Applied Mechanics. - The generalized buckling problem of the circular ring. By C. B. Biezeno and J. J. Коch.
(Communicated at the meeting of November 24, 1945.)

1. Introduction. It is well known, that a circular ring, subjected to a uniform radial pressure $q$ per unit of circumferential length is apt to buckle under the action of one of the so-called "critical" loads $q=\left(n^{2}-1\right) E I / r^{3}$ ( $n$ integer and $\geqq 2$ ), EI representing the flexural rigidity of the ring and $\tau$ its radius. This case of buckling is analogous to the buckling of a straight rod under the action of two compressive forces, as far as the cross-sections of both ring and rod are loaded by a normal force of constant magnitude. If a straight rod is loaded by a prescribed system of axial forces, so that the normal force of the cross-section varies with its coordinate, proportional increase of the loadsystem, say to the multiple $\lambda$, leads as well to critical buckling loads. The (positive or negative) value of the factor of magnification $\lambda$ can best be found by a method of iteration ${ }^{1}$ ). It is obvious, that for the circular ring the analogous problem exists, if only it is subjected to an external loadsystem such that in every crossection of the ring the bending moment $M$ and the shearing force $D$ are zero, whereas the normal force of the section varies with its coordinate. Evidently the first of these conditions will not be fulfilled if the ring is loaded by an arbitrary system, of radial and tangential forces; but is will be shown in section 2 that every loadsystem can be split up into two components $A$ and $B$, the first of which will be called the "compressive" system, because it is characterised by $M=D=0$, whereas the second one will be called the "bending" system, characterized as it is by $N=0$.

The first system $A$, if suitably magnified, leads to the generalized buckling problem of the circular ring, which will be treated in this paper, but it is seen at once, that an arbitrary loadsystem, consisting of both components $A$ and $B$, gives rise to a problem, which again is analogous to a well-known problem, viz. the straight rod subjected to axial thrust and transverse bending loads. Just as well as with the straight rod the axial forces tend to increase the deflections caused by the transverse loads, the $A$ loadsystem of the circular ring will affect the deflections due to the $B$-system. In a subsequent paper this latter question will be treated in connection with a particular problem, which led the authors to the present investigation, and which itself will be treated in a third communication.

[^0]2. The $A$ and $B$-system. If a ring is subjected to radial and tangential loads $q$ and $t$ per unit of circumferential length the equilibrium of a ringelement requires
\[

$$
\begin{array}{ll}
N d \varphi-q r d \varphi-d D=0 & N-D^{\prime}=q \boldsymbol{r}  \tag{1}\\
d N+D d \varphi+t r d \varphi=0 & \text { resp. }
\end{array}
$$ N^{\prime}+D=-t r \quad,
\]

( $\varphi$ denoting the angular coordinate of the ringelement under consideration). The requirement $D=M=0$ leads to

$$
\begin{equation*}
N=q r \quad, \quad N^{\prime}=-t r \tag{2}
\end{equation*}
$$

from which it follows, that a $A$-loadsystem is characterized by

$$
\begin{equation*}
t=-q^{\prime} . \tag{3}
\end{equation*}
$$

At the other hand the condition $N=0$ requires

$$
\begin{equation*}
-D^{\prime}=q r \quad D=-t r \quad M^{\prime}=-t r^{2} \tag{4}
\end{equation*}
$$

from which it is seen, that a $B$-loadsystem is characterized by

$$
\begin{equation*}
\left.q=t^{\prime}{ }^{2}\right) \tag{5}
\end{equation*}
$$

It can easily be shown that any arbitrary equilibrium loadsystem ( $q, t$ ) can be decomposed in a unique way into a $A$-system ( $q^{*}, t^{*}$ ) and a $B$ system ( $q^{* *}, t^{* *}$ ). Let all quantities be expanded into their Fourier-series, so that:
$q=a_{0}+\sum_{1}^{\infty} a_{k} \cos k \varphi+\sum_{1}^{\infty} b_{k} \sin k \varphi, t=c+\sum_{1}^{\infty} c_{k} \cos k \varphi+\sum_{1}^{\infty} d_{k} \sin k \varphi$
$q^{*}=a_{0}^{*}+\sum_{1}^{\infty} a_{k}^{*} \cos k \varphi+\sum_{1}^{\infty} b_{k}^{*} \sin k \varphi, t^{*}=c_{0}^{*}+\sum_{1}^{\infty} c_{k}^{*} \cos k \varphi+\sum_{1}^{\infty} d_{k}^{*} \sin k \varphi$
$q^{* *}=a_{0}^{* *}+\sum_{1}^{\infty} a_{k}^{* *} \cos k \varphi+\sum_{1}^{\infty} b_{k}^{* *} \sin k \varphi, t^{* *}=c_{0}^{* *}+\sum_{1}^{\infty} c_{k}^{* *} \cos k \varphi+\sum_{1}^{\infty} d_{k}^{* *} \sin k \varphi($
then it must be remarked beforehand, that in consequence of the equili-brium-conditions

$$
\begin{equation*}
\int_{0}^{2 \pi}(q \sin \varphi+t \cos \varphi) r d \varphi=0, \int_{0}^{2 \pi}(q \cos \varphi-t \sin \varphi) r d=0, \int_{0}^{2 \pi} t r^{2} d \varphi=0 \tag{9}
\end{equation*}
$$

the following relations hold

$$
\begin{equation*}
b_{1}+c_{1}=0 \quad a_{1}-d_{1}=0 \quad c_{0}=0 \tag{10}
\end{equation*}
$$

Analogously the conditions

$$
\begin{array}{lll}
b_{1}^{*}+c_{1}^{*}=0 & a_{1}^{*}-d_{1}^{*}=0 & c_{0}^{*}=0 . \\
b_{1}^{* *}+c_{1}^{* *}=0 & a_{1}^{* *}-d_{1}^{* *}=0 & c_{0}^{* *}=0 . \tag{12}
\end{array}
$$

must be fulfilled.

[^1]Furthermore we have, in consequence of $(q, t) \equiv\left(q^{*}, t^{*}\right)+\left(q^{* *}, t^{* *}\right)$

$$
\begin{array}{lll}
a_{0}^{*}+a_{0}^{* *}=a_{0} & a_{k}^{*}+a_{k}^{* *}=a_{k} & b_{k}^{*}+b_{k}^{* *}=b_{k} \\
c_{0}^{*}+c_{0}^{* *}=c_{0} & c_{k}^{*}+c_{k}^{* *}=c_{k} & d_{k}^{*}+d_{k}^{* *}=d_{k} \tag{14}
\end{array}
$$

in consequence of $t^{*}=-q^{*}$ :

$$
\begin{equation*}
c_{0}^{*}=0 \quad c_{k}^{*}=-k b_{k}^{*} \quad d_{k}^{*}=k \mathrm{a}_{k}^{*} \tag{15}
\end{equation*}
$$

in consequence of $q^{* *}=t^{* *}$ :

$$
\begin{equation*}
a_{0}^{* *}=0 \quad-k c_{k}^{* *}=b_{k}^{* *} \quad k d_{k}^{* *}=a_{k}^{* *} \tag{16}
\end{equation*}
$$

From these equations we deduce, having due regard to (10), (11) and (12)
$a_{0}^{*}=a_{0}, a_{0}^{* *}=c_{0}^{*}=c_{0}^{* *}=0$
$a_{1}^{*}=a_{1}^{* *}=\frac{1}{2} a_{1}, b_{1}^{*}=b_{1}^{* *}=\frac{1}{2} b_{1}, c_{1}^{*}=c_{1}^{* *}=-\frac{1}{2} b_{1}, d_{1}^{*}=d_{1}^{* *}=\frac{1}{2} a_{1}$
$a_{k}^{*}=-\frac{1}{k^{2}-1} a_{k}+\frac{k}{k^{2}-1} d_{k} \quad b_{k}^{*}=-\frac{1}{k^{2}-1} b_{k}+\frac{k}{k^{2}-1} c_{k}$
$a_{k}^{* *}=\frac{k^{2}}{k^{2}-1} a_{k}-\frac{k}{k^{2}-1} d_{k} \quad b_{k}^{* *}=\frac{k^{2}}{k^{2}-1} b_{k}+\frac{k}{k^{2}-1} c_{k}$
$d_{k}^{*}=-\frac{k}{k^{2}-1} a_{k}+\frac{k^{2}}{k^{2}-1} d_{k} \quad c_{k}^{*}=\frac{k}{k^{2}-1} b_{k}+\frac{k^{2}}{k^{2}-1} c_{k}$
$d_{k}^{* *}=\frac{k}{k^{2}-1} a_{k}-\frac{1}{k^{2}-1} d_{k} \quad c_{k}^{* *}=-\frac{k}{k^{2}-1} b_{k}-\frac{1}{k^{2}-1} c_{k}$
Therefore the $A$ and $B$ components of the loadsystem $(q, t)$ are represented by

$$
\begin{array}{r}
\left.\begin{array}{r}
q^{*}=a_{0}+\frac{1}{2} a_{1} \cos \varphi+\sum_{2}^{\infty}\left[\frac{-1}{k^{2}-1} a_{k}+\frac{k}{k^{2}-1} d_{k}\right] \cos k \varphi+\frac{1}{2} b_{1} \sin \varphi+ \\
+\sum_{2}^{\infty}\left[-\frac{1}{k^{2}-1} b_{k}-\frac{k}{k^{2}-1} c_{k}\right] \sin k \varphi \\
t^{*}=\frac{1}{2} b_{1} \cos \varphi+\sum_{2}^{\infty}\left[\frac{k}{k^{2}-1} b_{k}+\frac{k^{2}}{k^{2}-1} c_{k}\right] \cos k \varphi+\frac{1}{2} a_{1} \sin \varphi+ \\
+\sum_{2}^{\infty}\left[-\frac{k}{k^{2}-1} a_{k}+\frac{k^{2}}{k^{2}-1} d_{k}\right] \sin k \varphi
\end{array}\right\} \\
\begin{array}{r}
q^{* *}=\frac{1}{2} a_{1} \cos \varphi+\sum_{2}^{\infty}\left[\frac{k^{2}}{k^{2}-1} a_{k}-\frac{k}{k^{2}-1} d_{k}\right] \cos k \varphi+\frac{1}{2} b_{1} \sin \varphi+ \\
+\sum_{2}^{\infty}\left[\frac{k^{2}}{k^{2}-1} b_{k}+\frac{k}{k^{2}-1} c_{k}\right] \sin k \varphi
\end{array} \\
\left.\begin{array}{r}
t^{* *}=-\frac{1}{2} b_{1} \cos \varphi+\sum_{2}^{\infty}\left[-\frac{k}{k^{2}-1} b_{k}-\frac{1}{k^{2}-1} c_{k}\right] \cos k \varphi+\frac{1}{2} a_{1} \sin \varphi+ \\
+\sum_{2}^{\infty}\left[\frac{k}{k^{2}-1} a_{k}-\frac{1}{k^{2}-1} d_{k}\right] \sin k \varphi
\end{array}\right\}
\end{array}
$$

