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§ J. Introduction . 

We suppose the reader to be acquainted with the contents of the first 
two papers bearing the same titk to which we shaU refer with land 11 1 ) . 

In this paper we shall consider linear integral equations with kernel 
K (x, y)E- L~m) (6 ). having the property that there exists a positive Her­
mitean kernel H (x. y) E- L~m) ( 6 ). such that 

. p (x. y) =.1' H (x. z) K (z. y) dz 

[>. 

(then also belonging to L~2 m)( 6 )) is Hermitean . Defining the completely 
continuous. linear transformations K. Hand P = HK in the space qm) (6) 
by 

K { .f K (x. y) ({y) dg. 

b. 

Hf J·H{x.y){(y)dY. 

f', 

P { J P (x. y) ((y) dy. 

e:, 

H is therefore positive self-adjoint and P = HK is self-adjoint. so that K 
is symmetrisable relative to H. Making now the additional assumption that 
every [(x) EL2 • satisfying H[ = O. satisfies also K[ = O. we shaU eaU the 
kernel K(x. y) a Marty-kernel. We observe that th is last condition is cer­
tainly satisfied if H (x. y) is definite . that is. if 

(H{. f) = j H(x. y) ({x) f{y) dxdy = 0 

b.X e:, 

implies [(x) = O. since th en H[ = 0 implies f = o. so that also Kf = O. 
It was this case that was considered for the first time by J. MARTY 2) for 
bounded kernels . 

To terminate th is paragraph we mention that the condition of H-ortho­
gonality for two functions [( x) and g(x). belonging to L2 • takes the form 

{H (. g) = J H{x. y) g (x) ({y) dxdy = O. 

1) Proc. Kon. Ned. Akad. v. Weter.; ch .. Amsterdam, 49 (1946) . 
~ ) J. MARTY. Valeurs singulières d'une équation de FREDHOLM. C. R. Acad . sc. Paris 

150, 1499- 1502 (1910). 
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and that f(x) is H~normal if 

(Hf.f) = J H(x. y)f(x) f(y)dxdy= 1. . 
6 X6 

§ 2. lnteg .. al equation with Marty~kernel. 

We consider now the linear integral equation K f - Àf = g or 

J K (x. y) f{y) dy-À f(x) = g (x). . (1) 

6 

wh ere f(x). g(x) belong to L2' and K(x. y) is a Marty~kernel. Supposing 
that 

11 H(x, y) I I ~m = J I H(x. Y) 12 dxdy =F O. 
6 .Xt:. 

so that H =t= O. all theorems proved in I may therefore be applied to this 
equation. 

Theorem 1. The characteristic values af (I) are real and characte..istic 
functions belonging ta different characteristic values are H ~orthogonal. 

Proof. Follows from I. Theorem 5. 

Theorem 2. lf À =t= 0 is a characteristic value af (1), this equation has, 
for a given functian g(x) €.L2' a solution f(x)€.L2 far thase and only thase 
functians g(x) that Me H~orthoganal to all characteristic functions , be~ 
langing to the characteristic value ).. lf À =t= 0 is no characteristic value, so 
that it is a regular value. the equation has a uniquely determined solution 
for every g(x) €.L2. 

Proof. Follows from I, Theorem 12 and Theorem 3. 

Theorem 3. I f 

11 P (x. y) I I ~m = J I P (x. y) 12 dx dy =F o •. . . . (2) 

where 

P (x. y) J H (x. z) K (z. y) dz. 

6 

the equatian (1) has a characteristic value =t= O. 
Proof. Since, by (2), P = HK =t= 0, the result follows from I. 

Theorem 6. 
Let now Ài ( I À1 I ::. I À2 I :> ... ) be the sequence of all characteristic values 

=t= 0, each of them occurring as many times as denoted by its multiplicity. 
and ~p;(x) a corresponding H-orthonormal sequence of characteristic func~ 
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tions. These functions satisfy therefore the relations 

or. writing 

J H (x. y) 1jJi (x) 1jJ;(Y) dx dy = 1. 
fè, X fè, 

J H (x. y) 1jJi (x) 1jJ j (y) dx dy = 0 for i -=j=. j. 
fè, X b. 

J H (x. y) V'j (y) dy = Xj (x). 
fè, 

J -- ~1 for i=j. 
1jJi (x) Xj (x) dx = ? 0 Eor i -=j=. j. 

fè, 

so that the sequences 'Ijl; (x) and X;( x) are biorthogonal. 

