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1. Let a, f3, y, b be real numbers with 6 = ab - f3y ~ O. A famous 
theorem of MINKOWSKI asserts that for any real numbers À., ,U there exist 
integers x, y such th at 

i (ax + f3y + ),} (yx + by + JA) I :::; t 16.1· 
I shall suppose that alf3 and ylb are irrational; it is then known that the 
result is true with the sign of strict inequality. If we write 

(ax + f3y) (yx + by) = ax2 + bxy + cy2 = f(x, y). 

we can express MINKOWSKI'S theorem in the fonn: if [(x, y) is any indefinite 
binary quadratic form which does not represent zero, then for any real 
xo, Yo there exist real x, y with 

x - Xo (mod 1), y _ Yo (mod 1) 

such that 1 } 

If(x. y)1 < t Vd. (1) 

where d = b"2 - 4ac = 6"2. 
Many proofs of MINKowSKI's theorem have been given, but I believe it 

is still possible to add to the existing knowledge ~}. In the first place, one 
can easily deduce from the existing proofs slightly more than has been 
stated above. For any such quadratic form [(x, y) there exists a number 
M ([) satisfying 

M(f) < t (2) 

su eh that, instead of (I), one can satisfy 

1 f(x. y} 1 :::; M (f) Vd. 
I define M ([) to be the lower bound of all such numbers, and the present 
no te is concerned with the investigation of some properties of M ([). 

In the first place, I prove an estimate for M ([) in terms of any value 

of f which satisfies 0 < 1 f 1 < Vei. 

1) For a positive definite quadratic form , it is easily seen that no result of this type 

can be val id. The best possiblc inequality in terms of the coefficients of the equivalent 
reduced farm was given by DIRI'CHLET (Wcrkc, Il, 29- 48). 

~) For references to Iiterature, see KOI<SMA, Diophantische Approximationen. See also 
MORDEL/., JOllrnal London Math. Soc., 16 (1941), 86--88 and 18 (1943). 218-221. 
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Theorem 1. Let [1 be any lIalue of I [(x, y) ~ which corresponds to co­
prime integral va lues of x, y and which satisfies 

(3) 

Tlzen 

where 

~ _ ~_ __ 1 
VI-4t 2 for ü<t :S; 2VZ' 

cp (t) = J_ for _1_~ ::s; t :<: -h 
4t 2V2 --

t for t ~ t < 1. 

Since (t) < I, this, incidentaIly, proves (2). The result is best when I f I 

has a value [1 which is about ~V(i. The existence of some value of I [ I 
satisfying (3) is well known from GAUSS'S theory of reduction 3). 

The known results (see KOI(SMA , 77-79) on non-homogeneous linear 
forms suggest that (2) is the best possible general inequality for M ([), 
but this does not seem to have been proved . I give a proof in: 

Theorem 2. If [(x, y) = x 2 + 2kxy - y2, where k is a positiuc integer, 
then 

k 
M (f) = 4 V P + 1 . 

Among the most interesting indefinite binary forms are those of 
MARKOFF'S series 4): x:! + xy - y2, x:! - 2 y2, 5 x 2 + 11 xy - 5 y'2, .... 
The precise values of M ([) for the first two forms are given in the 
following theorems. 

Theorem 3. If [(x, y) = x 2 + xy - y2, then 

M(f)=4&S' 
Theorem 4. If [(x, y) = x 2-2 y2, then 

1 
M (f) = -~~ --c • 

-tV2 

The second of these results is an immediate consequence of Theorem 1. 

1 
Por d = 8, and we can take f 1 = I, whence M (f) -< --_. On the other 

-tV2 

:I) See, far example, DICKSON, Intrad. ta the theory of numbers. 101. 
4) See, far example, BACHMANN, Die Arithmetik der quadratischen Farmen. Il , Kap. 4. 
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hand , if x 0 (mod. 1) and y ~ (mod. 1) then obviously 

I x2-2 y2 1 ~ !i = 1, V d, sa that M (f):::::: __ ~1 "-
~ - 4V 2 ~ 4V2' 

The third form of MARI\OFF's series presents more difficulty and here I 
have not yet found the exact value of M (f) . AresuIt valid for all the 
MARI\OFF farms is: 

Theorem 5. Far any farm of MARI(OFF's series, 

M(f) < t Vii. 
2. For the praof of Theorem 1 we need two lemmas ;; ). 