In the following sections attention will only be paid to $A$-load systems.
3. The differential equation of the buckling ring. The differential equation of a bent circular ring, the central line of which does not change its length is represented by

$$
\begin{equation*}
\frac{1}{\varrho}-\frac{1}{r}=\frac{M r^{2}}{E I} \tag{19}
\end{equation*}
$$

( $1 / r=$ curvature of the unbent ring, $1 / \varrho=$ curvature of the bent ring; $M=$ bending moment, positive if it increases the curvature of the ring; $E I=$ flexural rigidity of the ring). From geometrical deductions it follows that

$$
\begin{equation*}
\frac{1}{\varrho}-\frac{1}{r}=-\frac{u^{\prime \prime}+u}{r^{2}} \tag{20}
\end{equation*}
$$

$u$ representing the increase of the radius vector $r$. From eqs. (1) it follows, by eliminating $N$ and $D$ :

$$
\begin{equation*}
M^{\prime \prime}+M^{\prime}=-\left(q^{\prime}+t\right) r^{2} \tag{21}
\end{equation*}
$$

and from (21) and (19) we find

$$
\begin{equation*}
\left(u^{\prime \prime}+u\right)^{\prime \prime \prime}+\left(u^{\prime \prime}+u\right)^{\prime}=\frac{\left(q^{\prime}+t\right) r^{4}}{E I} \tag{22}
\end{equation*}
$$

This equation can be applied to a buckling ring subjected to a critical $A$ loadsystem ( $q^{*}, t^{*}$ ) if only $q$ and $t$ be replaced by those supplementary loadcomponents to which - by the deformation of the ringelement - the prevailing external and internal loads $q^{*} r d \varphi, t^{*} r d \varphi, N$ and $N+d N$ give rise. Two different cases must be distinguished, according as the external loads $q^{*}$ and $t^{*}$ keep their directions with respect to the ringelement or with respect to a fixed system of coordinates. In this paper we confine ourselves to the first one, so that $q$ has to be replaced by $-N\left(\frac{1}{\varrho}-\frac{1}{\tau}\right)=N\left(u^{\prime \prime}+u\right) / r^{2}($ comp. 20) and $t$ by zero.

Consequently eq. (22) changes into:

$$
\begin{equation*}
\left(u^{\prime \prime}+u\right)^{\prime \prime \prime}+\left(u^{\prime \prime}+u^{\prime}\right)=\frac{\left[N\left(u^{\prime \prime}+u\right)\right]^{\prime} r^{2}}{E I} . \tag{23}
\end{equation*}
$$

If we denote $u^{\prime \prime}+u$ by $U$, eq. (23) can be replaced by

$$
\begin{equation*}
U^{\prime \prime}+U=\frac{N r^{2}}{E I} U+C \tag{24}
\end{equation*}
$$

where $C$ represents a constant of integration to be found in the course of our investigation.

Both quantities $N$ and $U$ are periodic functions of $q$ with the period 2.7,
so that they may be expanded into Fourier-series:

$$
\left.\begin{array}{r}
N=\lambda N_{0}=\lambda\left[A_{0}+\sum_{k=1}^{\infty} A_{k} \cos k \varphi+\sum_{k=1}^{\infty} B_{k} \sin k \varphi\right] \\
U=a_{0}+\sum_{l=1}^{\infty} a_{l} \cos l \varphi+\sum_{l=1}^{\infty} b \sin l \varphi \tag{25}
\end{array}\right\}
$$

These expressions, however, are subject to some distinct restrictions, which must be discussed beforehand.

Firstly it must be remembered that we have to deal with a closed ring, so that - if the ring was cut at say $\varphi=0$, and if the disturbed internal forces were restored - neither relative displacements nor relative rotation of the opposite ends of the ring would occur. These conditions are analytically expressed by the equations

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{M}{E I} r d \varphi=0, \quad \int_{0}^{2 \pi} \frac{M r \sin \varphi}{E I} r d \varphi=0, \int_{0}^{2 \pi} \frac{M r(1-\cos \varphi)}{E I} r d \varphi=0 \ldots \tag{26}
\end{equation*}
$$

relating to well-known properties of the so-called "reduced" bending moment $M / E I$. As, according to (19) $M / E I$ is proportional to $u^{\prime \prime}+u=U$, we find

$$
\begin{equation*}
\int_{0}^{2 \pi} U d \varphi=0, \quad \int_{0}^{2 \pi} U \sin \varphi d \varphi=0, \quad \int U \cos \varphi d \varphi=0 \tag{27}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
a_{0}=a_{1}=b_{1}=0 \tag{28}
\end{equation*}
$$

All further restrictions (relating to $N$ ) follow from the fact, that (24) must identically be fulfilled if $N$ and $U$ are replaced by the expressions (25). To control this required identity the product $N U$, occurring at the right hand side of (24), evidently must be written in terms of cos and sin of multiples of $\varphi$. In doing so it is seen at once, that no terms $A_{1}, \cos \varphi$ and $B_{1} \sin \varphi$ in $N$ are admitted if $U$ contains the terms $a_{2} \cos 2 \varphi$ and $b_{2} \sin 2 \varphi$; otherwise the product $N U$ would give rise to terms $\cos \varphi$ and $\sin \varphi$ in the right hand side of (24), which in virtue of (28) are missing in the lefthand side. The presence of $A_{1} \cos \varphi$ and $B_{1} \sin \varphi$ would require the disappearance of $a_{2} \cos 2 \varphi$ and $b_{2} \sin 2 \varphi$ in $U$, so that the Fourier-series for $U$ should have to start with $a_{3} \cos 3 p$ and $b_{3} \sin 3 p$. However, the product of these terms with $A_{1} \cos \varphi$ and $B_{1} \sin \varphi$ would in the righthand side of (24) now produce terms with $\cos 2 \varphi$ and $\sin 2 \varphi$ which, in consequence of the preceding remark, are absent in the lefthand side. Proceeding in this way all terms of $U$ must disappear, and therefore we conclude, that no equilibrium position of the ring, different from the circular one, exists if $A_{1}$ and $B_{1}$ are different from zero; any departure of the circular shape sets the ring into motion.

Moreover all multiples of $\varphi_{1}$ occurring in the remaining terms of $N$ must have a factor, different from one, in common. The statement is proved by showing first, that the presence of two terms $\cos k_{1} \varphi$ and $\cos k_{2} \varphi, k_{1}$ and $k_{2}$ having no factor in common, leads to an absurdity. It is seen at once, that in such a case $U$ is deprived from its terms $\cos \left(k_{1} \pm 1\right) \varphi$, sin $\left(k_{1} \pm 1\right) \varphi, \cos \left(k_{2} \pm 1\right) \varphi, \sin \left(k_{2} \pm 1\right) \varphi$, because otherwise the righthand side of (24) would contain the terms $\cos \varphi$ and $\sin \varphi$, which do not occur in the left hand side. But then terms of the type $\cos \left(2 k_{1} \pm 1\right) \varphi$, sin $\left(2 k_{1} \pm 1\right) \varphi, \cos \left(2 k_{2} \pm 1\right) \varphi, \sin \left(2 k_{2} \pm 1\right) \varphi$ are as well forbidden terms for $U$; if such terms would exist, the righthand side of (24) would contain terms $\cos \left(k_{1} \pm 1\right)$ a.s.o. which - after the preceding statement - do not occur in the lefthand side. Proceeding in this way, we find that all terms $\cos \left(\alpha k_{1} \pm 1\right) \varphi, \sin \left(\alpha k_{1} \pm 1\right) \varphi, \cos \left(\beta k_{2} \pm 1\right) \varphi, \sin \left(\beta k_{2} \pm 1\right) \varphi,(\alpha$ and $\beta$ representing arbitrary pos. or neg. integers) are forbidden terms for $U$. A similar reasoning leads to the conclusion firstly, that terms of the type $\cos \left(\alpha k_{1} \pm k_{2} \pm 1\right) \varphi, \sin \left(\alpha k_{1} \pm k_{2} \pm 1\right) \varphi$ are inadmissable, then that all terms $\cos \left(\alpha k_{1} \pm \beta k_{2} \pm 1\right) \varphi, \sin \left(\alpha k_{1} \pm \beta k_{2} \pm 1\right) \varphi$ must be excluded in $U$ ( $\alpha$ and $\beta$ representing arbitrary pos. or neg. integers). But this means that all terms in $U$ have to be excluded because of the fact that any integer may be written as $\alpha k_{1}+\beta k_{2}$, provided only that $k_{1}$ and $k_{2}$ have no factor in common. Again, if $N$ should contain the terms $\cos k_{1} \varphi, \cos k_{2} \varphi, \cos$ $k_{3} \varphi_{1}-k_{1}, k_{2}, k_{3}$ having no factor in common - all terms cos resp. sin ( $\alpha k_{1}+\beta k_{2}+\gamma k_{3} \pm 1$ ) $\varphi$ ( $\alpha, \beta, \gamma$ pos. or neg. integers) would be excluded from $U$, but this again would mean that all terms of $U$ should vanish; a.s.o. Our final conclusion with respect to the possibility of buckling of the ring therefore is:
$1^{\circ}$. All multiples of $\varphi$ in the Fourier series of $N$ must have a factor in common.
$2^{\circ}$. If the greatest factor in common of all these multiples is called $p$, the terms to be excluded from $U$ are $a_{0}, a_{1} \cos \varphi, b_{1} \sin \varphi, a_{\alpha p \pm 1} \cos$ $(\alpha p \pm 1) \varphi, b_{\alpha p \pm 1} \sin (\alpha p \pm 1) p, \alpha$ representing any integer pos. number $\neq 0$.
One way in which we could now pursue the solution of eq. (24) would consist in substituting the expressions (25) - liable to restrictions laid upon them - into (24), and by identifying the corresponding terms of both sides of this equation; this would lead to an infinite system of recurrent relations between the coefficients $a_{l}$ and $b_{l}$. Though in fact we do not intend to follow this way, one useful remark, to which this method would lead us, must be made, viz. that the system of relations just mentioned breaks up into a number of minor systems, each of which relates to a distinct class of coefficients $a_{l}, b_{l}, l$ being defined by

