Mathematics. - On the theory of linear integral equations. IV. By A. C. Zaanen. (Communicated by Prof. W. van der Woude.)
(Communicated at the meeting of March 30, 1946.)

§ 1. Introduction.

We suppose the reader to be acquainted with the contents of the first two papers bearing the same title, to which we shall refer with I and II 1). In this paper we shall consider linear integral equations with kernel $K(x, y) \in L_{2}^{(2 m)}(\triangle)$, having the property that there exists a positive Hermitean kernel $H(x, y) \in L_{2}^{(2 m)}(\triangle)$, such that

$$
P(x, y)=\int_{\triangle} H(x, z) K(z, y) d z
$$

(then also belonging to $L_{2}^{(2 m)}(\triangle)$) is Hermitean. Defining the completely continuous, linear transformations K, H and $P=H K$ in the space $L_{2}^{(m)}(\triangle)$ by

$$
\begin{aligned}
& K f=\int_{\Delta} K(x, y) f(y) d y \\
& H f=\int_{\Delta} H(x, y) f(y) d y \\
& P f=\int_{\Delta} P(x, y) f(y) d y
\end{aligned}
$$

H is therefore positive self-adjoint and $P=H K$ is self-adjoint, so that K is symmetrisable relative to H. Making now the additional assumption that every $f(x) \in L_{2}$, satisfying $H f=0$, satisfies also $K f=0$, we shall call the kernel $K(x, y)$ a Marty-kernel. We observe that this last condition is certainly satisfied if $H(x, y)$ is definite, that is, if

$$
(H f, f)=\int_{\Delta x \Delta} H(x, y) \overline{f(x)} f(y) d x d y=0
$$

implies $f(x)=0$, since then $H f=0$ implies $f=0$, so that also $K f=0$. It was this case that was considered for the first time by J. Marty 2) for bounded kernels.

To terminate this paragraph we mention that the condition of H-orthogonality for two functions $f(x)$ and $g(x)$, belonging to L_{2}, takes the form

$$
(H f, g)=\int_{\Delta x \Delta} H(x, y) \overline{g(x)} f(y) d x d y=0
$$

[^0]and that $f(x)$ is H-normal if
$$
(H f, f)=\int_{\Delta x \Delta} H(x, y) \overline{f(x)} f(y) d x d y=1
$$
§ 2. Integral equation with Marty-kernel.
We consider now the linear integral equation $K f-\lambda f=g$ or
\[

$$
\begin{equation*}
\int_{\Delta} K(x, y) f(y) d y-\lambda f(x)=g(x) \tag{1}
\end{equation*}
$$

\]

where $f(x), g(x)$ belong to L_{2}, and $K(x, y)$ is a Marty-kernel. Supposing that

$$
\|H(x, y)\|_{2 m}^{2}=\int_{\Delta x \Delta}|H(x, y)|^{2} d x d y \neq 0
$$

so that $H \neq O$, all theorems proved in I may therefore be applied to this equation.

Theorem 1. The characteristic values of (1) are real and characteristic functions belonging to different characteristic values are H-orthogonal.

Proof. Follows from I, Theorem 5.
Theorem 2. If $\lambda \neq 0$ is a characteristic value of (1), this equation has, for a given function $g(x) \in L_{2}$, a solution $f(x) \in L_{2}$ for those and only those functions $g(x)$ that are H-orthogonal to all characteristic functions, belonging to the characteristic value λ. If $\lambda \neq 0$ is no characteristic value, so that it is a regular value, the equation has a uniquely determined solution for every $g(x) \in L_{2}$.

Proof. Follows from I, Theorem 12 and Theorem 3.
Theorem 3. If

$$
\begin{equation*}
\|P(x, y)\|_{2 m}^{2}=\int_{\Delta x \Delta}|P(x, y)|^{2} d x d y \neq 0, \ldots \tag{2}
\end{equation*}
$$

where

$$
P(x, y)=\int_{\Delta} H(x, z) K(z, y) d z
$$

the equation (1) has a characteristic value $\neq 0$.
Proof. Since, by (2), $P=H K \neq O$, the result follows from I, Theorem 6.

