Mathematics. - A generalization of Tchebychef's inequality to polynomials in more than one variable. By C. VISSER. (Communicated by Prof. J. G. van der Corput.)
(Communicated at the meeting of March 30, 1946.)
We shall prove the following generalization of TCHEBYCHEF's inequality to polynomials in an arbitrary number of variables.

If $P\left(u_{1}, \ldots, u_{h}\right)$ is a polynomial of total degree n in h variables with real coefficients, then

$$
\underset{-1 \leqq u_{1} \leqq 1, \ldots ;-1 \leqq u_{h} \leqq 1}{\operatorname{Max}}\left|P\left(u_{1}, \ldots, u_{h}\right)\right| \geqq \frac{1}{2^{n-1}} \underset{\left|u_{1}\right|=\ldots=\left|u_{h}\right|=1}{\operatorname{Max}}\left|P^{*}\left(u_{1}, \ldots, u_{h}\right)\right|,
$$

where P^{*} denotes the sum of the terms in P whose degree is n.
We put, for real t_{1}, \ldots, t_{h},

$$
\begin{aligned}
& F\left(t_{1}, \ldots, t_{h}\right)=P\left(\frac{e^{i t_{1}}+e^{-i t_{1}}}{2} \ldots \ldots, \frac{e^{i t_{h}}+e^{-i t_{h}}}{2}\right)= \\
&=\Sigma a_{k_{1} \ldots k_{h}} e^{i\left(k_{1} t_{1}+\ldots+k_{h} t_{h}\right)}
\end{aligned}
$$

For each term in F we have $-n \leqq k_{1}+\ldots+k_{n} \leqq n$. Further

$$
\begin{aligned}
\sum_{k_{1}+\ldots k_{h}=n} a_{k_{1} \ldots k_{h}} e^{i\left(k_{1} t_{1}+\ldots+k_{h} t_{h}\right)} & =\frac{1}{2^{n}} P^{*}\left(e^{i t_{1}}, \ldots, e^{i t_{h}}\right) \\
\sum_{k_{1}+\ldots+k_{h}=-n} a_{k_{1} \ldots k_{h}} e^{i\left(k_{1} t_{1}+\ldots+k_{h} t_{h}\right)} & =\frac{1}{2^{n}} P^{*}\left(e^{-i t_{1}}, \ldots e^{-i t}\right) .
\end{aligned}
$$

Since

$$
\frac{1}{2 n}(-1)^{p} \sum_{p=0}^{2 n-1} \mathrm{e}^{i\left[k_{1}\left(t_{1}+p \frac{\pi}{n}\right)+\ldots+k_{h}\left(t_{h}+p \frac{\pi}{n}\right)\right]}=\begin{aligned}
& 1 \text { for } k_{1}+\ldots+k_{h} \equiv n(\bmod 2 n) \\
& 0 \text { for } k_{1}+\ldots+k_{h} \neq n(\bmod 2 n) .
\end{aligned}
$$

we have

$$
\begin{aligned}
\frac{1}{2 n}(-1)^{p} \sum_{p=0}^{2 n-1} F\left(t_{1}+p \frac{\pi}{n}\right. & \left.\ldots, t_{h}+p \frac{\pi}{n}\right)= \\
& =\frac{1}{2^{n}} P^{*}\left(e^{i t_{1}}, \ldots, e^{i t_{h}}\right)+\frac{1}{2^{n}} P^{*}\left(e^{-i t_{1}}, \ldots, e^{-i t_{h}}\right)
\end{aligned}
$$

The two terms on the right take their maximum absolute values in the same points (t_{1}, \ldots, t_{h}), and among these points there is one for which both are positive. It follows that

$$
\operatorname{Max}\left|F\left(t_{1}, \ldots, t_{h}\right)\right| \supseteqq \frac{1}{2^{n-1}} \operatorname{Max}\left|P^{*}\left(e^{i t_{1}}, \ldots, e^{i t_{h}}\right)\right|
$$

and since

$$
\operatorname{Max}\left|F\left(t_{1}, \ldots, t_{h}\right)\right|=\operatorname{Max}_{-1 \leqq u_{1} \leqq 1, \ldots,-1 \leqq u_{h} \leqq 1}\left|P\left(u_{1}, \ldots, u_{h}\right)\right| .
$$

the proof is complete.
There are polynomials for which there is equality. Example:

$$
P\left(u_{1}, \ldots, u_{h}\right)=T_{n}\left(u_{1}\right)+\ldots+T_{n}\left(u_{h}\right)
$$

where T_{n} denotes the $n^{t h}$ polynomial of Tchebychef.
We restricted ourselves to polynomials with real coefficients. It will be clear that it would have been sufficient if we had assumed the reality of the coefficients of P^{*}.