$$
\left.l \equiv \pm q, \bmod p \quad \begin{array}{l}
q=0,2,3 \ldots \frac{p-1}{2}, p \text { odd }  \tag{29}\\
q=0,2,3 \ldots \frac{p}{2}, p \text { even }
\end{array}\right\}
$$

(If $q=0$, the value $l=0$ obviously must be excluded). With any prescribed $p$ our buckling problem therefore is split up into $\frac{p-1}{2}$ or $\frac{p}{2}$ cases in every one of which $U$ is composed exclusively of terms relating to one of the congruences (29).

We conclude this section by a remark with respect to the constant of integration $C$, occurring in eq. (24). If the product $N U$ in the righthandside of this equation happens to miss a constant term after being written as an ordinary Fourier-series, then $C$ must be suppressed; if not so $C$ serves to annul this term.
4. The integral equation of the problem. In the next sections up from sect. 5, eq. (24) will be solved in an iterative way. The justification of this method, however, makes it desirable to express our problem in terms of an integral equation, which therefore will be deduced first. To this end we apply to the ring an equilibrium loadsystem consisting of a concentrated force $P$ of unit magnitude, acting at the fixed point $(\psi)$ and a complementary continuous radial load $q_{\rho}$, which at any point $(\varphi)$ of the ring amounts to $q_{0}=-P \cos (\varphi-\psi) / \pi r$. The bending moment at the point $\varphi$ of the ring, due to this loadsystem is called $K(\varphi, \psi)$. It has been stated in sect. 3 that the deformation of the buckling ring must be maintained by the continuous radial load $\lambda N_{0}(\psi) U(\psi) / r^{2}$, where $\lambda N_{0}(\psi)$ stands for the normal force in the cross-section $(\psi)$ and $-U(\psi) / r^{2}$ for the local change in curvature. If every infinitesimal part $\lambda N_{0}(\psi) U(\psi) r d \psi / r^{2}$ of this load (acting on the ring element $r d \psi$ ) is supplemented by a continuous load all over the ring of the specific amount - $\lambda N_{0}(\psi) \boldsymbol{r d} \psi / \boldsymbol{r}^{2}-\cos (\varphi-\psi) / \pi r$, then the total bending moment $M_{\rho}$ at the angle $\varphi$ amounts - in accordance to the just given definition of $K(\varphi, \psi)$ - to

$$
\begin{equation*}
M_{p}=\int_{0}^{2 \pi} \frac{\lambda N_{0}(\psi) U(\psi) K(\varphi, \psi)}{r} d \psi \tag{30}
\end{equation*}
$$

whereas at the other hand (comp. (20))

$$
\begin{equation*}
M_{p}=-\frac{E I U(\psi)}{r^{2}} \tag{31}
\end{equation*}
$$

Consequently $U_{\gamma}$ satisfies the integral equation

$$
\begin{equation*}
U_{\psi}=-\int_{0}^{2 \pi} \frac{\lambda_{r} N_{0}(\psi) U(\psi) K(\varphi, \psi)}{E I} d \psi . . . \tag{32}
\end{equation*}
$$

which also may be written as follows:

$$
\left.\begin{array}{r}
{\left[\sqrt{\frac{N_{0}(\varphi) r}{E I}} U(\varphi)\right]=-\lambda \int_{0}^{2 \pi}\left[\sqrt{\frac{N_{0}(\psi) \cdot r}{E I}} U(\psi)\right]\left[\sqrt{\frac{\overline{N_{0}(\psi) r}}{E I}}\right.}  \tag{33}\\
\left.\cdot \sqrt{\frac{N_{0}(\psi) \cdot r}{E I}} \cdot K(\varphi, \psi)\right] d \psi
\end{array}\right\}
$$

The kernel $\sqrt{\frac{N_{0}(\varphi) \cdot r}{E I}} \sqrt{\frac{N_{0}(\psi) \cdot r}{E I}} \mathrm{~K}(\varphi, \psi)$ of this equation is symmetrical with respect to $\varphi$ and $\psi$ in consequence of the fact that $K(\varphi, \psi)$ - by its mechanical meaning - is symmetrical with respect to its arguments. Therefore all general theorems, relating to homogeneous integral equations with a symmetrical kernel can be applied to this special equation. In particular it may be remembered: $1^{\circ}$. that there exists an infinity of characteristic numbers $\lambda$ for which eq. (32) is satisfied in general by one and exceptionally by more corresponding characteristic functions $U ; 2^{\circ}$. that any two characteristic functions $U_{1}$ and $U_{2}$ corresponding to different characteristic number $\lambda_{1}$ and $\lambda_{2}$ are orthogonal in that $\int N_{0}(\varphi) U_{1}(\varphi)$ $U_{2}(\varphi) d \varphi=0 ; 3^{\circ}$. that any arbitrary function $V(\varphi)$ can be expanded into a series of the characteristic functions $U$.

It must be emphasized that our deductions only have a bearing on our proper problem if the infinite collection of introduced supplementary continuous loads - $\lambda N_{0}(\psi) U(\psi) \cos (\varphi-\psi) \boldsymbol{d} \psi / \boldsymbol{r}^{2}$ does influence the ring nowhere. The effect of these loads at a fixed angle $\varphi$ is represented by

$$
\begin{aligned}
-\int_{0}^{2 \pi} \frac{\lambda N_{0}(\psi) U(\psi) \cos (\varphi-\psi)}{r} d \psi=-\lambda \cos \varphi & \int_{0}^{2 \pi} \frac{N_{0}(\psi) U(\psi) \cos \psi}{r} d \psi- \\
& -\lambda \sin \varphi \int_{0}^{2 \pi} \frac{N_{0}(\psi) U(\psi) \sin \psi}{r} d \psi
\end{aligned}
$$

which really is zero in virtue of the equilibrium-equations

$$
\int_{0}^{2 \pi} \frac{N_{0}(\psi) U(\psi) \cos \psi}{r} d \psi=0, \int_{0}^{2 \pi} \frac{N_{0}(\psi) U(\psi) \sin \psi}{\boldsymbol{r}} d \psi=0
$$

of the buckling ring.
Yet the problems represented by-the eqs. (24) and (32) are not identical, for eq. (24) restricts itself to those loads $N U / r^{2}$ which are in equilibrium whereas eq. (32) equally refers to loads $N U / r^{2}$, which - not in equilibrium themselves - are balanced by a suitable load $a \cos \varphi+b \sin \varphi$. The reason of this discrepancy obviously is due to the fact, that in section 3 in the expression for $N(25)$ the terms $\cos \varphi$ and $\sin \varphi$ and in the expression $U$ (25) the terms $\cos l_{\varphi}$ and $\sin l_{\varphi}(l \equiv \pm 1 \bmod p)$ explicitely have been suppressed. Not before these exclusions should have been raised and the congruences (29) should have been completed with $l \equiv \pm 1 \bmod p$, (mechanically spoken, not until the buckling problem treated in sect. 3 should have been extended to such cases, in which the supplementary buckling loadsystem - eventually not in equilibrium itself - is balanced by a suitable radial loadsystem of the type $(a \cos \varphi+b \sin \varphi)$ ), complete conformity between eqs. (24) can exist. Obviously this conformity is formally indispensable if the theorems connected with eq. (32) shall be
transferred to eq. (24); especially if it is stated that any arbitrary function $V(\varphi)$ can be expanded into a series of the characteristic functions of (24). On the other hand it is seen at once that two characteristic functions $U^{q_{1}}$ and $U q_{2}$ relating to two different congruences $l=q_{1} \bmod p$ and $l=q_{2}$ $\bmod p$, never will have any cos. or sin. term in common. Consequently the statement can be made - which is essential for the method to be developed hereafter - that any arbitrary Fourier-series, containing only terms $\cos l \varphi$ and $\sin l \varphi$ for which $l \equiv q_{1} \bmod p$, can be expanded in the characteristic functions $U_{q}{ }^{1}$ relating to the same congruence $l=q_{1} \bmod p$. For if we put

$$
\begin{equation*}
V^{q_{1}}(\varphi)=\Sigma a_{k} U_{k} \tag{34}
\end{equation*}
$$

where in the righthand side the summation provisionally must be extended over all characteristic functions of (32), the coefficient $a_{k}$ is given by

$$
\begin{equation*}
a_{k}=N_{0}(\varphi) \int_{0}^{2 \pi} V^{q_{1}}(\varphi) U_{k}(\varphi) d \varphi \tag{35}
\end{equation*}
$$

provided that the characteristic functions have been normalized such that

$$
\begin{equation*}
\int_{0}^{2 \pi} N_{0}(\varphi) U_{k}^{2}(\varphi) d \varphi=1 \tag{36}
\end{equation*}
$$

