Mathematics. - Lattice points in n-dimensional star bodies II. (Reducibility Theorems.) By K. Mahler. (Third communication.) (Communicated by Prof. J. G. van der Corput.)
(Communicated at the meeting of April 27, 1946.)
§ 12. Boundedly irreducible and reducible star bodies.
In the case of unbounded star bodies of the finite type, the following definition seems to be of interest:

Definition C: The unbounded star body K of the finite type is called boundedly reducible if there exists a bounded star body H such that $H<K$, and it is called boundedly irreducible if no bounded star body H with $H<K$ exists.

Theorem J: For every dimension n, there exists a boundedly irreducible star body K in R_{n}.

Proof: We choose for K the star body
$K^{*}: \quad x_{1}^{2} x_{2}^{2} \ldots x_{n-1}^{2}\left(x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2}\right) \leqslant 1$
considered already in the last paragraph, and for H any bounded star body contained in K. As we saw, K^{*} is contained in
$K_{0}: \quad\left|x_{1} x_{2} \ldots x_{n}\right| \leqslant 1$
and of the same determinant $\triangle\left(K^{*}\right)=\triangle\left(K_{0}\right)$; moreover, all boundary points of K^{*} are inner points of K_{0}. Hence the boundary points of H are likewise inner points of K_{0}; there exists then a constant θ with $0<\theta<1$ such that

$$
\left|x_{1} x_{2} \ldots x_{n}\right| \leqslant \theta
$$

for all points of H. But this implies that

$$
\triangle(H) \leqslant \theta \triangle\left(K_{0}\right)<\triangle\left(K^{*}\right)
$$

and so it is not true that $H<K$, whence the assertion.
If K is any star body, then, as in Part I, we denote by K^{t} the set of all points X of K for which $|X| \leq t$.

Theorem K: If the star body $K: F(X) \leq 1$ is boundedly irreducible, then there exists to every $t>0$ a critical lattice Λ of K and an infinite sequence of lattices $\Lambda_{1}, \Lambda_{2}, \Lambda_{3}$, \ldots, with the following properties:
(a): All lattices Λ_{r} are K^{t}-admissible.
(b): $\quad d\left(\Lambda_{r}\right)<\triangle(K) \quad(r=1,2,3, \ldots)$.
(c): The lattices Λ_{r} tend to the lattice Λ.

Proof: Denote, for $r=1,2,3, \ldots$, by $\Lambda^{(r)}$ any critical lattice of K^{r+t}; all these lattices are K^{t} admissible. Since K^{r+t} is a bounded subset of K, from the hypothesis,

$$
d\left(\Lambda^{(r)}\right)=\Delta\left(K^{r+t}\right)<\triangle(K)
$$

$$
(r=1,2,3, \ldots)
$$

Further, by the corollary to Theorem 10 of Part I,

$$
\lim _{r \rightarrow \infty} d\left(\Lambda^{(r)}\right)=\lim _{r \rightarrow \infty} \triangle\left(K^{r+t}\right)=\triangle(K)
$$

The lattices $\Lambda^{(1)}, \Lambda^{(2)}, \Lambda^{(3)}, \ldots$ form therefore a bounded sequence, and so, by Theorem 2 of Part I, there exists an infinite subsequence

$$
\Lambda_{1}=\Lambda^{\left(k_{1}\right)}, \quad \Lambda_{2}=\Lambda^{\left(k_{2}\right)}, \quad \Lambda_{3}=\Lambda^{\left(k_{3}\right)}, \ldots \quad\left(1 \leqslant k_{1}<k_{2}<k_{3}<\ldots\right)
$$

which converges to a limiting lattice, Λ say. It is clear that the so defined lattices Λ_{r} and Λ satisfy the assertions (a), (b), and (c) of the theorem; but there remains to prove that Λ is a critical lattice of K.

