Mathematics. A P-adic Analogue of a Theorem of LEBESGUE in the
T heory of Measure. By ]J. POPKEN and H. TURKSTRA. (Communicated
by Prof. J. A. SCHOUTEN.)

(Communicated at the meeting of June 29, 1946.)

1. We consider on the real axis a measurable set of points A and an
arbitrary interval I 1). The ratio

m(AI)

m ()
is said to be the mean density of A in I.

Now let « be an arbitrary point on the real axis. Let I denote an interval
containing « and let this interval “contract itself on «', i.e. let its length
m(I) tend to zero. Whenever the mean density of A in I always tends to
the same limit d — d(a), then d is said to be the density of A at a.

The following fundamental theorem in the theory of density is due to
LEBESGUE 2):

If A denotes an arbitrary measurable set on the real axis, then there
exists a set Z of measure zero, such that at all points outside 3) Z the
density exists, and is equal to unity at points of A and equal to zero at
points outside A.

This theorem also is of special importance in the metric theory of
Diophantic approximations 4).

In this note we will prove the analogue of this theorem if we take the
field of P-adic numbers in stead of the field of real numbers (theorem I).
It is clear that we have to use a theory of measure in the field of all P-adic
numbers. Such a theory was established by TURKSTRA in his dissertation ).

1) In this note we use the general symbolism of the theory of sets. Let A, B be two
sets, then A -+ B, the sum of A and B, denotes the set of all elements in A or in B;
A—B, the complement of B with respect to A, denotes the set of all elements in A but
not in B; AB, the infersection of A and B, consists of the elements in A and also in B.
Further A C B or B D A means that A is a sub-set of B, the case that A coincides with
B not being excluded. A set is said to be empty. if it has no elements. The measure of a
measurable set A is denoted by m (A).

2)  H. LEBESGUE, Sur lintégraticn des fonctions discontinues, Ann, Scient. de I'Ecole
Normale Supérieure (3) 27, p. 405—407 (1910).

3)  “Qutside Z" means here: “belonging to the ccmplement of Z".

+) Cf. e.g. ]. F. KOKSMA, Diophantische Approximationen (Ergebnisse der Mathematik
IV 4), Kap. 111 § 5.

5)  H. TURKSTRA, Metrische bijdragen tot de theorie der Diophantische approximaties
in het lichaam der P-adische getallen. Dissertation of the ,,Vrije Universiteit” at Amster-
dam, Groningen 1936.

We shall refer to this book as “T".

See also: W. FELLER and E. TORNIER, Mass- und Inhaltstheorie des Baireschen
Nullraumes, Math. Ann, 107, 165—187 (1933).
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In the next section of this note we give an extract of this theory as far as
we usSe it in our present investigation.

2. From now on we confine ourselves to the field K —= K(P) of all
P-adic numbers, P denoting an arbitrary prime.
A P-adic number « can be written in the form

a:‘fa,,P”..........(l)

n=-—w

where the coefficients an are integers taken from the interval 0 <a<P—1.
such that only a finite number of the coefficients a_,, a_,, a_3, ... ¢» not
vanish.

Suppose a =~ 0, and let a_+ be the first coefficient in (1) different fzom
zero. Then

a= 5 a, P , a;FC
n=—t
The P-adic value |« |, of « is defined to be
| iy = PR {,0%,=10),
Let ¢, g be two P-adic numbers or “points”, then |« — 74!, is said to be
the P-adic distance between « and f; we shall denote it by «j. Clearly
«f=0 and «p =0 if and only if « and f coincide; also uf = pu ).

Finally the important “inequality of the triangle” is satisfied: If «, 8, ; are
three arbitrary P-adic points, then

B = ay + 1p;

even a sharper inequality holds:

«p = max (ay, 1) 7);

in other words this conception of distance is “non-Archimedic”, and this
property is responsible for some peculiarities in the theory of P-adic point
sets.

Evidently the set K(P) of all P-adic points is a metric space.

Now we are in a position to define a P-adic interval of order n: Let «
be an arbitrary P-adic number and let n be a fixed integer, then the set
of all P-adic numbers &, satisfying

uf = p-n
is said to be a P-adic interval of order n ).

