Mathematics. — On the theory of linear integral equations. IV. By A. C.
ZAANEN. (Communicated by Prof. W. vAN DER WOUDE.)

(Communicated at the meeting of March 30, 1946.)
§ 1. Introduction. .

We suppose the reader to be acquainted with the contents of the first
two papers bearing the same title, to which we shall refer with I and II 1).
In this paper we shall consider linear integral equations with kernel
K(x, y)e LZ™ (A), having the property that there exists a positive Her-
mitean kernel H(x, y)e L2™ (A), such that

| P (x, y):j‘H(x,z)K(z,y)dz

(then also belonging to L2m(A)) is Hermitean. Defining the completely
continuous, linear transformations K, H and P = HK in the space L{™ (A)
by

Kf= j 'K (x. y) fly) dy.
Hf= j "H(x. y) £(y) dy,

Pf= [ P (x.y) f(y) dy,

H is therefore positive self-adjoint and P — HK is self-adjoint, so that K
is symmetrisable relative to H. Making now the additional assumption that
every f(x) €Ly, satisfying Hf — 0, satisfies also Kf — 0, we shall call the
kernel K(x, y) a Marty-kernel. We observe that this last condition is cer-
tainly satisfied if H(x, y) is definite, that is, if
HE= [ Hixo) FE Fg) dedg =0
NN

implies f(x) = 0, since then Hf — 0 implies f = 0, so that also Kf = 0.
It was this case that was considered for the first time by J. MARTY 2) for
bounded kernels.

To terminate this paragraph we mention that the condition of H-ortho-
gonality for two functions f(x) and g(x), belonging to Lo, takes the form

~

H.9)= | Hixy) g ) Flo)dedy =0,
AXNA
1) Proc. Kon. Ned. Akad. v. Wetersch., Amsterdam, 49 (1946).
%) J. MARTY, Valeurs singuliéres d'une équation de FREDHOLM, C. R. Acad. sc. Paris
150, 1499—1502 (1910).
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and that f(x) is H-normal if

HED= [ Hix.o) FE) Flg)dedy=1.

AXD
§ 2. Integral equation with Marty-kernel.
We consider now the linear integral equation Kf —Af = g or

fK(ac.y)f(y)dy—zﬂx)-—-g(x), L

where f(x), g(x) belong to L,, and K(x, y) is a Marty-kernel. Supposing
that

| H (x, y) |[zm Zle(x. y)|*dxdy F# 0,

AXA

so that H =~ O, all theorems proved in I may therefore be applied to this
equation.

Theorem 1. The characteristic values of (1) are real and characteristic
functions belonging to different characteristic values are H-orthogonal.
Proof. Follows from I, Theorem 5.

Theorem 2. If J £ 0 is a characteristic value of (1), this equation has,
for a given function g(x) € Ly, a solution f(x)e Ly for those and only those
functions g(x) that are H-orthogonal to all characteristic functions, be-
longing to the characteristic value 1. If A =£ 0 is no characteristic value, so
that it is a regular value, the equation has a uniquely determined solution
for every g(x)eL,.

Proof. Follows from I, Theorem 12 and Theorem 3.

Theorem 3. If

1P(g)fin= [ 1Prg) pdedg 70, . . . . (2
OAXNA
where

P(x,y) :fH(x, 2) K (2, y) dz,

the equation (1) has a characteristic value £ 0.

Proof. Since, by (2), P =HK 3£ O, the result follows from I,
Theorem 6.

Let now 2i(| ;| 2 | 42| = ...) be the sequence of all characteristic values
£ 0, each of them occurring as many times as denoted by its multiplicity,
and yi(x) a corresponding H-orthonormal sequence of characteristic func-
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tions. These functions satisfy therefore the relations

H (x, y) wi (x) i (y) dxdy =1,

AXA

fH(x. y) yi (x) v; (y)dxdy =0 for i 7,

AXNA
or, writing

f H (x, y) w; (y) dy = 2 (x).

—— _(lfori=j
f’i’i (x) 2j (x) dx"go for i #j,

so that the sequences yi(x) and xi(x) are biorthogonal.

Theorem 4. (Expansion Theorem). Writing

2= (E2)= [ () ) .
A
and introducing the notation

L A
NO=HE = ([ Heon FE ) dedy)
we have e

k
lim N<Kf— 2 Aiai W) =0
k—> o i=1

in other words

lim f B lx g [ f K(x 2)f(2) dz—él p— (x):|

AXA

k
[fK(H: 2) f(z) dz— g'l Aiaiyi (y)] dxdy=20
¥ =
for any f(x) e Ly. Furthermore

fp(x, y) f(x) f(y) dxdy = Zhi |ai [*.
AXA
Proof. Follows from I, Theorem 9.
Theorem 5. Let (i =1,2,...) be the subsequence of all positive
characteristic values where An = An, = ..., let the f[unctions py(x), ...,
pi—1 (x) € Ly be arbitrarily given, and let

i = upper boundfP (x, y) f(x) fly) dx dy/ H(x, y) m fy) dxdy

AXA OXN |
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for éll f(x)eL, satisfyingJ‘H(x, y)(x)f(y)dxdy =~ 0 and

axan
fH(x. y)pi (x) fly)dxdy =. .. ZfH(x. y) pi—1 (%) £ (y) dx dy =0.