Lemma 1. Far any real fi and xv' there exists x with x Xo (mad. 1) 
sllch that 

( J_~2 

Ix2-tF I :::::; ';2 
~ Vfi2~\ 'f 1-/2 ' - 1 I 1.1 -::;::::. y. 

Pro of. (1) If fi:!. <: * ' we choose x to satisfy I x I <: ~, and have 
- fJ:!. <: x:!. - p:!. < J - fi:!., wiience the result. 

(2) If ~- <: fi'2 <: ~, we choose x to satisfy 

PV2-1 :::;; x ::::; PV2. 
Since 1 - P V2 <: fi Vl", we have x:!. <: 2 fi'2, when::e I x:!. - fi:!. i <: fi:!.· 

(3) If p'2 ::> ~ we choose x to satisfy 

V~C-t _ .~. ::::; x ~ Vfi2-fr + {-. 
Since the number on the left is positive or zero, we have 

whence the result. 

Lemma 2. Far any a> t, and any fi with I PI <: a, and any xo' there 
exists x Xv (mad. 1) such that 

Ix2 -p21 ::::; a ~ CL), 
where ~ (t) is the functian defined in the enunciatian of Thearem 1. 

ProoL ( 1) If 2 <: 1 th R:!. <: 1 d ~ ::> 1 d a - .1.' en I-' - ·L' an 4a - :! ' an 

max (t - p2, fi2) ~ t = a ~ ( 4
1
(1 ) • 

r.) MORDE!.L, in JOllrnal London Math. Soc., 3 (1928), 19-22 gave a direct proof 
of MINKOWSKi's theorem. using an inequality which is a pa rticular case of that proved here. 
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(2) IE i:::; a 2 
:::; t then fJ2:::; t. ancl ~ :::; 41 

:::; t. ancl 
2V2 a 

max (i - fJ2. (32) :::; a 2 = a 4J (41a)' 
1 1 (1)-

(3) IE a
2

;;: i then 4a :::; 2 V2' ancl a ~ 4a = V a
2-i· 

If fJ2 -< t. we have 

i-fJ2:::; i < Va 2-i· 

IE t -< fJ2 -< t. we have 

Finally. if (J2 :> t. we have 

V(32-i:::; Va 2-i· 
Thus Lemma 2 follows from Lemma 1. 

Pro 0 f 0 f T h e 0 rem 1. After an integral unimodular trans­
formation applied to x and y. we can suppose that 

f(x. y) = ax2 + bxy + cy2. where I a 1= fl' 
The conditions x Xo (mod. 1), Y Yo (mod. 1) are transformed into 
similar conditions. Now 

f(x.y)=a~(x+&y)2- 4:2 y2~. 

where e = ;a' We choose y to satisfy I y I -< t. then we choose x so th at 

x + ey satisfies the inequality of Lemma 2, wh ere 

d d 
a 2 =} 6-;;-2' fJ2 = i a 2 y2:::; a

2. 

We obtain 

Vd (I a I ) ~ ( fl ) I f(x.y) I :::; l a l ~~ Vd =tVd4J Vd' 

as required. 

3. To prove Theorem 2 we note first that M (f) -< k . on taking 
-4 Vk2+1 

[1 = 1 in Theorem 1. Hence it suffices (taking Xo = Yo = 1-) to prove 
that 

I (x + t)2 + 2 k (x + ~) (y + t) - (y + t)21 ~ t k 

for all integers x, y, since the quadratic form in the theorem has 

d = 4(k2 + 1). 
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This is proved in the following lemma, which is of some interest in itself, 
though it is probably not new. 

Lemma 3. ft k is any positive integer, and x, y are any odd integers, 
then 

I x 2 + 2 kxy - y21 ~ 2 k. 