Theorem~. (Expansion Theorem). Writing 

ai = ({. X;) = J {(x) Xi (x) dx. 
fè, 

and introducing the notation 

N (f) = (H{. {)'/ = (J H (x. y) {(x) {(y) dx dy r·. 
fè,Xfè, 

we have 

lim N (K{- 1 ).i ai 1jJi) = 0; 
k-+a; i=1 

in other words 

lim JH(x, y) [JK(x.Z){(Z)dZ-.; ).iai 1jJ;(X)J 
k-+a; . 1=1 

l',.Xl',. b. 

[J K(y. Z) {(Z) dz- i~l).i ai 'Ijli (Y)J dxdy = (} 
l',. 

for any [(x) E.L2• Furthermore 

J P (x. y) {(x) ((y) dxdy = I1i 1 ai 1
2

• 

Proof. Follows from I. Theorem 9. 
Theorem 5. Let).n i( i = 1. 2 .. .. ) be the subsequence of all positive 

characteristic values where ).n, ::> ).n. ::> .. . , let the functions pd x), .. . , 
Pi-I (x) E. L2 be arbitrarily git.'en, and let 

f'i = upper bound J P (x. y) {(x) {(y) dx dy IJ H (x. y) {(x) {(y) dx dg 
l',.Xl',. l',.xl',. 
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for all [(x) ELz satisfying J~H(x. yl{(x)[(y)dxdy -:::j:- 0 and 

6. X6. 

J H (x. y) p;-(x) {(y) dx dy = . . . = f H (x. y) Pi-I (;j {(y) dx dy = O. 
h X 6. 6. X A 

The number pi depends on Pi (x) . ... . Pi-I (x). Letting now these funcf.ions 
run through the whole space L2 • we have À.n i = min fli. 

A similar statement holds for the negative characteristic values. 
Proof. FoHows from I. Theorem 11 . 

Theorem 6. Let }. -:::j:- O. and let g(X)E Lz be H-orthogonal to all 
characteristic functions of (1), belonging to the characteristic value À. (ff À. 
is no characteristic value, g (x) is therefore arbitrary). T hen every solution 
[( x) of (1) satisfies a relation of the form 

kl~~ N({+ ~ + i~: À.(/i À.i)ailPi) =0 

or 

[ 
g (y) k,.ti J_ 

{(y)+ - .t- + i~1 .t(.t_.ti)a i11';{g) dxdy-O. 

where ai J g( x) V( x) dx for }.; -:::j:- J.. and where ~' denotes that for 

6. 
those values of i for which }.i = J. the coefficient of 11'i has the value 

- J f(x)x;(x)dx. Por every set of arbitrarily prescribed va lues of the 

6. 
Jatter coefficients there exists a solution of (1). 

Proof. Follows ' from I. Theorem 13. 

Theorem 7. (Expansion T heorem) . 

lim JH(x, y) [K(x. z)-.l: .ti lPi (x) Xi (Z)] 
k~", . 1=1 

6. X 6. X 6. 

[ K (y, z) - itl À. i lPi (y) Xi (z)] dx dy dz = O. 

Proof. This theorem is the analogue of 11. Theorem 8, (4), and the 
proof, though more complicated. is also analogous. We begin by intro­
ducing a HILBERT space Z. the elements Cf] of which are classes of 
eiemE;nts of L2 • We define the element Cf] to contain f and all elements g 
for which Hg = Hf (equivalent with N(f-g) = 0). Furthermore we 
define Cf] + [g] = [[ _+ g]. a Cf] = [af] for every complex a. and 
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([f], [g)) = (Hf,g), so that II[{]II = (Hf, f)'I.= N(f). Itisnot difficult 
to prove th at these definitions are without contradiction, and it is clear that, 
since (Hf, g) = 0 is -equivalent with ([f], [g]) = 0, two functions f(x) 
and g(x) €L2 are H~orthogonal if and only if [f] and [g] are orthogonal 
in Z. In the same way, since (Hf, f)'I. = 1 is equivalent with 11 [f] 11 = 1. 
the function f (x) is H ~normal if and only if the element [f] is normal. The 
space Z is not necessarily complete, that is, lim 11 [f] m - [f] n 11 = 0 as 
nl, n ~ Cf) will not always imply the existence of an element [f] satisfying 