AXA AXNA F

The number i depends on p(x), ..., pi—(x). Letting now these functions

run through the whole space L, we have An; = min wi.
A similar statement holds for the negative characteristic values.
Proof. Follows from I, Theorem 11.

Theorem 6. Let Z=£0, and let g(x)e Ly, be H-orthogonal to all
characteristic functions of (1), belonging to the characteristic value ). (If 4
is no characteristic value, g(x) is therefore arbitrary). Then every solution
f(x) of (1) satisfies a relation of the form

lim N(f+&+ 3 A ay)=0
bR U Sy e R A
or
m | gl L & A
jim [ |0 &
AXA
g (y) L __ﬂi_ i (5 —
[f(y)'F—l—‘*‘l_Z:'l l(l_li)aﬂh(g) dxdy =0,
where a; = ‘g(x)iT(JT)dx for %i =~ 1, and where X' denotes that for

those values of i for which 2i = ] the coefficient of w: has the value
—ff(x)xr(x)dx. For every set of arbitrarily prescribed values of the
. .
latter coefficients there exists a solution of (1).
Proof. Follows from I, Theorem 13.

Theorem 7. (Expansion Theorem).

< 2 S
lim fH (x. y) LK(x. 2)— X hiyi(x) 2 (Z)J
k—'CDAXA.X/\ » =

[K(H' z)— élli vi(y) m] dx dydz=0.

Proof. This theorem is the analogue of II, Theorem 8, (4), and the
proof, though more complicated, is also analogous. We begin by intro-
ducing a HILBERT space Z, the elements [f] of which are classes of
eiements of Ly,. We define the element [f] to contain f and all elements g
for which Hg = Hf (equivalent with N(f—g) = 0). Furthermore we
define [f] + [g] = [f+ g]. alf]l = [af] for every complex a, and
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([f]. [g]) = (Hf, g), so that ||[[f]]| = (Hf, )= N(f).Itis not difficult
to prove that these definitions are without contradiction, and it is clear that,
since (Hf, g) = 0 is equivalent with ([f], [g]) = 0, two functions f(x)
and g(x)eL, are H-orthogonal if and only if [f] and [g] are orthogonal
in Z. In the same way, since (Hf, f)»=1 is equivalent with ||[f]|| =1,
the function f (x) is H-normal if and only if the element [f] is normal. The
space Z is not necessarily complete, that is, lim ||[f]m — [f]a|| =0 as
m, n — oo will not always imply the existence of an element [f] satisfying

lim ||[f] — [f]s || = 0. By adjunction of ideal elements, however, we can

n—» o

obta__i._n from Z the complete HILBERT space Z, the closure of Z. Evidently
ever;r bounded, linear transformation in Z may be continued on Z as a
linear transformation with the same bound. A certain class of linear trans-
formations C in the space L, corresponds now with linear transformations
in the space Z. We define [C][f] = [Cf]; this definition however is only
then without contradiction if [f] = [g] implies [Cf] =[Cg], or, in other
words, if Hf = 0 implies HCf = 0. We shall therefore consider only
transformations C satisfying this condition. Amongst them is our sym-
metrisable transformation K, since Hf = 0 implies Kf = 0, hence certainly
HKf = 0. Furthermore we observe that the linear transformation [K] in
the space Z is bounded and self-adjoint. The boundedness follows from I,
Theorem 8, by which

| 41| = max N(Kf)/N(f)
for all f(x)e Ly satisfying N(f) =~ 0, hence
| 41| = max [[[KfTHI/I U] = max | [KTLETI/0CED
for all [f]eZ satistying [f] =% [0] or
ITKTLENN = [ A4 |- ITENIs

the self-adjointness follows from
([K1[f]. [g]) = (HKf.g) = (f. HKg) = (Hf.Kg) = ([f]. [K][g]).

The transformation [K] has the characteristic values 1; with the ortho-
normal characteristic elements [v:], since Kyi = Adip: implies [K][y:i] =
Zi[yi]. Moreover, if the element [g] € Z is orthogonal to all [y:], we have
[K]1[g] = [0]. To prove this statement, we observe that, if ([g], [yi]) =
(Hg,wi) = (g, i) =0(i=1,2,...), we find by Theorem 4 that
N(Kg) = 0, hence also HKg = 0 or [K][g] = [Kg] = [0]. Since [K]
is bounded, it may be continued on the closure Z, and it is not difficult to

prove that for an element [g]e Z, orthogonal to all [yi], we have also
(K1{g] = [0]. .