Obviously the righthand side of (35) is zero for every function $U_{k}^{q_{1}}$, which does not belong to the class of characteristic functions, defined by the congruence $l \equiv q_{1} \bmod p$. For (possibly apart from a constant term), the product $N_{0}(\varphi) U_{k}^{q_{2}}$ consists of the same terms as $U_{k}^{q_{2}}$ itself (comp. (24)) and therefore has no terms in common with $V^{q_{1}}(\varphi)$, which was supposed to consist of the same cos and sin-functions as $U \mathcal{U}_{k}^{q_{1}}$. The expansion (34) therefore reduces to

$$
\begin{equation*}
V^{q_{1}}(\varphi)=\Sigma a_{k} U_{l}^{q_{1}} \tag{37}
\end{equation*}
$$

5. The iterative method. It has already been stated that every congruence (29) defines a distinct infinite class of characteristic functions $U_{k}$ and a set of corresponding characteristic numbers $\lambda_{k}\left(\left|\lambda_{1}\right|<\left|\lambda_{2}\right|<\left|\lambda_{3}\right| \ldots\right)$. To find the smallest of these numbers we start with an arbitrary function $V_{1}(\varphi)$, containing only such cos and sin terms as appear in the functions $U_{k}$, so that it can be represented by

$$
\begin{equation*}
V_{1}=\sum_{1}^{\infty} a_{k} U_{k} \tag{38}
\end{equation*}
$$

From this function we derive another one, defined by the differential equation

$$
\begin{equation*}
V_{2}^{\prime \prime}+V_{2}=\frac{N_{0} r^{2}}{E I} V_{1}+C=\sum_{1}^{\infty} \frac{a_{k} r^{2} N_{0} U_{k}}{E I}+C \tag{39}
\end{equation*}
$$

and the condition that it does not contain terms of the type $\alpha+\beta \cos \varphi+$ $\gamma \sin \varphi$ ( $C$ being a constant to be determined a posteriori). Obviously $V_{2}$ is represented by

$$
\begin{equation*}
V_{2}=\Sigma \frac{a_{k} U_{k}}{\lambda_{k}} \tag{40}
\end{equation*}
$$

for on account of the relations

$$
\begin{equation*}
U_{k}^{\prime \prime}+U_{k}=\frac{\lambda_{k} N_{0} r^{2}}{E I} U_{k}+l_{k} \quad(k=1,2, \ldots) \quad . \tag{41}
\end{equation*}
$$

(comp. (24)) eq. (39) can be writien as

$$
\begin{equation*}
V_{2}^{\prime \prime}+V_{2}=\left[\sum_{1}^{\infty} \frac{a_{k} U_{k}}{\gamma_{k}}\right]^{\prime \prime}+\left[\sum_{1}^{\infty} \frac{a_{k} U_{k}}{\lambda_{k}}\right]+C-\sum_{1}^{\infty} \frac{a_{k} l_{k}}{\lambda_{k}} \tag{42}
\end{equation*}
$$

By the appointment, that $C$ must be chosen such that $C-\sum_{1}^{\infty} a_{k} l_{k} / \lambda_{k}$ is zero, (40) follows from (42). If now analogously a third function $V_{3}$ is derived from $V_{2}$, a.s.o. we find successively

$$
V_{3}=\sum_{1}^{\infty} \frac{a_{k} U_{k}}{\lambda_{k}^{2}}, V_{3}=\sum_{1}^{\infty} \frac{a_{k} U_{k}}{\lambda_{k}^{3}}, \ldots V_{n}=\sum_{\sum}^{\infty} \frac{a_{k} U_{k}}{\lambda_{k}^{n-1}}, V_{n+1}=\sum_{1}^{\infty} \frac{a_{k} U_{k}}{\lambda_{k}^{n+1}}
$$

and therefore
$\lim _{n \rightarrow \infty} \frac{V_{n}}{V_{n+1}}=\lim _{n \rightarrow \infty} \frac{a_{k} U_{k}}{\lambda_{k}{ }^{n-1}}: \sum_{1}^{\infty} \frac{a_{k} U_{k}}{\lambda_{k}^{n}}=\lim _{n \rightarrow \infty} \frac{U_{1}+\sum_{2}^{\infty}\left(\frac{\lambda_{1}}{\lambda_{k}}\right)^{n-1} \frac{a_{k}}{a_{1}} U_{k}}{U_{1}+\sum_{2}^{\infty}\left(\frac{\lambda_{1}}{\lambda_{k}}\right)^{n} \frac{a_{k}}{a_{1}} U_{k}} \lambda_{1}=\lambda_{1}$
In practice the iteration process can be stopped as soon as two consecutive functions $V_{m}$ and $V_{m+1}$ are practically similar, $\lambda_{1}$ then being approximated by the slightly varying factor of similarity $V_{m}(\varphi): V_{m+1}(\varphi)$. The approximation can be refined and the numerical work efficiently reduced by putting ${ }^{3}$ )


By using these formulae the iteration can be stopped at very low values of the index $m$ ( $m=1$ or 2 ).

The iterative method is not restricted to the calculation of the smallest characteristic number $\lambda$, but can as well be used if $\lambda_{2}$ (or any higher characteristic) number should be required. We only have to start with an
$\left.{ }^{3}\right)$ Comp. footnote 4.
initial function $V_{1}$, which does not contain the first characteristic function $U_{1}$. The way, in which an arbitrary function $V_{1}$ can (approximately) be "cleaned" from $U_{1}$, and the way in which the iterations of such a nearly cleaned function $V_{1^{\prime}}$ can themselves be freed from rests of $U_{1}$, which they might contain, will not be treated here ${ }^{4}$ ).
6. The iteration scheme. The only thing still to be described is the scheme along which the iteration has to be performed in fact. Let, to fix our mind, $N$ be given in the simple form

$$
\begin{equation*}
N=\lambda N_{0}=\lambda\left(1+\varepsilon_{k} \cos k \varphi\right) \tag{45}
\end{equation*}
$$

and let

$$
\begin{equation*}
V_{1}=\cos l \varphi \tag{46}
\end{equation*}
$$

be our starting function, $l$ representing any number, which is compatible with our problem. Then $V_{2}$ must satisfy the equation

$$
\left.\begin{array}{rl}
V_{2}^{\prime \prime}+V_{2}=- & \frac{r^{2}}{E I} \cos l \varphi\left(1+\varepsilon_{k} \cos k \varphi\right)+C=-\frac{r^{2}}{E I}[\cos l \varphi+ \\
& \left.+\frac{\varepsilon_{k}}{2} \cos (l+k) \varphi+\frac{\varepsilon_{k}}{2} \cos (l-k) \varphi\right]+C \tag{47}
\end{array}\right\}
$$

$\left.{ }^{4}\right)$ Comp. f. i. J. J. Косн: Eenige toepassingen van de leer der eigenfuncties op vraagstukken uit de Toegepaste Mechanica, Doctor Thesis 1929 Delft, or C. B. Biezeno und R. Grammel, Technische Dynamik, III, 14, 15, Springer 1939, Berlin. In these treatises only the first mentioned approximation is discussed but the second one can analogously be verified. It may be stated here without proof, that from the four approximations

$$
\begin{gathered}
\lambda_{1}=\frac{\int_{0}^{2 \pi} N_{0} V_{m-1}^{2} d \varphi}{\int_{0}^{2 \pi} N_{0} V_{m-1} V_{m} d \varphi} ; \lambda_{1}=\frac{\int_{0}^{2 \pi} N_{0} V_{m-1} V_{m} d \varphi}{\int_{0}^{2 \pi} N_{0} V_{m}^{2} ; \lambda_{1}=\frac{\int_{0}^{2 \pi} N_{0} V_{m}^{2} d \varphi}{\int_{0}^{2 \pi} N_{0} V_{m} V_{m+1} d \varphi} ;} \\
\lambda_{1}=\frac{\int_{0}^{2 \pi} N_{0} V_{m} V_{m+1} d \varphi}{\int_{0}^{2 \pi} N_{0} V_{m+1}^{2} d \varphi}
\end{gathered}
$$

each one excels the foregoing in accuracy provided that all characteristic numbers are positive. If negative characteristic numbers occur, the statement becomes doubtful with respect to the third and second approximation, though in general it may be expected that in this case too the statement holds true.
from which we deduce

$$
\left.\begin{array}{r}
\frac{r^{2}}{\left(l^{2}-1\right) E I}\left[\cos l \varphi+\frac{\varepsilon_{k}}{2} \frac{\left(l^{2}-1\right)}{(l+k)^{2}-1} \cos (l+k) \varphi+\right)  \tag{48}\\
\left.\quad+\frac{\varepsilon_{k}}{2} \frac{\left(l^{2}-1\right)}{(l-k)^{2}-1} \cos (l-k) \varphi+C\right]
\end{array}\right\} .
$$

The condition that no constant term shall be present in $V_{2}$ requires either

$$
\left.\mathrm{C}=0 \quad \text { (if } k \neq l) \text { or } C=-\frac{\varepsilon_{k}}{2}\left(l^{2}-1\right): \quad\left[(l-k)^{2}-1\right] \quad \text { if } k=l\right)
$$