Open and closed sets can be defined in the ordinary manner, but it is
convenient to enlarge these definitions by the convention that an empty set

%) T. p. 39 (Proof of Il 5telling 11).

) T. p. 39 (Proof of II Stelling 11) and p. 30 (II Stelling 4).

*)  For an equivalent definition sce T. p. 72 (V Definitie 1); compare p. 74
(V Stelling 1).
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is considered as open and also as closed. Then the following theorems
are true 9):

The complement of an open set is closed and the complement of a closed
set is open.

The sum of a finite number or of an infinity of open sets is open.

The sum of a finite number of closed sets is closed.

The intersection of a finite number of open sets is open.

The intersection of a finite number or of an infinity of closed sets is
closed.

Now we state some properties of P-adic intervals:

Theorem 1 10):  The set of all P-adic intervals is enumerable.

Theorem 2 11): If I, and I, denote intervals, such that they have at
least one point in common; if the order of I, is not less than the order of
I,, then

I, CI,

It follows, that fwo intervals of the same order either coincide, or do
not overlap.

Let « be an arbitrary P-adic number. Now
af = p-n
defines an interval I'®) of order n containing a. Hence:

Theorem 3: Let « be an arbitrary P-adic number. For every integer n
there exists one and only one interval I'") of order n, enclosing a. Moreover
N el (o st ey (LR ey (LD N ey (Ul iU

Let I(") denote an interval of order n. Take an arbitrary P-adic number

a of I("). By theorem 3 there exists for every integer m one and only one
interval I(™) of order m containing a. Moreover

Imc - c -2 C ..
Hence we have:
Theorem 4: Let I(") denote an interval of order n. For every integer

m < n there exists one and only one interval I(™) of order m enclosing I(™).
Moreover

IncC [0 C Jn=2C, .,
It follows that all intervals, containing I(*) as a sub-set, belong to the
sequence I(%), [(n=1), J(n=2) .
Other fundamental properties of intervals are given by:

Theorem 5 12):  Any interval is an open and also a closed set.

9) T. p. 40—41.

10) T. p. 78 (V Stelling 3).
11) T. p. 79 (V Stelling 4).
12) T. p. 78 (V Stelling 2).
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Theorem 6 13): An open sei 14) consists of a finite number or an
enumerable infinity of non-overlapping intervals.

Now the theory of measure in the field of all P-adic numbers can be
developed in a manner similar to the ordinary theory of measure.

First the measure of an interval I'") of order n is defined to be the number

m (IW) = p—n 15),

Then the measure of a bounded open set O is introduced. If O is an
empty set, then by definition its measure m(O) shall be equal to zero. If O
is not an empty set, then by theorem 6 there exists at least one decom-
position of O in a set of non-overlapping intervals Iy, I, I3, ..., such that

0211+12+I3+...

Now it can be shown, that the sum

m (L) +m () +m () + ...
does not depend on the particular decomposition of O we choose; it is said
to be the measure m(QO) of O 16),
Next we consider the so-called bounded sets:
Let t be an arbitrary integer; then the inequality

£ =P
defines the interval of order — ¢ containing zero; we shall denote this inter-
val by K:. All intervals K¢ enclose zero, hence by theorem 3
...CK,CK,CK.,C...
A set B is said to be bounded if, for a suitably chosen integer ¢, B is

contained in the set K¢; in other words if it is possible to choose a positive
number T, such, that all points g of B satisfy the inequality
1Blp=T.

It is easily shown, that every interval is a bounded set.

The exterior measure m(B) of a bounded set B is defined to be the lower
bound of the measures of all bounded open sets O, which contain B 17),

B is a bounded set, hence by definition it is contained in an interval K.
The quantity

m (B) = m (K) — 7 (K;— B)

can be shown not to depend on the particular interval K: we choose; it
defines the interior measure of B 18). Always m(B) < m(B) 19).

13) T, p. 80 (V Stelling 6, Gevolg 2).
14)  Different from an empty set.
15) T. p. 86 (V Definitie 5a).

