I ntroducfion. 

In dealing with conformal differential geometry of surfaces in conformal euclidean 
spaces various methods can be used. In most of the textbooks about this subject the 
theory is based upon the isomorphism between the three-dimensional conformal group and 
a subgroup of the projective group in four dimenslons 1). The coordinates employed are 
the 50 called pentaspherical coordinates and a surface is considered as an envelope of a 
two-parameter family of spheres. 

The purpose of thls paper is to develop the differential geometry by another method 
based upon the theorem 2) that the conformal invariant properties in a flat space are 
those properties, which are unaffected by a conformal transformation of the fundamental 
tensor 

(1) 

C1 satisfying the equation 

(S; = 0; log 0). (2) 

In using this theorem we avold the introduction of pentaspherical coordinates. Moreover 
it appears to be unnecessary to look upon a surface as an envelope of a system of 00 2 

spheres. 

§ 1. The conformal invariant fundamental tensors. 

Let xh (h, i, j, .. . = 1. 2,3) be rectangular cartesian coordinates in a three-dlmensional 
flat space R3, in which the fundamental tensor is denoted b,y gh;' The equations of a 
surface S may be written 

(a. (J • ••• = 1. 2). (3) 

By means of the unit vector n h, normal to the surface, and the quantity B~ = (}'" xh the 
ordinary first and second fundamental tensor are defined as follows: 

(4) 

(5) 

These tensors are not conformal invariant. From (1) and (4) it follows immediately that 

1) Comp. W . BLASCHKE, Vorlesungen über Differentialgeometrie lIl, Springer, 
Berlin, 1929. 

T . TAKASU, Differentialgeometrien in den Kugelräumen I, Tokyo, 1938. 
2) Camp. f. i. J. HAANTJES, Conformal differential geometry I. 11, Proc. Ned. Akad. 

v. Wetenseh., Amsterdam, 44, 814-824 (1941) ; 45, 249-255 (1942), referred to as 
CD.G. I, 11. 
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the transformation of the first fundamental tensor under conformal transformations (1) 
is given by 

(6) 

In order to find the transformation of hct. ,' we have to take into consideration that the 
coordinate system (h) is not a cartesian o~e with respect to the fundamental tensor U/U, 

But if in (5) the ordinary derivative is replaced by the covariant derivative belonging 
to the fundamental tensor considered the equation will hold for any coordinate system. 

The parameters of the covariant derivative belonging to U/u are given by the CHRISTOFFEL 

symbols constructed with this tensor: 

(7) 

where the unit affinor A7 and sI are defined b,y 

A7 = 0 (h =f i); A7 = 1 (h = i); Si = à i log a. (8) 

Thus if Uhi is considered as fundamental tensor in Ra. the second fundamental tensor 
of the surface is given by 

h~p = - B~ C}~ nÎz = - B~ C}~ anh = - aB~ (àct. nh-B~ L~r nl) ~. 
=a(hct.p-a",ps); S=Sin i • ~ 

(9) 

From (6) and (9) it follows that the normal curvature x of a given direction transforms 
under conformal transformations as follows 

X' = a-I (x-s). (10) 

But since the principal directions at a point are conformal invariant as a consequence of 
(6) and (9) the transformation of the principal curvatures too is given by "(10). Hence 
the transformations of the mean curvature 1 and the scalar e. defined by 

(11 ) 

are given by 

l' = a-I (1- s); e' = a-I e. 3) . ( 12) 

The quantity evanishes if Xl and x2 are equaI. which happens only at an umbilical point. 
In the following umbilical points will be excluded from our considerations. As a conse~ 

quence of th is we have to exclude the case th at the surface S is a sphere. 
The scalar e enables us to de fine on the surface a conformal invariant fundamental 

tensor Ghi together with its induced tensor Act." 