Furthermore it may be emphasized that the factor $t^{2}:\left(l^{2}-1\right) E I$ represents the constant normal force $N$ in the crosssections of a ring subjected to the critical normal pressure $q=\left(l^{2}-1\right) E I / r^{3}$. By placing this factor before the [ ] brackets a convenient comparison is made possible with this case of buckling. For if we write

$$
\begin{equation*}
V_{3}=\left(\frac{r^{2}}{\left(l^{2}-1\right) E I}\right)^{2} V_{3}^{*}(p) ; \ldots V_{n}=\left(\frac{r^{2}}{\left(l^{2}-1\right) E I}\right)^{n-1} V_{n}^{*}(p) \tag{49}
\end{equation*}
$$

the characteristic number $\lambda_{1}$ will be represented by

$$
\begin{equation*}
\lambda_{1}=\lim _{n \rightarrow \infty} \frac{V_{n}}{V_{n+1}}=\frac{\left(l^{2}-1\right) E I}{r^{2}} \lim _{n \rightarrow \infty} \frac{V_{n}^{*}}{V_{n+1}^{*}} . . . \tag{50}
\end{equation*}
$$

and the corresponding critical load by

$$
\begin{equation*}
q=\frac{\lambda_{1}}{r}\left(1+\varepsilon_{k} \cos k \varphi\right)=\frac{\left(l^{2}-1\right) E I}{r^{3}}\left(1+\varepsilon_{k} \cos k p\right) \lim _{n \rightarrow \infty} \frac{V_{n}^{*}}{V_{n+1}^{*}} . \tag{51}
\end{equation*}
$$

If we compare the functions $V_{1}^{*}\left(\equiv V_{1}\right)$ and $V_{2}^{*}$ we see that $V_{2}^{*}$ (apart from the constant $C$ ) is composed of the unchanged function $V_{i}^{*}$ and of well defined multiples of the two functions $\cos (l+k) \varphi$ and $\cos (l-k) \varphi$. The function $V_{3}^{*}$ consequently can be deduced from $V_{2}^{*}$ by applying the same law of development to each of the individual terms of $V_{2}^{*}$; and obviously the same holds for any following iteration $V_{2}^{*} \rightarrow V_{3}^{*}, V_{3}^{*} \rightarrow V_{4}^{*}$ a.s.o.

Table I shows for $k=4, \varepsilon_{k}=\frac{1}{2}, l=2$ now the successive iterations best can be performed.
The columns of Table I are provided with the superscriptions $\cos 2 \varphi, \cos$ $6 \varphi, \ldots \cos (2+(n-1) 4) \varphi$, and the corresponding factors $(22-1)$ : $\left(2^{2}-1\right),\left(2^{2}-1\right):\left(6^{2}-1\right)$ a.s.o. As starting function has been chosen $\cos 2 \varphi$; it is represented by the number 1 in the first row and first column. As stated before this term gives in the first iteration rise to certain multiples of $\cos -2 \varphi$ and $\cos 6 \varphi$ (comp. 48). If, provisionally, only attention is given to the multiplicatior $\varepsilon k / 2=0,25$, the number $0,25 \times 1$ should be shifted one place to the left and one place to the right. As $\cos -2 \varphi=\cos$ $2 \varphi$, the numbers destined for column cos - $2 \varphi$ (not present in table I), can be placed in the column $\cos 2 \varphi$, and this indeed has been done as can be seen from the first number in the second row in table I. Thereupon the
numbers placed above the first short horizontal line in Table I have been summed up to find the coefficients of the product $W_{1}^{*}=N_{0} V_{1}^{*}$ (comp. eq. (47)). Multiplication of these results with the multiplicators mentioned in the heads of the columns gives the coefficients of the required function $V_{2}^{*}$

$$
\begin{equation*}
V_{2}^{*}=1,25000 \cos 2 \varphi+0,02143 \cos 4 \varphi \tag{52}
\end{equation*}
$$

TABLE $I$.

| $\begin{aligned} l & =2 \\ k & =4 \\ \varepsilon_{k} & =\frac{1}{2} \end{aligned}$ | $\frac{2^{2}-1}{2^{2}-1}=1$ | $\frac{2^{2}-1}{6^{2}-1}=\frac{3}{35}$ | $\frac{2^{2}-1}{10^{2}-1}=\frac{1}{33}$ | $\frac{2^{2}-1}{14^{2}-1}=\frac{1}{65}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\boldsymbol{\operatorname { c o s }} 2 \varphi$ | $\cos 6 \varphi$ | $\boldsymbol{\operatorname { c o s }} \mathbf{1 0} \varphi$ | sos $14 \varphi$ |  |
| $V_{1}=V_{1}^{*}$ | 1.00000 |  |  |  |  |
|  | 0.25000 | 0.25000 |  |  |  |
| $W_{1}^{*}=N_{0} V_{1}^{*}$ | 1.25000 | 0.25000 |  |  |  |
| $V_{2}^{*}$ | 1.25000 | 0.02143 |  |  |  |
|  | 0.31250 | 0.31250 |  |  |  |
|  | 0.00536 |  | 0.00536 |  |  |
| $W_{2}^{*}=N_{0} V_{2}^{*}$ | 1.56786 | 0.33393 | 0.01536 |  |  |
| $V_{3}{ }^{*}$ | 1.56786 | 0.02862 | 0.00017 |  |  |
|  | 0.39197 | 0.39197 |  |  |  |
|  | 0.00716 | 0.00004 | 0.00716 | 0.00004 |  |
| $W_{3}^{*}=N_{0} V_{3}^{*}$ | 1.96699 | 0.42063 | 0.00733 | 0.00004 |  |
| $V_{4}^{*}$ | 1.96699 | 0.03605 | 0.00022 | 0.00000 |  |
|  | 0.49175 | 0.49175 |  |  |  |
|  | 0.00901 | 0.00006 | 0.00901 | 0.00006 |  |
| $W_{4}^{*}=N_{0} V_{4}^{*}$ | 2.46775 | 0.52786 | 0.00923 | 0.00006 |  |
| $V_{5}^{*}$ | 2.46775 | 0.04525 | 0.00028 | 0.00000 |  |
| $\begin{aligned} & V_{3}^{*} / V_{4}^{*} \\ & V_{4}^{*} / V_{5}^{*} \end{aligned}$ | 0.7971 | 0.7939 | 0.7727 | - |  |
|  | 0.7910 | 0.7967 | 0.7856 | - |  |
| $\begin{aligned} & W_{1}^{*} V_{1}^{*} \\ & W_{1}^{*} V_{2}^{*} \end{aligned}$ | 1.25000 | 0.00000 | 0.00000 | 0.00000 |  |
|  | 1.56250 | 0.00536 | 0.00000 | 0.00000 | $\overline{\Sigma_{2}}=0.79727$ |
| $\begin{aligned} & w_{2}^{*} V_{2}^{*} \\ & w_{2}^{*} V_{3}^{*} \end{aligned}$ | 1.95983 | 0.00710 | 0.00000 | 0.00000 | $\frac{\Sigma_{1}}{\Sigma_{2}}=0.79708$ |
|  | 2.45818 | 0.00956 | 0.00000 | 0.00000 | $\overline{\Sigma_{2}}=0.79708$ |
| $\begin{aligned} & W_{3}^{*} V_{3}^{*} \\ & W_{3}^{*} V_{4}^{*} \end{aligned}$ | 3.08396 | 0.01204 | 0000000 | 0.00000 |  |
|  | 3.86905 | 0.01516 | 0.00000 | 0.00000 | $\overline{\Sigma_{2}}=0.79708$ |
| $\begin{aligned} & W_{4}^{*} V_{4}^{*} \\ & W_{4}^{*} V_{5}^{*} \end{aligned}$ | 4.85404 | 0.01903 | 0.00000 | 0.00000 | $\frac{\Sigma_{1}}{\Sigma_{2}}=0.79708$ |
|  | 6.08979 | 0.02389 | 0.00000 | 0.00000 | $\overline{\Sigma_{2}}=0.79708$ |

(In controling this step, the reader has to pay due attention to the fact, that the factor $\left(l^{2}-1\right):\left[(l-k)^{2}-1\right]$ of the third term between brackets [ ] of eq. (48) has the value one in virtue of $k=-2 l$ ). The coefficients of $V_{2}^{*}$ again are shifted one place to the left and one place to the right after
having been multiplied with the factor $\varepsilon_{k} / 2=0,25$, under the understanding that every number destined for column $\cos -2 \varphi$ be placed in the column $\cos 2 \varphi$. The numbers thus obtained (and placed beneath the first long horizontal line of Table I) are added, - giving as result the coefficients of $W_{2}^{*}=N_{0} V_{2}^{*}$ - and these coefficients in their turn have been multiplied by the factors $1,3 / 35,1 / 33 \ldots$. In this way we find

$$
\begin{equation*}
V_{2}^{*}=1,56786 \cos 2 \varphi+0,02862 \cos 6 \varphi+0,00017 \cos 10 \varphi . \tag{53}
\end{equation*}
$$

As will be seen from Table I the iteration has been pursued up to $V_{5}^{*}$. Then the quotients of the corresponding coefficients of $V_{3}^{*}$ and $V_{4}^{*}$ (resp. of $V_{4}^{*}$ and $V_{5}^{*}$ ) have been calculated and it may be stated that a high degree of similarity between these coefficients exists. Clearly the factor of proportionality is best approximated by the figures in the first column and therefore we put:

$$
\begin{equation*}
\lambda_{1}=0,7971 . \frac{3 E I}{r^{2}} \tag{54}
\end{equation*}
$$

If we should have used the second of the formulae (44)

$$
\left.\begin{array}{r}
\lambda_{1}=\frac{\int_{0}^{2 \pi} N_{0} V_{m}^{2} d \varphi}{\int_{0}^{2 \pi} N_{0} V_{m} V_{m+1} d \varphi}=\frac{\left(l^{2}-1\right) E I}{t^{2}} \frac{\int_{0}^{2 \pi} N_{0} V_{m}^{2 *} d \varphi}{\int_{0}^{2 \pi} N_{0} V_{m}^{*} V_{u+1}^{*} d \varphi}=  \tag{55}\\
=\frac{3 E I}{r^{2}} \frac{\int_{0}^{2 \pi} W_{m}^{*} V_{m}^{*} d \varphi}{\int_{0}^{2 \pi} W_{m}^{*} V_{m+1}^{*} d \varphi}
\end{array}\right\}
$$

we should have found (with $m=1,2,3$, and 4): $\lambda_{1}=0,7973 ; 0,7971$; 0,$7971 ; 0,7971 \frac{3 E I}{\tau^{2}}$ respectively ${ }^{5}$ ). It appears that, even if we had stopped the iteration with $V_{2}^{*}$, the relative error in $\lambda_{1}$ would have been less than 1/4000.