16) T. p. 96, V Definitie 9, but here the author uses a particular decomposition
I, Is, ... of O, where I, Is, ... are the “largest” intervals of O (see p. 79 and 80,
V Definitie 3 and Gevolg 2). Afterwards (p. 97, 98, V Stelling 18) it is shown, that
we may substitute it by an arbitrary decomposition of O.

17) T. p. 101 (V Definitie 10; it is clear that in this definition O denotes a bounded
open set).

18) T, p. 103 (V Definitie 11).

19) T, p. 104 (V Stelling 24).
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If for a bounded set B the exterior and interior measures are equal, then
B is said to be a measurable set with its measure m(B) —=m(B) = m (B) 20).

Finally the conception of measure is extended to unbounded sets: An
arbitrary set A is said to be measurable if for any integer ¢ the intersection
AK: is measurable in the above sense 21); its measure is defined by

m(A)= lim m (A K} ).

t— o
This limit always exists, but may be infinite. Evidently m(A) = 0.

These extended definitions of a measurable set and of its measure are
in accordance with the previous definitions with respect to open and
bounded sets 23),

The following theorems are true:

Theorem 7 24): The complement K—A of a measurable set is
measurable again.

Theorem 8 25): If A and B denote measurable sets, such that
A DB,
then m(A) = m(B); moreover m(A — B) is measurable, and
m(A—B)=m(A)—m(B).

Theorem 9 26): The sum A, + A, + A; + ... and the intersection
AA,A, ... of a finite number or of an enumerable infinity of measurable
sets Ay, A,, A, ... are measurable again. Moreover

m@A,+A;+A;+.. . )=Em(A)+m(A)+m(A)+...,
and, if Ay, A,. A, ... do not overlap, even
m(A, +A,+As+..)=m(A) +m(A)+m(As)+...

3. Let I be an arbitrary interval in K(P). The mean densitj of a
measurable set A in [ is defined to be

m(Al)
m(l) -~

Now let « be an arbitrary P-adic number. By theorem 3 there exists for
any integer n exactly one interval I") of order n containing «. The quantity

d—lim ™ (A 1)

n—»ow m (Im))

is said to be the upper density of A at the point «. Evidently 0 <d < 1.

108 (V Definitic 12).

p. 112 (V Definitie 13).

p. 112 (V Definitie 14).

p. 112 (Opmerking 1 and 2).

p. 115 (V Stelling 35).

p. 115 (V Steliing 34).

p. 116 (V Stelling 37), p. 117 (V Stelling 38) and p. 113 (V Stelling 33).

‘_"I)
.'l)
_"_!)
'.H)
‘.‘})

23)

'._‘H)

SAHAAAA
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If

T(n)
d= lim 24 )

Ao e m (1)

exists, then d is said to be the density of A at the point «. If d = 0 then
it follows d = 0.
The analogue of the theorem of LEBESGUE we want to prove is:

Theorem I: If A denotes an arbitrary measurable set in the field of all
P-adic numbers, then there exists a set Z of measure zero, such that at all
points outside Z the density exists, and is equal to unity at points of A
and equal to zero at points outside A.

This theorem was stated without proof in the dissertation of TURKSTRA 27)
and there it was used to obtain certain results in the theory of Diophantic
approximations in the field of P-adic numbers. The authors of this note
proved the theorem some years before the war, but the publication was
delayed on account of several circumstances and the war.

It is easily shown, that it is sufficient to prove only the second part of
theorem I:

Theorem II: If A denotes a measurable set, then there exists a set Z
of measure zero, such that at all points outside A and outside Z the density
of A is equal to zero.

For let us suppose that this last theorem has been proved, then we shall
show that also theorem I is true: Let A be a measurable set. Now the
complement K— A of A also is measurable. Applying theorem II with
K — A in stead of A we obtain the following result: There exists a set Z’
of measure zero, such that at all points ¢ outside K— A and outside Z’
the density of K— A is equal to zero, or

: {(K—A) '™}
tm, U <o
at all points « of A outside Z’; here I" is the interval of order n con-
taining «. Now A I(®) and (K— A)I(") do not overlap, hence m(A I'")) +
= m{((K—A)I")}y = m(I").