(13) 

The tensor Act., is called the first conformal invariant fundamental tensor of S. 
We shall adopt the convent i on that a conformal invariant quantity will be denoted 

by a capital letter. The raising and lowering of a suffix of a conformal invariant quantity 
will be done by means of Ghi• Act. I~ and the inve.rse tensors Ghi and Act.t'. For other 

3) In thefollowing a is supposed to be positive. 
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quantities the raising or lowering of a suffix proceeds by means of ghi and a,,~ 4). 
The tensors G hi and A",s may be used to introduce several conformal invariant notions. 

We have for example 
a) the conformal invariant "length" of a curve u" = u" (t) upon the surface. defined 

by 

(14) 

b) the conformal invariant normal vector Nh . unit vector with respect to G hi (compare 
footnote 4)). 

c) the conformal invariant derivative of affinors of the surface. This covariant 
derivative is defined by the equation 

(I 5) 

lts parameters r; /, are therefore the CHRISTOFFEL symbols constructed with the tensor 
A",/,. From (13) it follows th at 

r;,3 = ~ r~ ~ + qy A~ + q" A; - a~y q'" ; (16) 

where ~ a f are the CHRISTOFFEL symbols belonging to a",. ? r P J / 

Because of (15) the process of raising and Iowering of suffixes by means of A"". is 
commutative with the process of covariant differentiation. 

The co variant derivative in R3. A conformal invariant derivative of affinors in R3 
can be defined if we have at our disposal a quantity qi with the transformation 

(17) 

Then the parameters of th is covariant derivative are given by 

(18) 

where ~ h ? are the CHRISTOFFE~ symbols constructed with Bh,·. These CHRISTOFFEL 
(j i~ 

symboIs vanish with respect to the system (h). but in writting Lh
i 
~ on the right hand 

side of (18). the equation (18) will hold for any other coordinate system and in th is 

form the conformal invariance of the parameters rJi is at once cIear. 
From (12) it follows that the qi' defined by 

qi = I ni + q" B~. (19) 

transforms in the right way. It should be remarked that qi is a function of u". which 

4) Is the unit normal vector with respect to Ghi denoted by Nh we have f.i. 

Ni=Ghi Nh; ni=gih nh; Ni=e ni; Nh=e-J n h• 

Other conformaI invariant quantities are B~ and Bi = a"~ B~ Uhi = A",j3 B~ Ghi. 
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means that r1 i is only defined on the surface S . In the following we use the covariant 
derivative defined by (18) and (19) . It will be denoted by the symbol 'V. 

The covariant derivative of G hi along the surface appears to be 

as follows at once from (18) . Hence it is immaterial whether a suffix is raised or lowered 
by means of Ghi before of after the covariant differentiation. 

The covariant derivative in R3 induces in S a covariant derivative with the para­
meters 5) 

r h Bj Bi B" B";:, B 'z 
j i ï I' h + h Vy ,3 • (21) 

These parameters are however identieal with r~" as may be seen from (16) and (18). 
This is the reason why we use the same symbol 'V for both the covariant derivatives in 
R3 and on S . 

The conformal geodesics. A curve, for which 

J dr = J V A" I' du" dw' . (22) 

is stationary, is called a conformal geodesie. The differential equations for these curves are 

d 2 u" "duY du'" 
dt2 + r y,3 Tt dr = O. (23) 

In a following paper we shall define the geodesies geometrically . 
The second conformal invariant fundamental tensor. This tensor H"13 is defined by 

the Jollowing equation 

In comparing this definition with that of h~" (formel (5)) it may be proved, that H"I' 
is equal to 

H" I' = f} (h"~-la,, ,,), 

From equation (24) we obtain the following : 

\l ~ B~ = H"" N h 

\7 Nh-_H·/3 Bh 
v" - ,, ~ . 

(25) 

(26) 

(27) 

In consequence of (25) the tensor H"13 satisfies a few algebraie equations. We have 

a) 

b) 
c) 

H.;,"=H", p ACl /3=O ! 
Det (H"p) = - Det(A"p) _ - ~ . 

H"y H:p =A,,~. 

Since the determinant' of H,,~ is negative the two directions defined by 

H"pdu"'dup=O. 