We show firstly that Λ is K-admissible. Let $P \neq O$ be any point of Λ. There is then in each lattice Λ_{r} a point $P_{r} \neq \mathrm{O}$ such that

$$
\lim _{r \rightarrow \infty}\left|P_{r}-P\right|=0
$$

Further, if r is sufficiently large,

$$
\left|P_{r}\right|<t+k_{r} .
$$

Since Λ_{r} is $K^{t+k} r$-admissible, this means that

$$
F\left(P_{r}\right) \geqslant 1
$$

whence by the continuity of $F(X)$,

$$
F(P)=\lim _{r \rightarrow \infty} F\left(P_{r}\right) \geqslant 1
$$

i.e. Λ is K-admissible.

Secondly, Λ is even critical since

$$
d(\Lambda)=\lim _{r \rightarrow \infty} d\left(\Lambda_{r}\right)=\triangle(K)
$$

This completes the proof.
Definition D: Let K be an infinite star body of the finite type. Then a critical lattice Λ of K is called strongly critical if there exists a bounded star body K^{*} contained in K such that

$$
d\left(\Lambda^{*}\right) \geqslant d(\Lambda)
$$

for every K^{*}-admissible lattice Λ^{*} sufficiently near to Λ^{12}).

[^0]$$
Y_{1}, Y_{2}, \ldots, Y_{n} \text { and } Y_{1}^{*}, Y_{2}^{*}, \ldots, Y_{n}^{*}
$$
of Λ and Λ^{*} such that all numbers
$$
\left|Y_{g}-Y_{g}^{*}\right| \quad(g=1,2, \ldots, n)
$$
are less than a prescribed constant.

It is clear from this definition and from Theorem K that if K is boundedly irreducible, then at least one critical lattice of K is not strongly critical. Hence the following theorem follows at once:

Theorem L: Let K be an infinite star body of the finite type, and let further every critical lattice of K be strongly critical. Then K is boundedly reducible.

Proof Assume that, on the contrary, K is boundedly irreducible, and denote by K^{*} any bounded star body contained in K. There exists then a positive number t such that $|X| \leq t$ for every point X of K^{*}. If Λ is now the critical lattice of K given for this value of t by Theorem K , then Λ is clearly not strongly critical.

Theorem L allows in many cases to decide whether a given unbounded star body is boundedly reducible. A few such cases are discussed in the next paragraphs.
§ 13. Examples of boundedly reducible star domains in R_{2}.
In his work on binary cubic forms ${ }^{13}$), L. J. Mordell showed that the two star domains
K_{1} :

$$
\left|x_{1} x_{2}\left(x_{1}+x_{2}\right)\right| \leqslant 1
$$

and
$K_{2}: \quad\left|x_{1}^{3}+x_{2}^{3}\right| \leqslant 1$
are of determinants

$$
\Delta\left(K_{1}\right)=1^{3} / \overline{7} \text { and } \Delta\left(K_{2}\right)=\sqrt[6]{\frac{23}{27}} .
$$

It is of interest that his proof gave, incidentally, the result that both star domains are boundedly reducible; they were the first non-trivial examples of this kind. I later gave an even simpler example,
K_{3} :
$\left|x_{1} x_{2}\right| \leqslant 1$, with $\triangle\left(K_{3}\right)=V \overline{5}$,
of a boundedly reducible star domain, and made some applications of this property of $K_{3}{ }^{14}$).

By means of Theorem L , independent proofs that K_{1}, K_{2}, and K_{3} are boundedly reducible, may be easily obtained. To this purpose, one uses considerations analogous to those in the next paragraphs.