It follows

. m(AIm)
lim ‘=
n—»o M ([(n))
at all points « of A outside Z’.

The set Z + Z’ evidently is of measure zero; outside Z + Z’ the density
is equal to unity at points of A and on account of theorem II equal to zero
at points outside A.

Hence theorem I is a corollary of theorem II.

In the next section of this paper we first prove the fundamental lemma 1,

27) T, p. 137 (VII Stelling 1%).
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then we show that the assertion of theorem II is true if we substitute a
bounded open set O for the measurable set A (lemma 2), next we prove
the theorem for a bounded set B (lemma 3) and lastly we establish
theorem II in its general form.

4. In this section we often consider a sequence of intervals iy, i, i3, ...,
satisfying certain conditions, then iy + iy + i3 + ... denotes the sum of
these intervals. But it may happen, that there are no intervals satisfying
the conditions. In this case we still write formally iy, i5, i3, ... in order to
avoid the consideration of several speciai cases. Then iy + iy + iz + ...
denotes an empty set, and m(i;) + m(iy) + m(iz) + ... by definition will
be equal to zero.

Now let O be a bounded open set. By theorem 6 the set O consists of a
finite number or an enumerable infinity of non-overlapping intervals
1,1, 1, ..., or

O=5L+L+L+... . . . . . .. Q)

It follows
m(O)=m)+m(L)+m)+...,

where the series at the right-hand side is either finite or convergent.
For every positive integer r we define the open set O, by

Or:1r+1r+l+1r+2+---- . o . . o . (3)
where O, may be an empty set. Clearly
lim m(O,)=0.. . . . . . . . . (4
r—» o

Lemma 1: Let O be a bounded open set and let (2) be a decomposition
of O in non-overlapping intervals. Lei r and k denote arbitrary positive
integers. Then the set O, defined in (3), is enclosed in an open set

O,k = O, with the following two properties:

2° if the point « is outside O and outside O, then the upper dersity

. 1
of O at a is at most .

k

Proof: We denote the mean density of O, in an arbitrary interval i by

o) =m40r 9

m (i)

Let I=1I,,0 (0 =0,1,2,...) be an arbitrary interval of O, and let its
order be n. If » is an arbitrary integer << n, then by theorem 4 there exists
exactly one interval I”) of order », containing I — I") as a sub-set. More-

over

J=IRACPENC AT . .oy « 2= » w 5 & (3
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and all intervals containing I as a sub-set belong to the sequence I(®),
Itn=1) J(n=2)

Now m (I(*)) = P-?, hence the measure of the intervals in this sequence
increases indefinitely.

By definition

m (O, I*)

6 (I(,v)) — 7 -_— m (O)

= m-—(I(V)) .
Hence the mean density of O in I = I(* is equal to unity, but the mean

density in I(") tends to zero if v decreases indefinitely.
Let I*) be the last interval of the sequence (5) with mean density

, thus & (I*)

1
> Dk It follows

8 (1) #,.........(6)

and, for the next interval I(#-1) in the sequence,

m (O, 1Y) _ 1

o (I = T =kP (7)
But

m(Iw-N=P-t'=Pm(wW) ., . . . . . (8)

and I(*) < I(*-1), hence
m(O, I'"N=m (O, I*Y), . . . . . . . (9

It follows from (7), (8) and (9)
(r)

%{ II(M)) = Flp. . (10)

Hence, if we denote I/*) by I, we derive from (6) and (10):
An arbitrary interval I, ., of O, can be enclosed in an interval I, o, such

that the mean density of O, in I, satisfies the inequalities

1 = 1
2 =_. . . .« . . . . Mn
p <) =1 (11)

Evidently O, is a sub-set of the open set
Or=5L+Lg+1lia4... . . . . . . (12

and we shall prove that O, also has the other properties stated in the
lemma 28),

First we shall show that two intervals I,.s and I,.: in the right-hand
side of (12) either coincide or dn not overlap.