lim 11 [f] - [f)n 11 = O. By adjunction of ideal elements, however, we can 
n-+ co 

obta.!p from Z the complete Hn .. BERT space Z, the closure of Z. EVidently 

every boü,nded, linear transformation in Z may be continued on Z as a 
linear transformation with thesame bound. A certain class of linear trans~ 
formations C in the space Lz corresponds now with Ji.near transformations 
in the space Z. We define [C] [f] = [Cf); th is definition however is only 
then without contradiction if [f] = [g] implies [Cf) = [Cg). or, i,n other 
words, if Hf = 0 implies HCf = O. We shall therefore consider only 
transformations C satisfying this condition. Amongst them is our sym~ 
metrisáhle transformation K. since Hf = 0 imp lies Kf = 0, hence cert.ainly 
HKf = O. Furthermore we observe that the linear transformation [K] in 
the space Z is bounded and self~adjoint. The boundedness follows from I. 
Theorem 8, by which 

IÀ1 1 = max N(Kf)/N(f) 

for all f(x)€Lz satisfying N(f) ~ 0, hence 

1 )'11 = max 11 [KfJ il/ II [f) 11 = max 11 [K] [f) 11/11 [f] 11 

for all [fJ €Z satisfying [f) ~ [0] or 

11 [K] [f) 11 <: IÀ1 1 . 11 [f] 11; 

the self~adjointness follows from 

([K][f). [g)) = (HKf, g) = (f, HKg) = (Hf, Kg) = ([f), [K][g]). 

The transformation [K]has the characteristic values Ài with the ortho~ 
normal characteristic elements ['ljJI], since K 'ljJ1 = ).i'IjJi implies [K] ['ljJI] = 
J. i ['ljJi]. Moreover, if the element [g.] €Z is orthogonal to all ['ljJI], we have 
[K] [g] = [0]. To prove this statement, we observe that, if ([g], ['ljJI]) = 
(Hg, 'IjJ;) = (g, X;) = 0 (i = 1,2, ... ), we find by Theorem 4 that 
N(Kg) = 0, hence also HKg = 0 or [K] [g] = [Kg] = [0]. Since [K] 

is bounded, it may be continued on the closure Z, and it is not difficult to 

prove that for an element [g] € Z, orthogonal to all ['ljJi). we have also 
[K] [g] = [0]. 

Af ter these preliminaries we observe that the relation K 'ljJi = ),i'IjJi implies, 
for every f € Lz, 

(K· H'ljJi, f) = (H'IjJ;, Kf) = ('IjJ;, H Kf) = (HK'IjJ;, f) = (l;H'IjJ;. f). 
27 
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hence K*H'Ijli = À./H'Ijl1 or K*xl = À.IXI . or. since. the adjoint transformation 
K· is given by . 

K· f= J K(y. x) f(y) dy. 
b. 

the relation 

J K (x. y) Xi (x) dx=.tl Xi (y) • . (3) 
b. 

for almost every y€6. . Writing now f(x) = K(x. z). the integral 

Jlf(x)1 2dx= JIK(x.z)12dx is finite for almost every Z€6. ; hence 

b. !:>, 

f(x) €L2 for almost every Z€ 6.. With f(x)€L2 corresponds the element 
Cf] in the space Z. and we have. by (3). 

([f]. [V';]) = (H (. 'Ijli) = ({. H V'i) = (f. Xi) - J K (x. z) XI (x) dx = .tI XI (z) 
[:; 

for almost every z € 6.. 

Considering now an element [g] € Z. orthogonal to all ['Ijl;]. there exists 
a sequence of elements [gn] €Z such that lim [gn] = [g]. Since 
[K] [g] = [0] . we have 

lim [K] [gn] -= lim [K gn] = [0] 
or 

lim 11 [K gn] 11 = lim N (K gn) = lim (H K gn. K gn)'/ = O. 

so th at certainly lim 11 HKgn 11 = O. Writing 

HKgn=Pgn J P(Z.X)gn(x)dx=Pn(z). , 

b. 

the relation lim IIHKgn 11 = 0 is equivalent with lim JI pn (z) 12dz = 0; the 

[:; 

sequence of functions pn (z) converges therefore in mean to O. Then. as 
well~known. there exists a subsequence nk(k = 1. 2 .... ) of indices such that 
pn k (z) converges point~wise to 0 as k ~ co for almost every Z€ 6.. Con~ 
sequently. since 

([f]. Cg]) = lim ([f]. [gn]) = lim (H (. gn) = 

=lim J H(x. y) K(y. z) gn (x) dxdy = lim.fp (x. z) gn (x) dx= 
[:; x [:; [:; 

= lim J P (z. x) gn (x) dx = lim pn (z) 
.b. 
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for almost every ZE 6. and therefore certainly 

([f]. [g]) = lim pnk (z) 
k-+ 00 

for these values of z. we have ([f). [g]) = 0 for almost every zE6. 