Some additional remarks with respect to the iterative process have to be made. Firstly it must be stated, that in the case just treated the iteration could as well have been started with $V_{1} \equiv V_{1}^{*} \equiv \sin l p, l$ again represen-

[^2]ting a number compatible with our problem. Then we should have found ${ }^{6}$ )
\[

\left.$$
\begin{array}{r}
V_{2}=\frac{r^{2}}{\left(l^{2}-1\right) E I}\left[\sin l \varphi+\frac{\varepsilon_{k}}{2} \frac{l^{2}-1}{(l+k)^{2}-1} \sin (l+k) \varphi+\right. \\
\left.\frac{\varepsilon_{k}}{2} \frac{l^{2}-1}{(l-k)^{2}-1} \sin (l-k) \varphi\right] \tag{56}
\end{array}
$$\right\}
\]

The same scheme of calculation as given in Table I can be used here, provided that the superscriptions $\cos 2 \varphi, \cos 6 \varphi \ldots$ be replaced by $\sin 2 \varphi$, $\sin 6 \varphi \ldots$; it must, however, be put in mind, that the transition of a term $\sin (l-k) \varphi$ from the column $\sin (l-k)_{\varphi}$ to the column $\sin |l-k| \varphi$ involves the introduction of a factor (-1). It would be found that the characteristic value $\lambda_{1}$, calculated in this way is greater than the first one. If $V_{1}=\cos l_{\varphi}+\sin l_{\varphi}$ had been chosen as the starting function one is invariably led to the first characteristic value (54) and to the corresponding characteristic function. A slight modification would occur if the special case $N=\lambda\left(1+\varepsilon_{2} \cos 2 \varphi\right)$, $(k=2)$ would be examined. It may be left to the reader to iterate once with $V_{1}^{*}=\cos 2 \varphi$ and once with $V_{1}^{*}=\sin 2 \varphi$ as starting functions. He will be led to the same characteristic number $\lambda_{1}$ and to two linearly independent characteristic functions!

A second remark refers to the fact, that a slight complication appears if $N=\lambda\left(1+\varepsilon_{k} \cos k \varphi\right)$ is replaced by $N=\lambda\left(1+\varepsilon_{k} \sin k \varphi\right)$. Obviously we then have to start with a function composed of cos and $\sin$ terms, for instance $V_{1}=\alpha \cos 1 \varphi+\beta \sin l \varphi$. The first iteration, defined by

$$
\begin{equation*}
V_{2}^{\prime \prime}+V_{2}=-\frac{r^{2}}{E I}[\alpha \cos l \varphi+\beta \sin l \varphi]\left[1+\varepsilon_{k} \sin k \varphi\right]+C \tag{57}
\end{equation*}
$$

then proves to be

$$
\left.\begin{array}{r}
V=\frac{a r^{2}}{\left(l^{2}-1\right) E I}\left[\cos l \varphi+\frac{\varepsilon_{k}}{2} \frac{l^{2}-1}{(l+k)^{2}-1} \sin (l+k) \varphi-\frac{\varepsilon_{k}}{2} \frac{l^{2}-1}{(l-k)^{2}-1} \sin \right. \\
(l-k) \varphi]+\frac{\beta r^{2}}{\left(l^{2}-1\right) E I}[
\end{array} \begin{array}{rl} 
& \sin l \varphi-\frac{\varepsilon_{k}}{2} \frac{l^{2}-1}{(l+k)^{2}-1} \cos (l+k) \varphi+  \tag{58}\\
& \left.+\frac{\varepsilon_{k}}{2} \frac{l^{2}-1}{(l-k)^{2}-1} \cos (l-k) p\right]+C .
\end{array}\right\}
$$

Again the constant $C$ is determined by the condition, that ultimately no constant term in $V_{2}$ is allowed.

Table II represents the scheme of iteration, adapted to this case, with $\varepsilon_{k}=1, k=2$, and $\cos 2 \varphi+\sin 2 \varphi$ as starting function. It has, for the first three iterations been indicated by asterisks and cross-signs how the

[^3]TABLE II.

| $\begin{aligned} l & =2 \\ k & =2 \end{aligned}$ | $\frac{2^{2}-1}{2^{2}-1}=1$ |  | $\frac{2^{2}-1}{4^{2}-1}=\frac{3}{35}$ |  | $\frac{2^{2}-1}{6^{2}-1}=\frac{3}{35}$ |  | $\frac{2^{2}-1}{8^{2}-1}=\frac{1}{33}$ |  | $\frac{2^{2}-1}{10^{2}-1}=\frac{1}{33}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon_{k}=1$ | $\cos 2 \varphi$ | $\sin 2 \varphi$ | $\cos 4 \varphi$ | $\sin 4 \varphi$ | $\cos 6 \varphi$ | $\sin 6 \varphi$ | $\cos 8 \varphi$ | $\sin 8 \varphi$ | $\boldsymbol{\operatorname { c o s }} 10 \varphi$ | $\sin 10 \varphi$ |
| $V_{1}^{*}$ | 1.00000* | $1.00000^{\text {x }}$ | -0.50000x | 0.50000* |  |  |  |  |  |  |
| $W_{1}^{*}$ | 1.00000 | 1.00000 | -0.50000 | $0.50000^{\times x}$ |  |  |  |  |  |  |
| $V_{2}^{*}$ | $\begin{aligned} & 1.00000^{*} \\ & 0.05000^{\times x} \end{aligned}$ | $\begin{aligned} & 1.00000^{x} \\ & 0.05000^{* *} \end{aligned}$ | $\begin{aligned} & -0.10000^{* *} \\ & -0.50000^{x} \end{aligned}$ | $\begin{aligned} & 1.00000^{x x} \\ & 0.5000^{*} \end{aligned}$ | $-0.05000^{x x}$ | $-0.05000^{* *}$ |  |  |  |  |
| $W_{2}^{*}$ | 1.05000 | 1.05000 | -0.60000 | +0.60000 | -0.05000 | -0.05000 |  |  |  |  |
| $V_{3}^{*}$ | $\begin{aligned} & 1.05000^{*} \\ & 0.06000^{x x} \end{aligned}$ | $\begin{aligned} & 1.05000^{x} \\ & 0.06000^{x x} \end{aligned}$ | $\begin{aligned} & -0.12000^{* *} \\ & -0.52500^{x} \\ & -0.00214^{\times x x} \end{aligned}$ | $\begin{aligned} & 0.12000^{x x} \\ & 0.52500 \\ & 0.00214^{* * *} \end{aligned}$ | $\begin{aligned} & -0.00429^{* * *} \\ & -0.06000^{\times x} \end{aligned}$ | $\begin{aligned} & -0.00429^{\times x x} \\ & -0.06000^{* *} \end{aligned}$ | $0.00214^{\text {xxx }}$ | -0.00214*** |  |  |
| $W_{3}^{*}$ | 1.11000 | 1.11000 | -0.64714 | 0.64714 | -0.06429 | -0.06429 | 0.00214 | -0.00214 |  |  |
| $V_{4}^{*}$ | $\begin{aligned} & 1.11000 \\ & 0.06471 \end{aligned}$ | $\begin{aligned} & 1.11000 \\ & 0.06471 \end{aligned}$ | $\begin{aligned} & -0.12943 \\ & -0.55500 \\ & -0.00276 \end{aligned}$ | $\begin{aligned} & 0012943 \\ & 0.55500 \\ & 0.00276 \end{aligned}$ | $\begin{aligned} & -0.00551 \\ & -0.06471 \\ & -0.00005 \end{aligned}$ | $\begin{aligned} & -0.00551 \\ & -0.06471 \\ & -0.00005 \end{aligned}$ | $\begin{aligned} & 0.00010 \\ & 0.00276 \end{aligned}$ | $\begin{aligned} & -0.00010 \\ & -0.00276 \end{aligned}$ | 0.00005 | 0.00005 |
| $W_{4}^{*}$ | 1.17471 | 1.17471 | -0.68719 | 0.63719 | -0.07027 | -0.07027 | 0.00286 | -0.00286 | 0.00005 | 0.00005 |
| $V_{5}^{*}$ | 1.17471 | 1.17471 | -0.13744 | 0.13744 | -0.00600 | -0.00600 | . 0.00014 | -0.00014 |  |  |
| $V_{4}^{*} / V_{5}^{*}$ | 0.946 | 0.946 | 0.942 | 0.942 | 0.918 | 0.918 | - | - | - | - |
| $\begin{array}{ll} W_{1}^{*} \dot{V}_{1}^{*} \\ W_{1}^{*} & V_{2}^{*} \end{array}$ | 1.00000 1.00000 | $\begin{aligned} & 1.00000 \\ & 1.00000 \\ & \hline \end{aligned}$ | 0.05000 | 0.05000 |  |  |  | $\begin{aligned} & 2.00000 \\ & 2.10000 \end{aligned}$ |  | $5238$ |
| $\begin{aligned} & W_{2}^{*} V_{2}^{*} \\ & W_{2}^{*} V_{3}^{*} \end{aligned}$ | 1.05000 1.10250 | $\begin{aligned} & 1.05000 \\ & 1.10250 \end{aligned}$ | $\begin{aligned} & 0.06000 \\ & 0.07200 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.06000 \\ & 0.07200 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.00000 \\ & 0.00021 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.00000 \\ & 0.00021 \end{aligned}$ | $\begin{aligned} & \Sigma_{1}= \\ & \Sigma_{2}= \end{aligned}$ | $\begin{aligned} & 2.22000 \\ & 2.34942 \\ & \hline \end{aligned}$ |  | 94491 |
| $\begin{aligned} & W_{3}^{*} V_{3}^{*} \\ & W_{3}^{*} V_{4}^{*} \end{aligned}$ | 1.16550 1.23210 | 1.16550 1.23210 | 0.07766 0.08373 | 0.07766 0.08373 | $\begin{aligned} & 0.00028 \\ & 0.00035 \end{aligned}$ | $\begin{aligned} & 0.00028 \\ & 0.00035 \end{aligned}$ | $\begin{aligned} & \Sigma_{1}= \\ & \Sigma_{2}= \end{aligned}$ | $\begin{aligned} & 2.48688 \\ & 2.63236 \end{aligned}$ |  | 94473 |
| $W_{4}^{*} V_{4}^{*}$ | 1.30393 1.37994 | 1.30393 1.37994 | 0.08894 0.09445 | 0.08894 0.09445 | 0.00039 0.00042 | $\begin{aligned} & 0.00039 \\ & 0.00042 \end{aligned}$ | $\begin{aligned} & \Sigma_{1}= \\ & \Sigma_{2}= \end{aligned}$ | $\begin{aligned} & 2.78552 \\ & 2.94962 \end{aligned}$ |  | 94470 |