[^1]§ 14. The star body $\left|x_{1} x_{2} x_{3}\right| \leq 1$ in R_{3}.
By a theorem of H. Davenport ${ }^{15}$), the star body
$$
K: \quad\left|x_{1} x_{2} x_{3}\right| \leqslant 1
$$
is of determinant
$$
\triangle(K)=7
$$

Let

$$
\theta=2 \cos \frac{2 \pi}{7}, \quad \varphi=2 \cos \frac{4 \pi}{7}, \quad \psi=2 \cos \frac{6 \pi}{7}
$$

be the three roots of

$$
t^{3}+t^{2}-2 t-1=0
$$

Then

$$
\begin{array}{r}
\Lambda_{0}: x_{1}=\theta u_{1}+\varphi u_{2}+\psi u_{3}, x_{2}=\varphi u_{1}+\psi u_{2}+\theta u_{3}, x_{3}=\psi u_{1}+\theta u_{2}+\varphi u_{3} \\
\left(u_{1}, u_{2}, u_{3}=0, \mp 1, \mp 2, \ldots\right)
\end{array}
$$

is a critical lattice of K, and every other critical lattice of K is of the form $\Lambda=\Omega \Lambda_{0}$ where Ω is one of the automorphisms
$\Omega: \quad x_{1}=t_{1} x_{\alpha}^{\prime}, \quad x_{2}=t_{2} x_{\beta}^{\prime}, \quad x_{3}=t_{3} x_{\gamma}^{\prime}$
of K; here t_{1}, t_{2}, t_{3} are real numbers satisfying

$$
t_{1} t_{2} t_{3}=\mp 1
$$

and α, β, γ is any permutation of $1,2,3$.
Theorem M: The star body $K:\left|x_{1} x_{2} x_{3}\right| \leq 1$ in R_{3} is boundedly reducible.

Proof: It suffices to show that Λ_{0} is a strongly critical lattice of K because, by affine invariance, the same is then true for all critical lattices of K, and so the assertion follows immediately from Theorem L .

By definition, the lattice Λ_{0} is strongly critical if there exists a bounded star body $K^{*}<K$ such that

$$
d\left(\Lambda^{*}\right) \geqslant d\left(\Lambda_{0}\right)
$$

for every K^{*}-admissible lattice Λ^{*} sufficiently near to Λ_{0}. Such a lattice Λ^{*} near to Λ_{0} contains a point

$$
P^{*}=\left(\theta^{*}, \varphi^{*}, \psi^{*}\right)
$$

arbitrarily near to the point

$$
P_{0}=(\theta, \varphi, \psi)
$$

of Λ_{0} obtained for $u_{1}=1, u_{2}=0, u_{3}=0$. There exists then an automorphism
$\Omega^{*}: \quad x_{1}=t_{1}^{*} x_{1}^{*}, \quad x_{2}=t_{2}^{*} x_{2}^{*}, \quad x_{3}=t_{3}^{*} x_{3}^{*} \quad\left(t_{1}^{*} t_{2}^{*} t_{3}^{*}=1\right)$
${ }^{15}$) Proc. Lond. Math. Soc. 44, 412-431 (1938).
of K which changes P^{*} into a point $\Omega^{*} P^{*}$ collinear with O and P_{0} :

$$
t_{1}^{*} \theta^{*}: t_{2}^{*} \varphi^{*}: t_{3}^{*} \psi^{*}=\theta: \varphi: \psi
$$

Hence, by affine invariance, it suffices to show that

$$
d\left(\Lambda^{*}\right) \geqslant d\left(\Lambda_{0}\right)
$$

for every K^{*}-admissible lattice Λ^{*} which is (i) sufficiently near to Λ_{0}, and which (ii) contains a point

$$
P^{*}=\left(\theta^{*}, \varphi^{*}, \psi^{*}\right)
$$

arbitrarily near to the point

$$
P_{0}=(\theta, \varphi, \psi)
$$

of Λ_{0} such that O, P_{0}, P^{*} are collinear.
Now every lattice Λ^{*} near to Λ_{0} can be written in the form
$\Lambda^{*}: x_{1}=\theta v_{1}+\varphi v_{2}+\psi v_{3}, \quad x_{2}=\varphi v_{1}+\psi v_{2}+\theta v_{3}, \quad x_{3}=\psi v_{1}+\theta v_{2}+\varphi v_{3}$ with