After these preliminaries we observe that the relation Kyi = Aiy: implies,
for every fe Lo, :

(K* Hy, )= (Hyi, Kf) = (yi, HK f)= (HK v, f)=(1ini' f).
27
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hence K*Hvy; = AiHvy: or K*yi = liyi, or, since the adjoint transformation
K* is given by

K‘f=fK(y-x) f(y) dy,

the relation
fK(x,y)x,' X)dx=2ixily) . . . . . . (3
7N

for almost every yeA. Writing now f(x) = K(x,z), the integral
fl[(xH?dx :f|K(x,z)|2dx is finite for almost every ze€A; hence

A A
f(x)eLy for almost every ze A. With f(x)e L, corresponds the element
[f] in the space Z, and we have, by (3),

(I} )= HE v =6 Hyd =20 = [ K(x.9) 1) de =k 1@

for almost every ze A.

Considering now an element [g]g—z, orthogonal to all [y:], there exists
a sequence of elements [gn]€Z such that lim [ga] = [g]. Since
[K1[g] = [0], we have '

lim [K] [gn] = lim [K g] = [0]

or
lim | [Kgn] || =lim N (K gs) = lim (HK gn, Kga)h»=0,
so that certainly lim || HKgn || = 0. Writing

HKg,,'——Pg,,:fP(z,x)g,,(x)dx:p,,(z), .
s

the relation lim ||[HKg, | = 0 is equivalent with ]imf| pa(z)|2dz = 0; the
A

sequence of functions pa(z) converges therefore in mean to 0. Then, as
well-known, there exists a subsequence ni(k =1, 2, ...) of indices such that
pn,(z) converges point-wise to 0 as k — oo for almost every ze A. Con-
sequently, since

([f1. [9]) = lim ([£]. [gn]) = lim (H f. gn) =

=1ime(x. y) K (y, 2) gn (x) dx dy = lim J‘P(x, z) gn(x)dx =

AXA

=lim | P(z x) gn(x) dx =1lim p,(2)
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for almost every ze€ A, and therefore certainly

(I£). lg) = Jlim pn, )

for these values of z, we have ([f], [g]) = O for almost every ze A.
From the relations ([f], [yi]) = Aiz:(z) and ([f], [g]) = O for any

[g] € Z orthogonal to all [y:], both holding for almost every zeA, we

deduce now that [f] = J4ixi(z) [wi] for almost every zeA, hence

- Zhu@ wll= 3 #lu@p

or

N? (K(x. z)— élli i (2) wi (x)) zi_%'ﬂlf |2 (2)]?
or h -
f H (x, y) [K (x, z)—é1 iy (x) X1—(Z)J

k I
[K(y. Z)—El Ay (y) 2 (Z)ZI dxdy =1=k2+1 3 2i(2)

for almost every ze A. Taking k =0 in this relation, we find

igl HluEP :fH(x, Y K(x 2)K(y, z) dxdy =

= [ Ao K3 K (g2 dedy = [ P2 Ky, ) dy = )

AXA

for almost every ze€ A, so that

[ zRinerd= 52 [lu@pd
i=1 =1
AN A

is finite. This shows that

2 Rlu@Pd= 3 &[lu@pd
o i=k+1 i=k+1 i

tends to 0 as k - o, hence also

lim fH(x, y) l:K(x. z)— Z'k Ai yi (x) ZTZ—)J
k*“AXAXA =1

[K (9. 2)— igkll.- vi (9) x_(z)] dx dy dz =0.
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The completely continuous transformations K*(n = 2, 3, ...), defined by

Kn f:fKn (x. y) f(y) dy,

where Ko (x, y) € L3™ is the n-th iterated kernel of K(x, y), are also sym-
metrisable relative to H. Indeed, if it has already been proved that HK"-1
is self-adjoint, we have

(HK" f.g) = (HK" Kf, g)=(Kf, HK""' g) =
=(HKf. K" g)=(f, HKK"' g)=(f. HK" g)

for every pair of functions f(x),g(x) e Ly; the transformation HK" is
therefore self-adjoint, in other words, K" is symmetrisable.

Theorem 8. The sequence ,l’,?(i =1, 2,...) is the sequence of all char-
acteristic values =£ 0 of the Marty-kernel Ka(x,y) and wi(x) is cor-
responding sequence of characteristic functions.

Proof. Since Kyi = An: implies K"pi = A%ypi, the functions wyi(x)
are characteristic functions of Kn(x, y), belonging to the characteristic
values llf". Any further characteristic function yw(x) of Ka(x, y), linearly
independent of y;(x), ws(x), ..., may be chosen so as to be H-orthogonal
to all wi(x); hence, (Hw, i) = (v, 1) =0(=12,...) implying
HKvy = 0 by Theorem 4, we have K2y = KKy = 0, so that

Jkn(x.y)w(y)dy:mwo
A

for n = 2, which shows that y(x) belongs to the characteristic value 0.
The sequence 47 (i = 1, 2, ...) is therefore the sequence of all characteristic
values =~ 0 of Kn(x, y).

It follows from this theorem that the Theorems 1—7 hold for the integral
equation with kernel Ka(x, y), replacing everywhere 4; by 7.



