Mathematics. — Non-homogeneous binary quadratic forms. By H. DAVEN-
PORT. (Communicated by Prof. J. A. SCHOUTEN.)

(Communicated at the meeting of June 29, 1946.)

1. Let a, B, 7, 6 be real numbers with A = aé— fy 5~ 0. A famous
theorem of MINKOWSKI asserts that for any real numbers 1, u there exist
integers x, y such that

ax+ By + ) (yx+ oy +w| LA

I shall suppose that o/f and y/§ are irrational; it is then known that the
result is true with the sign of strict inequality. If we write

(ax + By) (yx + dy) = ax? + bxy + cy’ = f(x, y),

we can express MINKOWSKI's theorem in the form: if f(x, y) is any indefinite
binary quadratic form which does not represent zero, then for any real
Xg, Yo there exist real x, y with

x = x, (mod 1), y = y, (mod 1)
such that 1)

Ifley)|<ibd. . . . . . . . . ()

where d = b2 —4ac = Az2.

Many proofs of MINKOWSKI's theorem have been given, but I believe it
is still possible to add to the existing knowledge 2). In the first place, one
can easily deduce from the existing proofs slightly more than has been
stated above. For any such quadratic form f(x, y) there exists a number

M (f) satisfying
MAH<+ . . . . . . . .. ()

such that, instead of (1), one can satisfy

[fl )| <ML,

I define M (f) to be the lower bound of all such numbers, and the present
note is concerned with the investigation of some properties of M (f).
In the first place, I prove an estimate for M(f) in terms of any value

of f which satisfies 0 <|f| < |/d.

1) For a positive definite quadratic form, it is easily seen that no result of this type
can be valid. The best possible inequality in terms of the coefficients of the equivalent
reduced form was given by DIRICHLET (Werke, II, 29—48).

2)  For references to literature, see KOKSMA, Diophantische Approximationen. See also
MORDELL, Journal London Math. Soc., 16 (1941), 86—88 and 18 (1943), 218—221.
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Theorem 1. Let f, be any value of | f(x, y)! which corresponds to co-

prime integral values of x, y and which satisfies

O< A<V d. . . . . . . . .03
Then
A
mp=+o(t).
where
: . 1
o —
|1—4¢2 for O<t\\\2|/2.
d@O=q1 g, 1 i
‘“forzl/2 <G SN

t for b e 1.

Since (f) <1, this, incidentally, proves (2). The result is best when | { |
has a value f; which is about §}"d. The existence of some value of |f|
satisfying (3) is well known from GAUSS's theory of reduction 3).

The known results (see Koksma, 77—79) on non-homogeneous linear
forms suggest that (2) is the best possible general inequality for M(f),
but this does not seem to have been proved. I give a proof in:

Theorem 2. If f(x,y) = x2 + 2kxy — y2, where k is a positive integer,
then

o k
4R

Among the most interesting indefinite binary forms are those of
MARKOFF's series 4): x2 + xy—y2, x2—2y2, 5x2+ 11xy—5y2, ...
The precise values of M(f) for the first two forms are given in the
following theorems.

M (f)

Theorem 3. If f(x,y) = x2 + xy — y2, then

Mm:h%.

Theorem 4. If f(x,y) = x2—2y?2, then
1
M=, 5
The second of these results is an immediate consequence of Theorem 1.

For d = 8, and we can take f; = 1, whence M(f) SWI/—Z. On the other

3) See, for example, DICKSON, Introd. to the thecry of numbers, 101.
4) See, for example, BACHMANN, Die Arithmetik der quadratischen Formen, 11, Kap. 4.
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hand, if x =0 (mod. 1) and y = § (mod. 1) then obviously
. 1 1
x*—2¢?| =L = _1”d, so that M
| y* =4 2173 = a2

The third form of MARKOFF's series presents more difficulty and here I
have not yet found the exact value of M(f). A result valid for all the
MARKOFF forms is:

Theorem 5. For any form of MARKOFF's series,
M) < i V5.
2. For the proof of Theorem 1 we need two lemmas5).

Lemma 1. For any real § and x,, there exists x with x = x, (mod. 1)
such that

S if <54
=] = if § 5P
(l/,ff2 Vi pr L
Proof. (1) ﬂ =1, we choose x to satisfy |x| =1, and have
— p2 =x2—p2=1—f2 wience the result.
(2) Ifl= ﬂ—’ S .‘_,, we choose x to satisfy

ﬂl/z_l \x*‘ﬁl/z

Since 1 —f8 | 2= B |2, we have x2 = 2 f2, whence | x2 — 2| = f2.
(3) If g2 = % we choose x to satisfy

[//ng_'_% 4 << /[/ﬁz_i L.
Since the number on the left is positive or zero, we have

) e P Ru gy
whence the result.

Lemma 2. For any a >}, and any B with | f| = a. and any x,, there
exists x = x, (mod. 1) such that

52— 2] \aqs( )

where @ (t) is the function defined in the enunciation of Theorem 1.
Proof. (1) If a2=11, then f2 =11, and — = §, and
max (b — % ) <i=ao (L)
4 L 4 '4(1 ¢

3) MORDELL, in Journal London Math. Soc., 3 (1928), 19—22 gave a direct proof
of MINKOWSKI's theorem, using an inequality which is a particular case of that proved here.



max (1 —pB2L A< a?=ad (4_1a>
3 1 1 1 -
(3) If a?=1 then %gz ,and ad | — | =1 a?—1L.