Let now $\lambda_{i}\left(\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots\right)$ be the sequence of all characteristic values $\neq 0$, each of them occurring as many times as denoted by its multiplicity, and $\psi_{i}(x)$ a corresponding H-orthonormal sequence of characteristic func-
tions. These functions satisfy therefore the relations

$$
\begin{aligned}
& \int_{\triangle \times \triangle} H(x, y) \overline{\psi_{i}(x)} \psi_{i}(y) d x d y=1 \\
& \int_{\Delta \times \triangle} H(x, y) \overline{\psi_{i}(x)} \psi_{j}(y) d x d y=0 \text { for } i \neq j
\end{aligned}
$$

or, writing

$$
\begin{gathered}
\int_{\Delta} H(x, y) \psi_{j}(y) d y=\chi_{j}(x), \\
\int_{\Delta} \psi_{i}(x) \overline{\chi_{j}(x)} d x= \begin{cases}1 & \text { for } i=j \\
0 & \text { for } i \neq j\end{cases}
\end{gathered}
$$

so that the sequences $\psi_{i}(x)$ and $\chi_{i}(x)$ are biorthogonal.
Theorem 4. (Expansion Theorem). Writing

$$
a_{i}=\left(f, \chi_{i}\right)=\int_{\Delta} f(x) \overline{\chi_{i}(x)} d x
$$

and introducing the notation

$$
N(f)=(H f, f)^{1 / 2}=\left(\int_{\Delta x \Delta} H(x, y) \overline{f(x)} f(y) d x d y\right)^{1 / 2}
$$

we have

$$
\lim _{k \rightarrow \infty} N\left(K f-\sum_{i=1}^{k} \lambda_{i} a_{i} \psi_{i}\right)=0
$$

in other words

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \int_{\Delta x \Delta} H(x, y)\left[\int_{\Delta} K(x, z) f(z) d z-\sum_{i=1}^{k} \lambda_{i} a_{i} \psi_{i}(x)\right] \\
& {\left[\int_{\Delta} K(y, z) f(z) d z-\sum_{i=1}^{k} \lambda_{i} a_{i} \psi_{i}(y)\right] d x d y=0 }
\end{aligned}
$$

for any $f(x) \in L_{2}$. Furthermore

$$
\int_{\Delta x \Delta} P(x, y) \overline{f(x)} f(y) d x d y=\Sigma \lambda_{i}\left|a_{i}\right|^{2}
$$

Proof. Follows from I, Theorem 9.
Theorem 5. Let $\lambda_{n_{i}}(i=1,2, \ldots)$ be the subsequence of all positive characteristic values where $\lambda_{n_{1}} \geq \lambda_{n_{2}} \geq \ldots$, let the functions $p_{1}(x), \ldots$, $p_{i-1}(x) \in L_{2}$ be arbitratily given, and let

$$
\mu_{i}=\text { upper bound } \int_{\Delta \times \Delta} P(x, y) \overline{f(x)} f(y) d x d y \int_{\Delta \times \Delta} H(x, y) \overline{f(x)} f(y) d x d y
$$

for all $f(x) \in L_{2}$ satisfying $\int_{\Delta X \Delta} H(x, y) \overline{f(x)} f(y) d x d y \neq 0$ and
$\int_{\Delta x \triangle} H(x, y) \overline{p_{1}(x)} f(y) d x d y=\ldots=\int_{\Delta x \Delta} H(x, y) \overline{p_{i-1}(x)} f(y) d x d y=0$.
The number μ_{i} depends on $p_{1}(x), \ldots, p_{i-1}(x)$. Letting now these functions run through the whole space L_{2}, we have $\lambda_{n_{i}}=\min \mu_{i}$.
A similar statement holds for the negative characteristic values.
Proof. Follows from I, Theorem 11.
Theorem 6. Let $\lambda \neq 0$, and let $g(x) \in L_{2}$ be H-orthogonal to all characteristic functions of (1), belonging to the characteristic value λ (If λ is no characteristic value, $g(x)$ is therefore arbitrary). Then every solution $f(x)$ of (1) satisfies a relation of the form