Let us suppose, that I; o and I;,: at least have one point in common

28) If O, is an empty set, then, by the conventions assumed in the beginning of

section 4, the set O, is empty also.
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and that the order of, say, I .o is not less than the order of I, .. It follows
from theorem 2
Iris C s,
hence
I+ C I+, C Irye
These intervals belong to the sequence (compare (5))
Li.=IH.cI'fclc...

and 1o by definition is the last interval in this sequence with mean

density > ﬁ) But it follows from (11), that I, also has a mean density
> klp We obtain a contradiction unless I, .o and I, .+ coincide.

If we denote the different intervals of (12) by El, I_,2, f,a , ..., then these
intervals do not overlap and

Or=I,+1,+1,+..
Hence
m(O)=m(,)+m(I,)+mI.)+.... . . . (13

The mean density of O; in I, (v=1,2,3,...) is > Pik

m(0rT,)> oo m(T,);

we derive from (13), remembering that O, and O, mayv be empty,

1 == 1 — 1 —
ﬂm(or):P_k m(lr.)’*“Pk’m(Ir._.)‘l‘-n

=m(O,I,)+m(O,1;)+...=m (0, O;) =m (O)).
hence O, has the property 1° of lemma 1.

Let ¢ be a point outside O and outside O, (the conditions in lemma
1, 2°). In particular « is outside I; + I, + ... + I, _;; this set is closed, for
every interval by theorem 5 is a closed set. Hence the complement is open.
Therefore we can include « in an interval E(?) of order p, outside
Lo+ 1y + .. + ey

Let n denote an integer = p. By theorem 3 there exists exactly one
interval E{") —= E of order n containing «; moreover E") ¢ E(?). Hence

E is outside Iy + I, + ... +1,_4, or
EO=EO,.. . . . . . . . . (19

We have to show, that the upper density of O at « is Ilc at most, or

m (E™ O)

lim )

1
noe m(EW) k-
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Evidently it is sufficient to prove, that the mean density of O in E(") = E

1
is — at most, i.e.
k

ey =mEOI= 1
for every integer n = p.
By (14)
0(E)= %E(;ﬂ

We may suppose m(EO;) # 0, for otherwise m(EO;) =0, hence
O0(E) = 0. It follows

s (E)="(EON (15)
m(E Oy)
Now
EO,=EI,+EI,+EI,+.... . . . . (16)
If 1_,,, is an arbitrary interval of the sequence f,l, L. I wooy mnd i E

and 7,1, have at least one point in common, then by theorem 2 either—l,yc E
or EC7,,,. But this latter possibility would invelve, that ¢ was a point
of Oy, contrary to hypothesis, hence 7,rc E. Hence for an aibitrary inter-
val I, either EI, is empty or EI,  coincides with I,,.

Therefore we deduce from (16) the existence of a sequence I, Ip,, I,, ...
of non-overlapping intervals, such that

Eér:fpl—i—_fpe_*_]—p:l-*_"‘
Hence, taking account of O, c Oy,
EO,=0,I,+0:I,,+ O, I, +...,

where O I, O, I,,, O,I,, ... are non-overlapping measurable sets.
From (15) it follows therefore

O, 1) +m(O, I,)+ ...
m(Ip)+m(Ip)+ ...
We know by (11) that the mean density of O, in TP.-

m(OrIp,) _ 1

Cm(l,) Kk

a(E)é’"(

lIA

r=1,2,.::)

It follows 0(E) < Ilc and this proves the lemma.

Lemma 2: If O denotes an open bounded set, then there exists a set Z
of measure zero, such that at all points outside O and outside Z tke density
of O is equal to zero.

52
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Proof: 1. Let k be an integer > 1, further let 8 be a P-adic number,

1
such that the upper density of O at § is >k.
We introduce for r = 1, 2, ... the open sets O, considered in lemma 1.

Then — applying this lemma — we deduce that outside O and outside O~
the upper density of O at every point is éilc—.