Pro 0 f. The result is suggested by the fact th at all the convergents to 

the continued fraction for Vk 2 +I - k have either numerator or deno~ 
mina tor even, so that approximations to this irrational number by fractions 

~ with x, y odd are necessarily bad. But it is easy to give a direct proof. 
y 

Suppose there exists a solution of 

Ix2 + 2kxy_y21 < 2 k, x, y odd, 

and consider the solution for which I y I is least. Without loss of generality 
we can suppose y > 0, since otherwise we change the signs of both 
variables. The inequality can be written 

Put 

I x + ky I = ky + z, 

then z is odd. Also I z 1< y, for if z :> y we get 

(x + ky)2_(P + 1) y2 ~ (k + 1)2 y2_(P + 1) y2 = 2 ky ~ 2k, 

and if z <: - Y we get 

(x + kyF - (P + 1) y2 ::::; (k-l F y2 - (P + 1) y2 = - 2 ky <:; - 2 k. 

Prom (4) and (5) , 

I (-yf + 2 k(_Y)Z_Z2 1 < 2 k, 

and since I z I < y this contradiets the hypothesis that I y I was least. 

1 
4. Lemma 4. If V5:::::: y <:! then 

Vty2+t +Vt(y-l)2+t~t, 
and 

Vt y2-t + V f(y-I)2-t::::; t . 

Proo f. On squaring both sides, the first inequality becomes 

5y2 + 5 (l_y)2 + 2 + 2 V(5y2 + 1) (5 (l_y)2 + 1) ~ 9, 

or, after squaring again, 

(5y2 + 1) (5 (1-y)2 + I) ?;: (1 + 5y-5y2)2. 

The difference is 5 (2 Y - 1) 2 :> O. 

(4) 

(5) 
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Similarly, the second inequality is 

5y2 + 5 (l_y)2_2 + 2 V(5y2_1) (5 (I -y)2-I) ~ I, 

0: 

(5y2_1) (5 (f-y)2_1) ::::; (5y-5y2_1 )2, 

on noting that 5 y - y2 increases as y increases, so that 

5 y-5 y2?: V5 - 1 > 1. 

The right hand side exceeds the left hand side by 5 (2 Y - I):!. 

Pro 0 f 0 f T h e 0 rem 3. We shall prove that we can find 
x Xo (mod. 1) and y Yo (mod. I, to satisfy 

(6) 

and since for this form d = 5, the result follows . 
We first choose y to satisfy I y I <:: ~. We can suppose without loss of 

generality that y 2: 0, since otherwise we can put y = - y', x = x' + y'. 
W riting the inequality as 

we observe first that if -!i- y"2 <:: ± we can choose x so that x + t y satisfies 
the inequality of Lemma I, and th is suffices for our purpose, since 

Hence we can suppose ~- <:: Y <:: -l,. Consider the two intervals 
l/5 -

V ~ 2 I 1'--'-- V~ 2 + 1 I T Y - T - 'f Y ~ x -':::::: T Y 4" - ':j" y, 

or say 

By Lemma 4, we have 

ÀI -s; x :::';; À2' 

ÀJ :::';; x :::;; À". 

ÀI :s; À", À2 ;;;: ÀJ + 1. 

. Hence these two intervals cover the whole of the interval 

and so we can find a value of x Xo (mod. I) in one of them. In the first 
interval. 

In the second interval. 
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Thus in the farmer case the pair x, y and in the Jatter case the pair x, y - 1 
satisfy (6) . 

That (6) is the best possibJe inequaJity is obvious on taking x ! (mad . 1) 
and y ! (mod.l) . 

5. Finally, Theorem 5 is a simple deduction from Theorem 1. Any farm 
of MARKOFF'S series has ij) minimum Q and discriminant d = 9 Q:! - 4. 
where Q is one of the MARKOFF numbers 

1. 2. 5. l3. 29.34. 89 ..... 

Hence we can take f 1 = Q and have 

sa that 

-!r < 
1 

V5 
By Theorem 1. since q: (t) decreases as t increases for t <!. 

whencc the result. 

6) BACHMA1':N. Ioc. cito 123. 

UnilJersity College. London. 