$$
\left.\begin{array}{l}
v_{1}=u_{1}+\left(a_{11} u_{1}+u_{12} u_{2}+u_{13} u_{3}\right), \\
v_{2}=u_{2}+\left(a_{21} u_{1}+u_{22} u_{2}+u_{23} u_{3}\right), \\
v_{3}=u_{3}+\left(a_{31} u_{1}+a_{32} u_{3}+a_{33} u_{3}\right),
\end{array}\right\}\left(u_{1}, u_{2}, u_{3}=0, \mp 1, \mp 2, \ldots\right)
$$

where the coefficients $a_{n k}$ are real numbers such that

$$
a=\max _{h, k=1,2,3}\left|a_{h k}\right|
$$

is less than any given constant. The point P^{*} of Λ^{*} corresponding to P_{0} is $P^{*}=\left(\left(1+a_{11}\right) \theta+a_{21} \varphi+a_{31} \psi,\left(1+a_{11}\right) \varphi+a_{21} \psi+a_{31} \theta,\left(1+a_{11}\right) \psi+a_{21} \theta+a_{31} \varphi\right)$ and is collinear with O and P_{0} if and only if
(a) :

$$
a_{21}=a_{31}=0
$$

because the three points

$$
P_{0}=(\theta, \varphi, \psi), \quad P_{1}=(\varphi, \psi, \theta), \quad P_{2}=(\psi, \theta, \varphi)
$$

are linearly independent. We consider from now on only lattices Λ^{*} for which the condition (a) is satisfied.

Put for shortness,

$$
\begin{aligned}
S(U) & =\left(\theta u_{1}+\varphi u_{2}+\psi u_{3}\right)\left(\varphi u_{1}+\psi u_{2}+\theta u_{3}\right)\left(\psi u_{1}+\theta u_{2}+\varphi u_{3}\right)= \\
& =\left(u_{1}^{3}+u_{2}^{3}+u_{3}^{3}\right)-4\left(u_{2} u_{3}^{2}+u_{3} u_{1}^{2}+u_{1} u_{2}^{2}\right)+3\left(u_{2}^{2} u_{3}+u_{3}^{2} u_{1}+u_{1}^{2} u_{2}\right)-u_{1} u_{2} u_{3}
\end{aligned}
$$

so that

$$
x_{1} x_{2} x_{3}=S(U)
$$

for the point of Λ_{0} belonging to $U=\left(u_{1}, u_{2}, u_{3}\right)$. Similarly

$$
x_{1} x_{2} x_{3}=S(V)
$$

for the point of Λ^{*} belonging to $V=\left(v_{1}, v_{2}, v_{3}\right)$, or, on replacing V by its value in U,

$$
x_{1} x_{2} x_{3}=S(U)+T(U)
$$

here

$$
\begin{aligned}
T(U)=\left(A_{1} u_{1}^{3}+A_{2} u_{2}^{3}+\right. & \left.A_{3} u_{3}^{2}\right)+\left(B_{1} u_{2} u_{3}^{2}+B_{2} u_{3} u_{1}^{2}+B_{3} u_{1} u_{2}^{2}\right)+ \\
& +\left(C_{1} u_{2}^{2} u_{3}+C_{2} u_{3}^{2} u_{1}+C_{3} u_{1}^{2} u_{2}\right)+D u_{1} u_{2} u_{3}
\end{aligned}
$$

with the coefficients

where, in all cases, the O-term consists of the products of two or three of the $a_{n k}$. These formulae imply, in particular, that when a tends to zero, then the maximum

$$
A=\max \left(\left|A_{1}\right|,\left|A_{2}\right|,\left|A_{3}\right|,\left|B_{1}\right|,\left|B_{2}\right|,\left|B_{3}\right|,\left|C_{1}\right|,\left|C_{2}\right|,\left|C_{3}\right|,|D|\right)
$$