different figures have to be shifted. As to the iteration it will be seen, that the first figure of $V_{2}^{*}$ has been placed (multiplied by $\varepsilon_{2} / 2=1 / 2$ ) on the fourth place of the next row; the second figure multiplied by - $\varepsilon_{2} / 2$ on the third place; the third one, multiplied by $\varepsilon_{2} / 2$ and $-\varepsilon_{2} / 2$ respectively on the sixth and second places; the fourth one, multiplied by $-\varepsilon_{2} / 2$ and $\varepsilon_{2} / 2$ respectively on the fifth and first place. Then the corresponding figures of the two rows under consideration have been added, and the results have been multiplied by the factors inserted in the headings of the columns. The iteration has been stopped with $V_{5}^{*}$ and it is seen by comparison of $V_{4}^{*}$ and $V_{5}^{*}$, that the required smallest characteristic number $\lambda_{1}$ (with considerable approximation) can be represented by $\lambda=3 \mathrm{EI} / \tau^{2} \cdot 0,946$. The second formula (44) leads for $m=1,2,3,4$ to the following values

$$
\lambda_{1}=0,95238, \quad 0,94491, \quad 0,94473, \quad 0,94470
$$

and it is confirmed again that much labour can be saved by the use of this formula.
7. The compressive force $N=\lambda N_{0}=\lambda(1+2 \cos k \varphi)$. In this section the numerical results are collected, with regard to the special normal force distribution $N=\lambda(1+2 \cos k \varphi)$, up to $k=12$. The example has chiefly been chosen to get an insight in the influence of a strong fluctuation of $N$ with respect to its mean value on the buckling force of the ring. As has already been stated in sects. 3 and 4 that for every value of $k$ the buckling problem is split up into $(k-1) / 2$ or $k / 2$ separate problems connected with the congruences $l= \pm q \bmod k\left(q=0,2,3 \ldots \frac{k-1}{2}\right.$ or $\left.\frac{k}{2}\right)$; the characteristic

TABLE III. Giving the values of $\frac{\lambda_{r^{2}}}{\left(l^{2}-1\right) E I}$ if $N=\lambda(1+2 \cos k \varphi)$.

| $\boldsymbol{k} \quad$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0.832 | - | - | - | - | - | - | - | - | - | - |
| 3 | - | 0.812 | - | - | - | - | - | - | - | - | - |
| 4 | 0.489 | - | 0.808 | - | - | - | - | - | - | - | - |
| 5 | 0.708 | - | - | 0.802 | - | - | - | - | - | - | - |
| 6 | 0.810 | 0.488 | - | - | 0.801 | - | - | - | - | - | - |
| 7 | 0.866 | 0.634 | - | - | - | 0.799 | - | - | - | - | - |
| 8 | 0.899 | 0.728 | 0.487 | - | - | - | 0.799 | - | - | - | - |
| 9 | 0.922 | 0.789 | 0.598 | - | - | - | - | 0.798 | - | - | - |
| 10 | 0.937 | 0.831 | 0.679 | 0.486 | - | - | - | - | 0.798 | - | - |
| 11 | 0.948 | 0.862 | 0.738 | 0.577 | - | - | - | - | - | 0.797 | - |
| 12 | 0.957 | 0.885 | 0.782 | 0.647 | 0.486 | - | - | - | - | - | 0.797 |

functions of each of these problems is built up of terms $\cos l_{\varphi}$ and $\sin l_{p}$ in which $l$ is determined by one of these congruences.

Table III contains all values of $\lambda^{2}:\left(l^{2}-1\right) E I$ for $2 \leqq k \leqq 12$. It may be emphasized that for any prescribed number $l$ the smallest value of $\lambda$. corresponds to $k=2 l$. This fact becomes explicable by the consideration that for $k=2 l$ the angles both of maximum and minimum deflection coincide with those of maximum compressive force $N$.
8. The compressive force $N=\lambda N_{0}=\lambda\left(1+\varepsilon_{2} \cos 2 \varphi+\varepsilon_{4} \cos 4 \varphi\right)$, $\varepsilon_{2}=2, \varepsilon_{4}=1$; the second iteration. As an illustration how to handle the iterative method if the compressive normal force has a more complicated form like $N=\lambda(1+2 \cos 2 \varphi+4 \varphi)$ and how to act if apart from the first characteristic function the second one should be required, we insert in this section Tables IVa, and IVb, from which all necessary data can be borrowed. The starting function $V_{1}^{*}$ is represented by $\cos 2 \varphi$. This term has to be shifted one place to the right and one place to the left after multiplication with the factor $\varepsilon_{2} / 2=1$ on account of the term $\varepsilon_{2} \cos 2 \varphi$ in $N$. The shifting to the left gives a term in the column $\cos 0_{p}$ which must be suppressed (comp. sect. 6). Furthermore the starting term $\cos 2 \varphi$ has to be shifted two places to the right and to the left after multiplication with the factor $\varepsilon_{4} / 2=1 / 2$ on account of the term $\varepsilon_{2} \cos 4 \varphi$ in $N$. The shifting to the left provides us with a term in the column $\cos -2 \varphi$, which therefore must be placed in the column $\cos 2 \varphi$. Summation of all terms occurring in the different columns gives the coefficients of the function $W_{1}^{*}$. Finally these coefficients have to be multiplied by the factors $1,1 / 5,3 / 35 \ldots$ mentioned in the heads of the columns, to obtain the coefficients of the first iteration $V_{2}^{*}$. Analogously the terms of $V_{2}^{*}$ have to be shifted one place to the right and left after multiplication with the factor $\varepsilon_{2} / 2$ and two places to the right and left after multiplication with the factor $\varepsilon_{4} / 2$, with due regard to the fact, that every number in the column $\cos 0 . \varphi$ has to be suppressed and every number in the column $\cos -2 \varphi$ has to be transported to the column $\cos 2 \varphi$. Summing up all terms in the different columns provides us with the coefficients of $W_{2}^{*}$, whereas multiplication of these coefficients with their respective multiplicators $1,1 / 15 \ldots$ furnishes the coefficients of $V_{3}^{*}$; a.s.o. The iterative process has been carried on to the sixth iteration $V_{7}^{*}$, though the computation of the first characteristic number $\lambda_{1}$ in itself would require no more than the iterations $V_{2}^{*}$ and $V_{3}^{*}$. By proceeding as far as $V_{3}^{*}$, however, great accuracy is obtained in the first characteristic function $U_{1}$ which is approximated by

$$
\left.\begin{array}{rl}
U_{1} \propto V_{7}^{*}=18,493 \cos 2 \varphi+ & 2,627 \cos 4 \varphi+0,650 \cos 6 \varphi+  \tag{59}\\
& +0.058 \cos 8 p+0.007 \cos 10 p
\end{array}\right\}
$$

TABLE IVa.
$N=\lambda[1+2 \cos 2 \varphi+\cos 4 \varphi] ; \varepsilon_{2}=2, \varepsilon_{4}=1$.