$$
\lim _{k \rightarrow \infty} N\left(f+\frac{g}{\lambda}+\sum_{i=1}^{k} \frac{\lambda_{i}}{\lambda\left(\lambda-\lambda_{i}\right)} a_{i} \psi_{i}\right)=0
$$

or

$$
\left.\begin{array}{rl}
\lim _{k \rightarrow \infty} \int_{\Delta \times \Delta} H(x, y)\left[f(x)+\frac{g(x)}{\lambda}+\sum_{i=1}^{k} \frac{\lambda_{i}}{\lambda\left(\lambda-\lambda_{i}\right)} a_{i} \psi_{i}(x)\right.
\end{array}\right] \quad\left[f(y)+\frac{g(y)}{\lambda}+\sum_{i=1}^{k} \frac{\lambda_{i}}{\lambda\left(\lambda-\lambda_{i}\right)} a_{i} \psi_{i}(y)\right] d x d y=0, ~ l
$$

where $a_{i}=\int_{\Delta} g(x) \overline{\chi_{i}(x)} d x$ for $\lambda_{i} \neq \lambda$, and where Σ^{\prime} denotes that for those values of i for which $\lambda_{i}=\lambda$ the coefficient of y_{i} has the value $-\int_{\triangle} f(x) \overline{\chi_{i}(x)} d x$. For every set of arbitrarily prescribed values of the latter coefficients there exists a solution of (1).

Proof. Follows from I, Theorem 13.
Theorem 7. (Expansion Theorem).

$$
\begin{aligned}
&\left.\lim _{k \rightarrow \infty} \int_{\Delta X \Delta X \Delta} H(x, y) \overline{\left[K(x, z)-\sum_{i=1}^{k} \lambda_{i} \psi_{i}(x)\right.} \overline{\chi_{i}(z)}\right] \\
& {\left[K(y, z)-\sum_{i=1}^{k} \lambda_{i} \psi_{i}(y) \overline{\chi_{i}(z)}\right] d x d y d z=0 . }
\end{aligned}
$$

Proof. This theorem is the analogue of II, Theorem 8, (4), and the proof, though more complicated, is also analogous. We begin by introducing a Hilbert space Z, the elements [f] of which are classes of ejements of L_{2}. We define the element [f] to contain f and all elements g for which $H g=H f$ (equivalent with $N(f-g)=0$). Furthermore we define $[f]+[g]=[f+g], a[f]=[a f]$ for every complex a, and
$([f],[g])=(H f, g)$, so that $\|[f]\|=(H f, f)^{1 / 2}=N(f)$. It is not difficult to prove that these definitions are without contradiction, and it is clear that, since $(H f, g)=0$ is equivalent with $([f],[g])=0$, two functions $f(x)$ and $g(x) \in L_{2}$ are H-orthogonal if and only if [f] and $[g]$ are orthogonal in Z. In the same way, since $(H f, f)^{1 / 2}=1$ is equivalent with $\|[f]\|=1$, the function $f(x)$ is H-normal if and only if the element [f] is normal. The space Z is not necessarily complete, that is, $\lim \left\|[f]_{m}-[f]_{n}\right\|=0$ as $m, n \rightarrow \infty$ will not always imply the existence of an element [f] satisfying $\lim _{n \rightarrow \infty}\left\|[f]-[f]_{n}\right\|=0$. By adjunction of ideal elements, however, we can $\stackrel{n \rightarrow \infty}{n \rightarrow \infty} \begin{aligned} & \text { obtain } \\ & \equiv \\ & \text { from } \\ & Z\end{aligned}$ the complete Hilbert space \bar{Z}, the closure of Z. Evidently every bounded, linear transformation in Z may be continued on \bar{Z} as a linear transformation with the same bound. A certain class of linear transformations C in the space L_{2} corresponds now with linear transformations in the space Z. We define $[C][f]=[C f]$; this definition however is only then without contradiction if $[f]=[g]$ implies $[C f]=[C g]$, or, in other words, if $H f=0$ implies $H C f=0$. We shall therefore consider only transformations C satisfying this condition. Amongst them is our symmetrisable transformation K, since $H f=0$ implies $K f=0$, hence certainly $H K f=0$. Furthermore we observe that the linear transformation [K] in the space Z is bounded and self-adjoint. The boundedness follows from I, Theorem 8, by which