satisfies the inequality

$$
A=O(a)
$$

On solving for the coefficients $a_{h k}$, we find further that

$$
\begin{aligned}
3 a_{11} & = \\
A_{1} & +O\left(a^{2}\right), \\
105 a_{22} & =-70 A_{1}-15 A_{2}+30 A_{3}+18 B_{1}-12 B_{2}-27 B_{3}-6 D+O\left(a^{2}\right), \\
105 a_{33} & =65 A_{1}+45 A_{2} \quad-18 B_{1}+12 B_{2}+27 B_{3}-9 D+O\left(a^{2}\right), \\
35 a_{12} & =-25 A_{1}-5 A_{2}+15 A_{3}+9 B_{1}-6 B_{2}-6 B_{3}-3 D+O\left(a^{2}\right), \\
35 a_{23} & =35 A_{1}+15 A_{2}-5 A_{3}-6 B_{1}+9 B_{2}+9 B_{3}-3 D+O\left(a^{2}\right), \\
35 a_{32} & =-10 A_{1}+10 A_{2}+10 A_{3}+6 B_{1}-4 B_{2}+B_{3}-2 D+O\left(a^{2}\right), \\
35 a_{13} & =25 A_{1}+5 A_{2}+5 A_{3}-2 B_{1}+8 B_{2}+3 B_{3}-D+O\left(a^{2}\right),
\end{aligned}
$$

and we also obtain the three identities,

$$
\begin{aligned}
& 5 C_{1}=5 A_{1}-5 A_{2}-10 A_{3}-7 B_{1}+3 B_{2}-2 B_{3}-D+O\left(a^{2}\right) \\
& 5 C_{2}=-10 A_{1}+5 A_{2}-5 A_{3}-2 B_{1}-7 B_{2}+3 B_{3}-D+O\left(a^{2}\right) \\
& 5 C_{3}=-5 A_{1}-10 A_{2}+5 A_{3}+3 B_{1}-2 B_{2}-7 B_{3}-D+O\left(a^{2}\right)
\end{aligned}
$$

and the inequality

$$
a=O(A), \quad O\left(a^{2}\right)=O\left(A^{2}\right)
$$

So far, the star body K^{*} has not yet been defined; nor have we yet used that Λ^{*} is K^{*}-admissible. Let then K^{*} be a star body K^{t} where t is so large that all points of Λ_{0} for which

$$
S(U)=1, \quad\left|u_{1}\right| \leqslant 3, \quad\left|u_{2}\right| \leqslant 3, \quad\left|u_{3}\right| \leqslant 3,
$$

belong to K^{t}. Then the ten points of Λ_{0} given by

$$
\begin{aligned}
U= & (1,0,0),(0,1,0),(0,0,1),(0,1,1),(1,0,1),(1,1,0) \\
& (0,-1,-2),(-2,0,-1),(-1,-2,0),(-1,-1,-1)
\end{aligned}
$$

satisfy the equation,

$$
S(U)=1
$$

The points of $\Lambda^{*^{*}}$ belonging to the same U cannot be inner of $K^{*}=K^{t}$ since Λ^{*} is K^{*}-admissible. The numbers

$$
\alpha_{1}, \alpha_{2}, \alpha_{3}, \quad \beta_{1}, \beta_{2}, \beta_{3}, \quad \gamma_{1}, \gamma_{2}, \gamma_{3}, \quad \delta
$$

defined by

$$
T(1,0,0)=\alpha_{1}, T(0,1,1)=\beta_{1}, T(0,-1,-2)=\gamma_{1}
$$

$$
T(0,1,0)=a_{2}, T(1,0,1)=\beta_{2}, T(-2, \quad 0,-1)=\gamma_{2}, T(-1,-1,-1)=\delta
$$