From the relations ([f). ['IJl;]) = À;X; (z) and ([f). [g]) = 0 for any 

[g] EZ orthogonal to all ['IJli]. both holding for almost every ZE 6. we 

deduce now that [f) = 2:À;X;(z)['IJlt] for almost every zE6. hence 

k --- 2 
11 [f]- ~ Ài Xi (z) ['IJl;] W = I Ài I Xi (z) 12 

;=1 ;=k+1 

or 

or 

f H(x.y) [K(x.z)-i~ À; 'IJl; (x) XI (Z)] 
e:, xe:, 

[K(y. z)- i~ Ài 'IJli (y) Xi (z)] dxdy =i=ll À7 I Xi (z) 12 

for almost every zE6. Taking k =0 in this relation. we Eind 

i~1 À7 1 Xi (z) 1
2 f H (x. y) K (x. z) K (y. z) dx dy = 

e:, xe:, 

= f H(y. x) K(x. z) K (y. z) dxdy - J'p (y. z) K(y. z) dy = (4) 
e:,xe:, e:, 

= f p (z. y) K(y. z) dy ~ (fl P(z. y) 12 dy )"'. (fl K(y. z) 12 dy)"" 
e:, ~ e:, 

for almost every Z€ 6. so that 

fi~' À71 Xi (z) 1
2 dz =i~1 À:fl Xi (z) 1

2 dz 
e:, e:, 

is Einite. This shows that 

tends to 0 as k ~ co. hence also 

lim fH (x. y) [K (x. z) - .1 Ài 'IJl1 (x) XI (Z)] 
k-+oo 1=1 

e:,xe:,xe:, 

[ K (y. z) - i~/i 'IJli (y) Xi (Z)] dx dy dz = O. 
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The completely conti·nuous transformations Kn (n = 2. 3 .... ). defined by 

Kn f J Kn (x. y) f(y) dy. 

{j, 

where Kn(x. y) €L~m) is the n~th iterated kern el of K(x. y). are also sym~ 
metrisable relative to H. Indeed. if it has already been proved that HKn";'l 
is self~adjoint. we have 

(H Kn f. g) = (H Kn-I K (. g) = (K f. H Kn-I g) = 
= (HKf. Kn-I g) = ({. H KKn-1 g) = (f. HKn g) 

for every pair of funttions f (x) • 9 (x) € L 2 ; the transformation H K n is 
therefore self~adjoint. in other words. Kn is symmetrisable. 

Theorem 8. The sequence ).7 (i = 1. 2 . .. . ) is the sequence of all char~ 
acteristic values ~ 0 of the Marty~kernel Kn (x. y) and tpt{x) is cor~ 

responding sequence of characteristic functions . 
Proof. Since Ktpi = ).itpi implies Kntpi = ).7tpl. the functions tp;(x) 

are characteristic functions of Kn (x. y). belonging to the characteristic 
values ).~. Any further characteristic function w(x) of Kn(x. y). Iinearly 

" ' independent of tpl (x) • tp2 (x) . .... may be chosen so as to be H ':orthogonal 
to all tp;(x); hence. (Htp. tpi) = (tp. x;) = 0 (i = 1.2 .... ) implying 
HKtp = 0 by .Theorem 4. we have K2lJ) = KKtp = O. so that 

J~Kn (x. y) 'P (y) dy =Kn tp = 0 

{j, 

for n :> 2. which shows that tp(x) belongs to the characteristic value O. 
The sequence ).7 (i = 1. 2 .... ) is therefore the sequence of all characteristic 
values ~ 0 of Kn(x. y) . 

It follows from this theorem that the Theorems 1-7 hold for the integral 
equation with kern el Kn(x. y). replacing everywhere).1 by ).7. 