(28) 

(29) 

5) Comp. J. A. SCHOUTEN and D. J. STRUIK, Einführung in die neueren Methoden 
der Differentialgeometrie I, Noordhoff, Groningen 1935, p. 93. 
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are distinct and real for real surfaces. It is se en from (28a) that these directions are 
orthogonal. 

The lines of eurvature. The principal directions at a point are given b.y the well-known 
equation 

het [I a21 ,3 du" dui' = O. (30) 

Because of (13) and (25) this equation may be written in the form 

H " [I A 21,3 du" du p = O. (31) 

from which the conformal invariant character of the principal directions and therefore of 
the Hnes of curvature is evident. The equation for the principal directions may be put in 
still another form, using the bivector l"p defined by 

[12 = _ [21 = sn-i. (32) 

Equation (31) is namely identical with 

C"p du" dup = 0 (33) 

where C"p is defined by 

C -H [reA ' -H·r [, ,,~ - "r op - et r~ . (34) 

ldentities. The components of the quantities A"p' H,,(', C"p and l"p satisfy a few 
algebraic equations, which follow immediately from the definitions of the quantities 
involved. We give here the equations without proof. 

a) 

b) 

c) 

C«p=C('" 

c,.f3 A "f3=O 

Det (C"f3) = - sn 

d) 

e) 

() 

H«r C~f3=[«p 

Hetp C«f3=O 

Cetr C~{3 = A"{3. 

The equation (b) expresses th at the lines of curvature form an orthogonal system. 

(35) 

If the unit vectors (with respect to A"p) in the principal directions are denoted by P" 
and Q" respectively, the quantities A"p' H"p' C"p and 1"1' may be expressed in terms of 
P" and Qx We have as a consequence of (32) and (41) 

A"f3= Pet P~ + Q" Qp; 
H",. = p" Pr; - Q " Qp; 

C"p=P" Q r; + Q"P,3 1 
[«p=p" Qp-Q"P(" 

(36) 

As the quantities (36) are linear independent every affinor of order 2 can be expressed 

as a linear form in A ",s' H"f-' C"p and ["p' 

§ 2. Geometrieal interpretations of A",3 and H,,;;. 
The null-direetions of H",3' From the equations (28e) and (35e) it follows that 

-1 

H ",3 C"r; = H "p C",. = O • . (37) 

which means that the null-directions of H"" defined by (35) are conjuga te wi th respect 
to the principal directions. But we knowalready that they are orthogonal. So the null­
djrections of H " ," are bisecting the angle formed' b.y the lines of curvature 6) . 

6) From this property it follows that H"'i' is proportional to the tensor eij used by 
BLASCHKE, l.c. p. 313. 
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Another geometrical property of the null-directions of H" > at the point P is obtained 
by considering the spheres, which are at P tangent to the ~urface. The curve of inter­
section of such a sphere and the surface has a double point at P. It can be shown that 
the directions of the tangents at P to th is curve are given by 

(h" ,> - Y. a",3) du" du l3 = 0, . (38) 

where " is the curvature of the sphere considered. The directions (38) are perpendicular 
if the curvature " is equal to the mean curvature of the surface. The sphere, which has 
this property, is called the central sphere. From (25) and (38) it is seen that the directions 
at P of the curve of intersection of the central sphere and the surface are identical with 

the null-directions of H" > 7). 
It is easily se en that ' the directions determined by equation (38) coincide (principal 

directions ), if " is equal to one of the principal curvatures of the surface. The cor­
responding spheres are called the curuature spheres. To each principal direction belongs 
one curvature sp here. 

The quadratic form A "f3 du'" dw'. Consider the angle between the central spheres at 

the points u" and u" + du" . If the coordinates of the center of the central sphere are 
denoted by yh. we get the following expression for the angle dg; 

(39) 

which leads to 

(40) 

This formel gives a geometrical meaning of the quadratic form A",3 du" dw' 8 ). 

7) BLASCHKE, l.c. p. 313. 

8) It may be seen from this result that A"13 is identical with the tensor gij used by 
BLASCHKE. l.c. p. 312. 