$$
T(0,0,1)=\alpha_{3}, T(1,1,0)=\beta_{3}, T(-1,-2, \quad 0)=\gamma_{3}
$$

are therefore non-negative because

$$
x_{1} x_{2} x_{3}=S(U)+T(U)=1+T(U) \geqslant 1
$$

for these points.
Hence, on substituting in $T(U)$,

$$
\begin{aligned}
& \alpha_{1}=\quad A_{1}, \\
& \alpha_{2}=\quad A_{2} \text {, } \\
& \alpha_{3}=\quad A_{3} \text {, } \\
& \beta_{1}=\quad A_{2}+A_{3}+B_{1} \quad+C_{1}, \\
& \beta_{2}=A_{1}+A_{3}+B_{2}+C_{2} \text {, } \\
& \beta_{3}=A_{1}+A_{2}+B_{3}+C_{3} \text {, } \\
& \gamma_{1}=-A_{2}-8 A_{3}-4 B_{1} \quad-2 C_{1} \text {, } \\
& \gamma_{2}=-8 A_{1}-A_{3}-4 B_{2} \quad-2 C_{2}, \\
& \gamma_{3}=-A_{1}-8 A_{2} \quad-4 B_{3} \quad-2 C_{3} \text {, } \\
& \delta=-A_{1}-A_{2}-A_{3}-B_{1}-B_{2}-B_{3}-C_{1}-C_{2}-C_{3}-D,
\end{aligned}
$$

and conversely,

$$
\begin{aligned}
& A_{1}=\alpha_{1} \text {, } \\
& A_{2}=\quad \alpha_{2}, \\
& A_{3}=\quad a_{3}, \\
& B_{1}=\quad \frac{1}{2} \alpha_{2}-3 \alpha_{3}-\beta_{1} \quad-\frac{1}{2} \gamma_{1}, \\
& B_{2}=-3 \alpha_{1} \quad+\frac{1}{2} \alpha_{3} \quad-\beta_{2} \quad-\frac{1}{2} \gamma_{2}, \\
& B_{3}=\frac{1}{2} \alpha_{1}-3 \alpha_{2} \quad-\beta_{3} \quad-\frac{1}{2} \gamma_{3} . \\
& C_{1}=. \quad-\frac{3}{2} \alpha_{2}+2 \alpha_{3}+2 \beta_{1} \quad+\frac{1}{2} \gamma_{1} \text {, } \\
& C_{2}=2 \alpha_{1} \quad-\frac{3}{2} \alpha_{3} \quad+2 \beta_{2}+\frac{1}{2} \gamma_{2} \text {, } \\
& C_{3}=-\frac{3}{2} \alpha_{1}+2 \alpha_{2}+2 \beta_{3}+\frac{1}{2} \gamma_{3} . \\
& D=\alpha_{1}+\alpha_{2}+\alpha_{3}-\beta_{1}-\beta_{2}-\beta_{3} \quad-\delta .
\end{aligned}
$$

From these formulae, we deduce that identically,

$$
\text { (b): } \begin{array}{ll}
\gamma_{1}=2 \alpha_{1}+a_{2}-2 \alpha_{3} & +2 \beta_{2} \\
\gamma_{2}=-2 \alpha_{1}+2 \alpha_{2}+\alpha_{3} & +2 \delta+O\left(a^{2}\right) \\
\gamma_{3}= & \alpha_{1}-2 \alpha_{2}+2 \alpha_{3}+2 \beta_{1}
\end{array}
$$

If further

$$
\alpha=\max \left(\left|\alpha_{1}\right|,\left|\alpha_{2}\right|,\left|\alpha_{3}\right|,\left|\beta_{1}\right|,\left|\beta_{2}\right|,\left|\beta_{3}\right|,\left|\gamma_{1}\right|,\left|\gamma_{2}\right|,\left|\gamma_{3}\right|,|\delta|\right),
$$

then, by these formulae, all three numbers a, A, α are of the same order,

$$
a=O(a)=O(A), \quad O\left(a^{2}\right)=O\left(a^{2}\right), \quad O\left(A^{2}\right)=O\left(\dot{a}^{2}\right)
$$