If g2 = 1, we have
If 1 =p2=1, we have

Finally, if 2 = 4, we have

VF— <V @—.

Thus Lemma 2 follows from Lemma 1.

Proof of Theorem 1. After an integral unimodular trans-
formation applied to x and y, we can suppose that

f(x, y) = ax? + bxy + cy?, where |a|=fi.

The conditions x = x4 (mod. 1), y = y, (mod. 1) are transformed into
similar conditions. Now

fle ) =a e+ o92— 2, 2,

where 0 —_—2 We choose y to satisfy | y| = 4, then we choose x so that

2a’
x + Oy satisfies the inequality of Lemma 2, where
d d
. ©& g5 B 5t 0
“ 16a2"8 422 9 S
We obtain

fei<ial Yo (25 )=1va0 (L),

as required.

3. To prove Theorem 2 we note first that M (f) = —; on taking
417 k41
fi =1 in Theorem 1. Hence it suffices (taking xy — yy = %) to prove

that
e+ 52+ 2k(x+ ) +H -G+ =1k
for all integers x, y, since the quadratic form in the theorem has

d=4(kz+1).
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This is proved in the following lemma, which is of some interest in itself,
though it is probably not new.

Lemma 3. If k is any positive integer, and x, y are any odd integers,
then

|x? 4+ 2 kxy—y?| =2k
Proof. The result is suggested by the fact that all the convergents to

the continued fraction for |k2 + 1 — k have either numerator or deno-
minator even, so that approximations to this irrational number by fractions

¥ with x, y odd are necessarily bad. But it is easy to give a direct proof.
y

Suppose there exists a solution of
|x?2+ 2kxy—y?| <2k, x,y odd,

and consider the solution for which | y | is least. Without loss of generality
we can suppose y >0, since otherwise we change the signs of both
variables. The inequality can be written

lx+ky)?—(K2+1Dg? <2k . . . . . . 4
Put

|lx+ky|l=ky+2 . . . . . . . . (5

then z is odd. Also |z | <y, for if 2=y we get

(e + kyP— (2 + 1) g2 = (k + 17 7 — (K + 1) 32 =2 ky = 2k,
and if z=—y we get

(x+kyP—(K+ 1) <(k—1Py" — (K + 1)y’ =—2ky < —2k.
From (4) and (5),
(=gl +2k(—y) z—2*[ <2k,

and since | z | < y this contradicts the hypothesis that |y | was least.

4. Lemma 4. If - =y =1 then

L5
Y V-1 =8

and
T RV

Proof. On squaring both sides, the first inequality becomes

5 +5(1—y)*+2+2 175y + 1) (5(1—y)* + 1) =9,
or, after squaring again,
Gy + 1) (5 (1—y)* + 1) = (1 4 55—5y7)%
The difference is 5(2y—1)2 = 0.
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Similarly, the second inequality is
592 + 5 (1—yP—2 + 2 L (59— 1) (5(1—y)>—1) 21,
or
(5y°—1) (5 (I—y)>—1) == (5y—54>—1),
on noting that 5 y — y2 increases as y increases, so that
5y—5y*=|75—1>1.
The right hand side exceeds the left hand side by 5(2y—1)2.

Proof of Theorem 3. We shall prove that we can find
x = x4 (mod. 1) and y = y, (mod. 1; to satisfy

| x24xy—y? <L . . . . . . . . (6)

and since for this form d = 5, the result follows.
We first choose y to satisty | y| = 4. We can suppose without loss of

generality that y == 0, since otherwise we can put y = —y’, x = x" + ¢’
Writing the inequality as

x+ 3y —5y?

we observe first that if & y2 = | we can choose x so that x + % y satisfies

<1
=1

n.] —

the inequality of Lemma 1, and this suffices for our purpose, since

y2

) <24

e

y

o

max (L —

1
Hence we can suppose — = y = . Consider the two intervals

L5
iy —f —ty a3y ++ —}u
— V=1 —ty—1) xS — LT =124 - Ly,
or say
ll<\x<12.

X x< A,
By Lemma 4, we have
M Ay L4 1.
"Hence these two intervals cover the whole of the interval
I Tx<i3+1

and so we can find a value of x = x, (mod. 1) in one of them. In the first
interval,

y*—

N

IN
R

(x+4y)? g+

o
B

|

In the second interval,

Fu—1P—+ < +HEE—DP<EE—12+ 4
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Thus in the former case the pair x, y and in the latter case the pair x, y — 1
satisfy (6).

That (6) is the best possible inequality is obvious on taking x = % (mod. 1)
and y =% (mod. 1).

5. Finally, Theorem 5 is a simple deduction from Theorem 1. Any form
of MARKOFF's series has 6) minimum Q and discriminant d = 9 Q= —4,
where Q is one of the MARKOFF numbers

1,2,5,13,29,34,89,....

Hence we can take f; — Q and have

i G
L d / 4
/9 — Qr
so that
yeo B 1
' L d |5
By Theorem 1, since & (¢) decreases as ¢ increases for ¢ < &,
M@ <ilV1—4%,

whence the result,
6) BACHMANN, loc. cit. 123.

University College, London.