$$
\left|\lambda_{1}\right|=\max N(K f) / N(f)
$$

for all $f(x) \in L_{2}$ satisfying $N(f) \neq 0$, hence

$$
\left|\lambda_{1}\right|=\max \|[K f] \mid /\|[f]\|=\max \|[K][f]\|/\|[f] \|
$$

for all $[f] \in Z$ satisfying $[f] \neq[0]$ or

$$
\|[K][f]\| \leq\left|\lambda_{1}\right| \cdot\|[f]\| ;
$$

the self-adjointness follows from

$$
([K][f],[g])=(H K f, g)=(f, H K g)=(H f, K g)=([f], \quad[K][g])
$$

The transformation [K] has the characteristic values λ_{i} with the orthonormal characteristic elements [ψ_{i}], since $K \psi_{i}=\lambda_{i} \psi_{i}$ implies $[K]\left[\psi_{i}\right]=$ $\lambda_{i}\left[\psi_{i}\right]$. Moreover, if the element $[g] \epsilon Z$ is orthogonal to all $\left[\psi_{i}\right]$, we have $[K][g]=[0]$. To prove this statement, we observe that, if $\left([g],\left[\psi_{i}\right]\right)=$ $\left(H g, \psi_{i}\right)=\left(g, \chi_{i}\right)=0(i=1,2, \ldots)$, we find by Theorem 4 that $N(K g)=0$, hence also $H K g=0$ or $[K][g]=[K g]=[0]$. Since $[K]$ is bounded, it may be continued on the closure \bar{Z}, and it is not difficult to prove that for an element $[g] \in \bar{Z}$, orthogonal to all $\left[\psi_{i}\right]$, we have also $[K][g]=[0]$.

After these preliminaries we observe that the relation $K \psi_{i}=\lambda_{i} \psi_{i}$ implies, for every $f \in L_{2}$,

$$
\left(K^{*} H \psi_{i}, f\right)=\left(H \psi_{i}, K f\right)=\left(\psi_{i}, H K f\right)=\left(H K \psi_{i}, f\right)=\left(\lambda_{i} H \psi_{i}, f\right),
$$

hence $K^{*} H \psi_{i}=\lambda_{i} H \psi_{i}$ or $K^{*} \chi_{i}=\lambda_{i} \chi_{i}$, or, since the adjoint transformation K^{*} is given by

$$
K^{*} f=\int_{\Delta} \overline{K(y, x)} f(y) d y
$$

the relation

$$
\begin{equation*}
\int_{\Delta} \overline{K(x, y)} \chi_{i}(x) d x=\lambda_{i} \chi_{i}(y) \tag{3}
\end{equation*}
$$

for almost every $y \in \Delta$. Writing now $f(x)=K(x, z)$, the integral $\int_{\Delta}|f(x)|^{2} d x=\int_{\Delta}|K(x, z)|^{2} d x$ is finite for almost every $z \in \Delta$; hence $f(x) \in L_{2}$ for almost every $z \in \triangle$. With $f(x) \in L_{2}$ corresponds the element [f] in the space Z, and we have, by (3),

$$
\left([f],\left[\psi_{i}\right]\right)=\left(H, \psi_{i}\right)=\left(f, H \psi_{i}\right)=\left(f, \chi_{i}\right)=\int_{\Delta} K(x, z) \overline{\chi_{i}(x)} d x=\lambda_{i} \overline{\chi_{i}(z)}
$$

for almost every $z \in \triangle$.
Considering now an element $[g] \epsilon \bar{Z}$, orthogonal to all $\left[\psi_{i}\right]$, there exists a sequence of elements $\left[g_{n}\right] \in Z$ such that $\lim \left[g_{n}\right]=[g]$. Since $[K][g]=[0]$, we have

$$
\lim [K]\left[g_{n}\right]=\lim \left[K g_{n}\right]=[0]
$$

or

$$
\lim \left\|\left[K g_{n}\right]\right\|=\lim N\left(K g_{n}\right)=\lim \left(H K g_{n}, K g_{n}\right)^{1 / 2}=0
$$

