la solution de (4) est

$$a_n = \int_0^\tau \frac{d\tau}{\sin^2 h_n \tau} \int_0^\tau Y_n e^{\psi \tau} \sin \tau d\tau$$

par conséquant u:

$$u = \sum_{n=1}^{\infty} \sin k_n x \left[\int_0^{\tau} \frac{d\tau}{\sin^2 h_n \tau} \int_0^{\tau} Y_n e^{w\tau} \sin h_n \tau \right] \sin h_n \tau .$$
 (5)

Cette expression peut être réduit à:

$$u(x_1,\tau_1) = \sum_{n=1}^{n=\infty} \frac{\sin k_n x_1}{h_n} \int_0^{\tau_1} \sin h_n (\tau_1 - \tau) Y_n e^{w\tau} d\tau.$$

La solution donnée ici satisfait aux conditions au bord ordinaires.

Mathematics. — Monna, A. F.: On a linear P-adic space, p. 74.

Be $l(\beta)$ $(p \ge 1)$ the space whose elements are the ranges $(x_1, x_2, ...)$ of P-adic numbers such that $\sum_i |x_i| \beta_i$ converges. The norm of x is defined by

$$||x|| = \{ \sum_{i} |x_{i}|_{p}^{p} \}^{\frac{1}{p}}.$$

The strong convergence is defined in the usual way. The space is complete (P-adic BANACH-space) and separable. We have

$$||x+y|| \le ||x|| + ||y||$$
; $||x+y|| \le \max(||x||, ||y||)$

is not true in general. The notions "operator" and "functional" are defined in the usual way. A necessary and sufficient condition for the linearity of an additive operator is given:

$$||U(x)|| \leq M P^k \text{ for } ||x|| \leq P^k.$$

The general form of the linear functionals is given by ${}^{P}\Sigma C_{i}x_{i}$, where $\{|C_{i}|_{P}\}$ is a bounded range; this is valuable for $p \ge 1$. For the P-adic convergence of this series for all x in $l^{(p)}_{P}$, it is a necessary and sufficient condition that $\{|C_{i}|_{P}\}$ is bounded.

The weak convergence is interduced as usual by the linear functionals. It is probable that the strong and the weak convergence are identical. This is shown for p > 1 in the case that the given range $\{x^{(n)}\}$ weak convergent to $x = \{x_l\}$, satisfies the condition that in the ranges $\{|x_l^{(n)} - x_l|_P\}$ all terms $\neq 0$ are different.

Finally the weak convergence of the functionals and the orthogonality of the vectors is studied.