The proof of the theorem proceeds now as follows:
The lattice Λ^{*} is of determinant

$$
d\left(\Lambda^{*}\right)=d\left(\Lambda_{0}\right)\left|\begin{array}{ccc}
1+a_{11} & a_{12} & a_{13} \\
0 & 1+a_{22} & a_{23} \\
0 & a_{32} & 1+a_{33}
\end{array}\right|=d\left(\Lambda_{0}\right)(1+\sigma),
$$

where

$$
\sigma=a_{11}+a_{22}+a_{33}+O\left(a^{2}\right)
$$

(c) :

$$
\begin{aligned}
& =\frac{2}{7}\left(A_{1}+A_{2}+A_{3}\right)-\frac{1}{7} D+O\left(A^{2}\right) . \\
& =\frac{1}{7}\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)+\frac{1}{7}\left(\beta_{1}+\beta_{2}+\beta_{3}\right)+\frac{1}{7} \delta+O\left(\alpha^{2}\right) .
\end{aligned}
$$

Assume now that Λ^{*} is so near to Λ_{0} that a, hence also A and α, are sufficiently small. Then
either

$$
\sigma>0, \quad d\left(\Lambda^{*}\right)>d\left(\Lambda_{0}\right)
$$

or

$$
\sigma=0, \quad d\left(\Lambda^{*}\right)=d\left(\Lambda_{0}\right)
$$

By (c), the second case cannot hold unless
(d):

$$
a_{1}=\alpha_{2}=a_{3}=\beta_{1}=\beta_{2}=\beta_{3}=\delta=0
$$

hence also
(e):

$$
\gamma_{1}=\gamma_{2}=\gamma_{3}=0
$$

because by (b),

$$
\max \left(\left|\gamma_{1}\right|,\left|\gamma_{2}\right|,\left|\gamma_{3}\right|\right)
$$

is of at most the same order as

$$
\max \left(\left|a_{1}\right|,\left|\alpha_{2}\right|,\left|a_{3}\right|,\left|\beta_{1}\right|,\left|\beta_{2}\right|,\left|\beta_{3}\right|,|\delta|\right)
$$

The equations (d) and (e) imply next that

$$
A_{1}=A_{2}=A_{3}=B_{1}=B_{2}=B_{3}=C_{1}=C_{2}=C_{3}=D=0
$$

hence also

$$
a_{11}=a_{22}=a_{33}=a_{12}=a_{23}=a_{32}=a_{13}=0 ;
$$

and so Λ^{*} coincides with Λ_{0}. This concludes the proof.
Although the proof just given is a pure existence proof, it can easily be altered so as to lead to the construction of a bounded star body K^{*} satisfying $K^{*}<K$.

The next theorems are all proved in a manner similar to that of Theorem M.

[^0]: ${ }^{12}$) We say that Λ^{*} is near to Λ if there exist reduced bases

[^1]: ${ }^{13}$) Since his latest proof has not yet appeared, I refer to two articles Journal Lond. Math. 18, 201-210 and 210-217 (1943), where the two affine-equivalent regions

 $$
 \left|x_{1}^{3}+x_{1}^{2} x_{2}-2 x_{1} x_{2}^{2}-x_{2}^{3}\right| \leqslant 1 \text { and }\left|x_{1}^{3}-x_{1} x_{2}^{2}-x_{2}^{3}\right| \leqslant 1
 $$

 are considered.
 ${ }^{14}$) Proc. Cambr. Phil. Soc. 40, 108-116, 116-120 (1943), and Journ. Lond. Math. Soc. 18, 233-238 (1943).