so that certainly $\lim \left\|H K g_{n}\right\|=0$. Writing

$$
H K g_{n}=P g_{n}=\int_{\Delta} P(z, x) g_{n}(x) d x=p_{n}(z)
$$

the relation $\lim \left\|H K g_{n}\right\|=0$ is equivalent with $\lim \int_{\Delta}\left|p_{n}(z)\right|^{2} d z=0$; the sequence of functions $p_{n}(z)$ converges therefore in mean to 0 . Then, as well-known, there exists a subsequence $n_{k}(k=1,2, \ldots)$ of indices such that $p_{n_{k}}(z)$ converges point-wise to 0 as $k \rightarrow \infty$ for almost every $z \in \Delta$. Consequently, since

$$
\begin{aligned}
& ([f],[g])=\lim \left([f],\left[g_{n}\right]\right)=\lim \left(H f, g_{n}\right)= \\
& \quad=\lim \int_{\Delta \times \Delta} H(x, y) K(y, z) \overline{g_{n}(x)} d x d y=\lim \int_{\Delta}^{\infty} P(x, z) g_{n}(x) d x= \\
& \quad=\lim _{\int_{\Delta} \overline{\int_{0}} P(z, x) \overline{g_{n}(x)} d x}=\lim \overline{p_{n}(z)}
\end{aligned}
$$

for almost every $z \in \Delta$, and therefore certainly

$$
([f],[g])=\lim _{k \rightarrow \infty} \overline{p_{n_{k}}(z)}
$$

for these values of z, we have $([f],[g])=0$ for almost every $z \in \triangle$.
From the relations $\left([f],\left[\psi_{i}\right]\right)=\lambda_{i} \overline{\chi_{i}(z)}$ and $([f],[g])=0$ for any $[g] \in \bar{Z}$ orthogonal to all $\left[\psi_{i}\right]$, both holding for almost every $z \in \Delta$, we deduce now that $[f]=\Sigma \lambda_{i} \overline{\chi_{i}(z)}\left[\psi_{i}\right]$ for almost every $z \in \Delta$, hence

$$
\left\|[f]-\sum_{i=1}^{k} \lambda_{i} \overline{\chi_{i}(z)}\left[\psi_{i}\right]\right\|^{2}=\sum_{i=k+1} \lambda_{i}^{2}\left|\chi_{i}(z)\right|^{2}
$$

or

$$
N^{2}\left(K(x, z)-\sum_{i=1}^{k} \lambda_{i} \overline{\chi_{i}(z)} \psi_{i}(x)\right)=\sum_{i=k+1} \lambda_{i}^{2}\left|\chi_{i}(z)\right|^{2}
$$

or

$$
\begin{aligned}
& \int_{\Delta \times \Delta} H(x, y) \overline{\left[K(x, z)-\sum_{i=1}^{k} \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(z)}\right]} \\
& {\left[K(y, z)-\sum_{i=1}^{k} \lambda_{i} \psi_{i}(y) \overline{\chi_{i}(z)}\right] d x d y=\sum_{i=k+1} \lambda_{i}^{2}\left|\chi_{i}(z)\right|^{2}}
\end{aligned}
$$

for almost every $z \in \Delta$. Taking $k=0$ in this relation, we find

$$
\left.\begin{array}{l}
\sum_{i=1} \lambda_{i}^{2}\left|\chi_{i}(z)\right|^{2}=\int_{\Delta \times \Delta} H(x, y) \overline{K(x, z)} K(y, z) d x d y= \\
=\int_{\Delta \times \Delta} \overline{H(y, x) K(x, z)} K(y, z) d x d y=\int_{\Delta}^{{ }^{2}} \overline{P(y, z)} K(y, z) d y= \tag{4}\\
=\int_{\Delta} P(z, y) K(y, z) d y \leqslant\left(\int_{\Delta}|P(z, y)|^{2} d y\right)^{1 / 2} \cdot\left(\int_{\Delta}|K(y, z)|^{2} d y\right)^{1 / 2}
\end{array}\right\}
$$