|  | 1 | 1/5 | 3/35 | 1/21 | 1/33 | 3/143 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\cos 2 \varphi$ | $\cos 4 \varphi$ | $\cos 6 \varphi$ | $\boldsymbol{\operatorname { c o s }} 8 \varphi$ | $\cos 10 \varphi$ | $\cos 12 \varphi$ |
| $V_{1}^{*}$ | $\begin{aligned} & 1.0000 \\ & 5.00000 \mathrm{l} \end{aligned}$ | 1.000 or | 0.50000 r |  |  |  |
| $W_{1}^{*}$ | 1.500 | 1.000 | 0.500 |  |  |  |
| $V_{2}^{*}$ | $\begin{aligned} & 1.500 o \\ & 0.200 o l \\ & 0.022 \times x l \\ & 0.750 o o l \end{aligned}$ | $\begin{aligned} & 0.200 \text { o } \\ & 1.500 \text { or } \\ & 0.043 x l \end{aligned}$ | $\begin{aligned} & 0.043 x \\ & 0.200 \text { or } \\ & 0.750 \text { oor } \end{aligned}$ | $\begin{aligned} & 0.043 x r \\ & 0.100 o o r \end{aligned}$ | $0.022 \times x r$ |  |
| $W_{2}^{*}$ | 2.472 | 1.743 | 0.993 | 0.143 | 0.043 |  |
| $V_{3}^{*}$ | $\begin{aligned} & 2.472 \\ & 0.349 \\ & 0.043 \\ & 1.236 \end{aligned}$ | $\begin{aligned} & 0.349 \\ & 2.472 \\ & 0.085 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.085 \\ & 0.349 \\ & 0.007 \\ & 1.236 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & 0.007 \\ & 0.085 \\ & 0.001 \\ & 0.175 \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.007 \\ & 0.043 \end{aligned}$ | $\begin{aligned} & 0.001 \\ & 0.004 \end{aligned}$ |
| $W_{3}^{*}$ | 4.100 | 2.910 | 1.678 | 0.268 | 0.051 | 0.005 |
| $V_{4}^{*}$ | $\begin{aligned} & 4.100 \\ & 0.582 \\ & 0.072 \\ & 2.050 \end{aligned}$ | $\begin{aligned} & 0.582 \\ & 4.100 \\ & 0.144 \\ & 0.006 \end{aligned}$ | $\begin{aligned} & 0.144 \\ & 6.582 \\ & 0.012 \\ & 2.052 \\ & 0.001 \end{aligned}$ | $\begin{aligned} & 0.012 \\ & 0.144 \\ & 0.002 \\ & 0.291 \end{aligned}$ | $\begin{aligned} & 0.002 \\ & 0.012 \\ & 0.072 \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.002 \\ & 0.006 \end{aligned}$ |
| $W_{4}^{*}$ | 6.704 | 4.832 | 2.789 | 0.449 | 0.086 | 0.008 |
| $V_{5}^{*}$ | $\begin{aligned} & 6.704 \\ & 0.966 \\ & 0.120 \\ & 3.352 \end{aligned}$ | $\begin{aligned} & 0.966 \\ & 6.704 \\ & 0.239 \\ & 3.352 \\ & 0.011 \end{aligned}$ | $\begin{aligned} & 0.239 \\ & 0.966 \\ & 0.021 \\ & 0.483 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & 0.021 \\ & 0.239 \\ & 0.003 \\ & 0.120 \end{aligned}$ | $\begin{aligned} & 0.003 \\ & 0.021 \\ & 0.011 \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.003 \end{aligned}$ |
| $W_{5}^{*}$ | 11.142 | 7.920 | 4.580 | 0.746 | 0.144 | 0.014 |
| $V_{6}^{*}$ | $\begin{array}{r} 11.142 \\ 1.584 \\ 0.196 \\ 5.571 \end{array}$ | $\begin{array}{r} 1.584 \\ 11.142 \\ 0.392 \\ 0.018 \end{array}$ | $\begin{aligned} & 0.392 \\ & 1.584 \\ & 0.036 \\ & 5.571 \\ & 0.002 \end{aligned}$ | $\begin{aligned} & 0.036 \\ & 0.392 \\ & 0.004 \\ & 0.792 \end{aligned}$ | $\begin{aligned} & 0.004 \\ & 0.036 \\ & 0.196 \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.004 \\ & 0.018 \end{aligned}$ |
| $W_{6}^{*}$ | 18.493 | 13.136 | 7.585 | 1.224 | 0.236 | 0.022 |
| $V_{7}^{*}$ | $\begin{array}{r} 18.493 \\ 2.627 \\ 0.325 \\ 9.247 \end{array}$ | $\begin{array}{r} 2.627 \\ 18.493 \\ 0.650 \\ 0.029 \end{array}$ | $\begin{aligned} & 0.650 \\ & 2.627 \\ & 0.058 \\ & 9.247 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.058 \\ & 0.650 \\ & 0.007 \\ & 1.314 \end{aligned}$ | $\begin{aligned} & 0.007 \\ & 0.058 \\ & 0.325 \end{aligned}$ | $\begin{aligned} & 0.000 \\ & 0.007 \\ & 0.029 \end{aligned}$ |
| $W_{7}^{*}$ | 30.692 | \|21.799 | 12.586 | 2.029 | 0.390 | 0.036 |
| $\begin{aligned} & W_{7}^{*} V_{6}^{*} \\ & W_{7}^{*} V_{7}^{*} \end{aligned}$ | 341.96 467.59 | 34.53 57.27 | 4.93 8.18 | 6.07 0.12 | $\begin{aligned} & \Sigma_{1}=381.50 \\ & \Sigma_{2}=633.16 \end{aligned}$ | $\frac{\Sigma_{1}}{\Sigma_{2}}=\lambda_{1}=0.60253$ |

TABLE IV. $\quad N=\lambda[1+2 \cos 2 \varphi+\cos 4 \varphi] . \varepsilon_{2}=2, \varepsilon_{4}=1$


The characteristic number $\lambda_{1}$ has been computed with the aid of the first formula (44)

$$
\begin{align*}
& =\frac{3 E I}{r^{2}} \int_{0}^{2 . \pi} W_{7}^{*} V_{6}^{*} d q=0,60253 \frac{3 E I}{r^{2}}  \tag{60}\\
& \int_{0}^{*} W_{7}^{*} V_{7}^{*} d q
\end{align*}
$$

Table IVb is devoted to the calculation of $\lambda_{2}$. The starting function is represented by $V_{8}^{*}=100 \cos 2 \varphi$. The coefficient $a_{1}$ in the development of $V_{8}^{*}$ into a series of the characteristic functions $U$

$$
\begin{equation*}
V_{8}^{*}=a_{1} U_{1}+a_{2} U_{2}+\ldots \tag{61}
\end{equation*}
$$

is given by

$$
\left.\begin{array}{r}
a_{1}=\frac{\int_{0}^{2 \pi} N_{0} V_{8}^{*} U_{1} d \varphi}{\int_{0}^{2 \pi} N_{0} U_{1}^{2} d \varphi} \text { and approximately by }  \tag{62}\\
a_{1}^{*}=\frac{\int_{0}^{2 \pi} N_{0} V_{8}^{*} V_{7}^{*} d \varphi}{\int_{0}^{2 \pi} N_{0} V_{7}^{* 2} d \varphi}=4,847
\end{array}\right\} .
$$

If $a_{1}$ and $U_{1}$ would have been obtained exactly, the iteration process applied to $V_{8}^{*}-a_{1} U_{1}$ obviously would lead to the enumeration of the second characteristic number $\lambda_{2}$. In reality both $U_{1}$ and $a_{1}$ are only approximately known and therefore, if the process is applied to the function $\bar{V}_{8}^{*}=V_{8}^{*}-a_{1} V_{7}^{*}$ which to a certain (but small) amount contains the first characteristic function $U_{1}$ - serious difficulties are to be expected. For indeed, however small the contribution of $U_{1}$ in any starting function may be, the iteration process always and invariably leads to $\lambda_{1}$ if $U_{1}$ initially is present. These difficulties are surmounted by iterating $V_{9}^{*}$ from $\bar{V}_{8}^{*}$, by cleaning $V_{9}^{*}$ from $U_{1} \propto V_{7}^{*}$ in the same way as $V_{8}^{*}$ has been cleaned from $U_{1}$, and by repeating this combined iteration and cleaning process till two consecutive "cleaned" functions $\bar{V}_{m}^{*}$ and $\bar{V}_{m+1}^{*}$ are sufficiently proportional. Here too considerable abbreviation of the cipherwork can be attained by the use of the formulae (44) if the characteristic number $\lambda_{2}$ alone should be required, as will be seen from the results

$$
\begin{equation*}
\lambda_{2}=5,2602, \quad 5,1331, \quad 5,1234, \quad 5,1228 \tag{63}
\end{equation*}
$$

which have been found by the first of the formulae (44) with $m=8,9,10$ and 11 respectively. The second of these values already approximates $\lambda_{2}$ quite satisfactory.

The determination of the second characteristic function, however, requires the continuation up to $V_{12}^{*}$

$$
\begin{align*}
V_{12}^{*} & =0,008495 \cos 2 \varphi-0,007900 \cos 4 \varphi-0,006375 \cos 6 \varphi- \\
& -0,003813 \cos 8 \varphi-0,001338 \cos 10 q-0,000379 \cos 12 \varphi . \tag{64}
\end{align*}
$$

9. Negative characteristic numbers. It has already been stated that dealing with buckling problems one has to expect negative characteristic values in all such cases, where the normal force $N$ changes its sign. A negative value of $\lambda$ interchanges the compressed and the stretched parts of the construction, and a sufficiently great negative $\lambda$ therefore causes the buckling of the initially stretched parts. As an example it may be stated that with a compressive force $N=\lambda[1+4 \cos 2 \varphi]$ the second characteristic number proves to be negative, $\lambda_{2}=-2,1133 \frac{3 E I}{r^{2}}$, whereas the first characteristic numbers $\lambda_{1}$ equals to $\lambda_{1}=0,6275 \cdot \frac{3 E I}{r^{2}}$.

[^0]:    $\left.{ }^{1}\right)$ Comp. f.i. C. B. Biezeno und R. Grammel, Technische Dynamik, Chapt. VII, 7, 509 (Springer 1939).

[^1]:    ${ }^{2}$ ) Strictly spoken it must be proved that inversely (3) leads to $D=M=0$, and (4) to $N=0$. This may be left to the reader.

[^2]:    $\left.{ }^{5}\right)$ The work to be done in computing these successive approximations for $\lambda_{1}$ is represented in the last 8 rows of Table I. Obviously an integral such as $\int_{0}^{2 \pi} W_{1}^{*} V_{2}^{*} d \varphi$ can be evaluated by multiplying the corresponding coefficients of $W_{1}^{*}$ and $V_{2}^{*}$ and by summing up the so-acquired products.

[^3]:    ${ }^{6}$ ) The constant of integration $C$ of eq. (48) vanishes here under all circumstances as the sine-functions in (56) for no siagle value of $k$ give rise to a constant term.