It follows that § belongs to every set O + Oy, hence it is contained in

the intersection Sk of these sets. All sets O + O, are open, hence Sk is
measurable. Moreover

0cScO+0, (r=12,...),

hence
m(O)=m (St) =m (0) + m (O;).
By lemma 1
m(O,)=kPm(O,)
and by (4)
lim m(O,)=0;
it follows e

m (Sk) = m (O).
Introducing the set Zx = Sr— O, we obtain: Every point g with upper

density > ’lc either belongs to O or it is contained in a set Z« of measure
zero (k= 2,3,...).

2. The set
Z:ZZ+Z3+ZQ+...

clearly is of measure zero.

We consider a point § outside O and outside Z. We shall show that
the density at § is equal to zero. For otherwise the upper density d at 8

was positive. Now take an integer k, such that d >’lc, then k> 1, and by

the previous result § belongs either to O or to the set Zx, contrary to
hypothesis.

Lemma 3: Let B be a bounded measurable set. Then there exists a set
Z of measure zero, such that at all points outside B and outside Z the
density is equal to zero.

Proof: B is a bounded set; hence for a suitably chosen integer ¢ the
set K of all P-adic numbers & with

= Dt
[’_p

.
| &

contains the set B. The measure of B is equal to the exterior measure, hence
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it is the lower bound of the measures of all open bounded sets O which
contain B.
It follows the existence of a sequence

O,, O, 0O;,.
of bounded open sets, such that

Bc O, and lim m(O,) = m (B).

n— w
Now every set
B, =0,—B
is measurable and

lim m (B;) = lim {m (O,)—m (B)} =0.

n— @ n— w
Hence the intersection Z, of these sets By, B,, Bj, ...,
ZO:BI BzB3...,

is of measure zero.

By lemma 2 there exists for every (bounded open) set Or a set Z. of
measure zero, such that at all points outside O, and outside Z. the density
of Oy is equal to zero (n =1, 2, ...).

We will show that the set

=2+ 2Z,+2Z,+...

of measure zero has the property stated in lemma 3.

Therefore let « denote a point outside B and outside 2, then clearly «
iz outside Z, = BB.Bs ..., hence it is not contained in at least one of the
sets By, Bs, B, ...; say « is outside Bn = O, — B. But « is not contained
in B either, hence « is outside O.. Moreover « is outside Z,. Applying
lemma 2 we find that the density of O at « is zero, i.e.

m (O, I™)
lim ——— - =0;
> e m ()
here I*) denotes the interval of order » containing «. Now B ¢ Oy, hence
m(BI1")) <m(O,I*)), hence the density of B at «

mi (B 17

im
vy oo m (1)

Proof of theorem II: The set of all intervals is enumerable (theorem 1).
Let I,,1,, 1, ... denote the set of all intervals of order zero. Now A is
anr arbitrary measurable set, hence every set

Bn:AIn (n:1,2....)
is bounded and measurable; moreover
A:Bl “:LBz+Bz+---

Applying lemma 3 on the sets B, B,, B, ... we derive the existence of
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sets Z,, Zs, Z3, ... of measure zero, such that at all points outside B, and
outside Z. the density of B is equal to zero (n=1,2,3,...). The set
Zl+Zz+Z3—*'...:Z

is of measure zero. We shall show that at a point ¢ outside Z and outside
A the density of A is equal to zero.
The point « belongs to the interval

[éa|p =1

of order zero. This interval belongs to the sequence I, I,, I, ...; we shall
denote it by I 5.

Now a is outside B yand also outside Zy, hence by lemma 3 the density
of By at « is equal to zero:

L m(ByI%)

im — =0,

r— @ m (I("))

where I(*) denotes the interval of order » containing a. Both intervals I(0)
and [ y contain ¢ and are of order zero, hence I(0) coincides with Iy and
all intervals I(*) with » > 0 are enclosed in Iy, hence

AI®C Aly—=Buy.

It follows
AlIYC BN I(");
clearly
By I cC AIM,
so that A I'") coincides with By I") for v = 0, hence
lim = (ALY

v m (%) o
and this shows that the density of A at ¢ in fact is equal to zero.
This proves the theorem.