for almost every $z \in \Delta$, so that

$$
\int_{\Delta} \sum_{i=1} \lambda_{i}^{2}\left|\chi_{i}(z)\right|^{2} d z=\sum_{i=1} \lambda_{i}^{2} \int_{\Delta}\left|\chi_{i}(z)\right|^{2} d z
$$

is finite. This shows that

$$
\int_{\Delta} \sum_{i=k+1} \lambda_{i}^{2}\left|\chi_{i}(z)\right|^{2} d z=\sum_{i=k+1} \lambda_{i}^{2} \int_{\triangle}\left|\chi_{i}(z)\right|^{2} d z
$$

tends to 0 as $k \rightarrow \infty$, hence also

$$
\begin{aligned}
&\left.\lim _{k \rightarrow \infty} \int_{\Delta \times \Delta \times \Delta} H(x, y) \overline{[K(x, z)-} \sum_{i=1}^{k} \lambda_{i} \psi_{i}(x) \overline{\chi_{i}(z)}\right] \\
& {\left[K(y, z)-\sum_{i=1}^{k} \lambda_{i} \psi_{i}(y) \overline{\chi_{i}(z)}\right] d x d y d z=0 }
\end{aligned}
$$

The completely continuous transformations $K^{n}(n=2,3, \ldots)$, defined by

$$
K^{n} f=\int_{\triangle} K_{n}(x, y) f(y) d y
$$

where $K_{n}(x, y) \in L_{2}^{(2 m)}$ is the n-th iterated kernel of $K(x, y)$, are also symmetrisable relative to H. Indeed, if it has already been proved that $H K^{n-1}$ is self-adjoint, we have

$$
\begin{aligned}
\left(H K^{n} f, g\right)=\left(H K^{n-1} K f, g\right) & =\left(K f, H K^{n-1} g\right)= \\
= & \left(H K f, K^{n-1} g\right)=\left(f, H K K^{n-1} g\right)=\left(f, H K^{n} g\right)
\end{aligned}
$$

for every pair of functions $f(x), g(x) \in L_{2}$; the transformation $H K^{n}$ is therefore self-adjoint, in other words, K^{n} is symmetrisable.

Theorem 8. The sequence $\lambda_{i}^{n}(i=1,2, \ldots)$ is the sequence of all characteristic values $\neq 0$ of the Marty-kernel $K_{n}(x, y)$ and $\psi_{i}(x)$ is corresponding sequence of characteristic functions.

Proof. Since $K \psi_{i}=\lambda_{i} \psi_{i}$ implies $K^{n} \psi_{i}=\lambda_{i}^{n} \psi_{i}$, the functions $\psi_{i}(\boldsymbol{x})$ are characteristic functions of $K_{n}(x, y)$, belonging to the characteristic values $\lambda_{i_{1}}^{n}$. Any further characteristic function $\psi(x)$ of $K_{n}(x, y)$, linearly independent of $\psi_{1}(x), \psi_{2}(x), \ldots$, may be chosen so as to be H-orthogonal to all $\psi_{i}(x)$; hence, $\left(H \psi, \psi_{i}\right)=\left(\psi, \chi_{i}\right)=0(i=1,2, \ldots)$ implying $H K \psi=0$ by Theorem 4, we have $K^{2} \psi=K K \psi=0$, so that

$$
\int_{\Delta} K_{n}(x, y) \psi(y) d y=K^{n} \psi=0
$$

for $n \geq 2$, which shows that $\psi(x)$ belongs to the characteristic value 0 . The sequence $\lambda_{i}^{n}(i=1,2, \ldots)$ is therefore the sequence of all characteristic values $\neq 0$ of $K_{n}(x, y)$.

It follows from this theorem that the Theorems $1-7$ hold for the integral equation with kernel $K_{n}(x, y)$, replacing everywhere λ_{i} by λ_{i}^{n}.

[^0]: $\left.{ }^{1}\right)$ Proc. Kon. Ned. Akad. v. Wetersch., Amsterdam, 49 (1946).
) J. Martry, Valeurs singulières d'une équation de Fredholm, C. R. Acad. sc. Paris 150, 1499-1502 (1910).

