Applied Mechanics. — The generalized buckling problem of the circular
ring. By C. B. BIEZENO and ]. J. KocH.

(Communicated at the meeting of November 24, 1945.)

1. Introduction. It is well known, that a circular ring, subjected to a
uniform radial pressure g per unit of circumferential length is apt to buckle
under the action of one of the so-called “critical” loads ¢ = (n2—1)EI/r3
(n integer and = 2), EI representing the flexural rigidity of the ring and r
its radius. This case of buckling is analogous to the buckling of a straight
rod under the action of two compressive forces, as far as the cross-sections
of both ring and rod are loaded by a normal force of constant magnitude.
If a straight rod is loaded by a prescribed system of axial forces, so that
the normal force of the cross-section varies with its coordinate, proportional
increase of the loadsystem, say to the multiple 1, leads as well to critical
buckling loads. The (positive or negative) value of the factor of magni-
fication 1 can best be found by a method of iteration 1). It is obvious, that
for the circular ring the analogous problem exists, if only it is subjected
to an external loadsystem such that in every crossection of the ring the
bending moment M and the shearing force D are zero, whereas the normal
force of the section varies with its coordinate. Evidently the first of these
conditions will not be fulfilled if the ring is loaded by an arbitrary system,
of radial and tangential forces; but is will be shown in section 2 that every
loadsystem can be split up into two components A and B, the first of which
will be called the “‘compressive” system, because it is characterised by
M — D = 0, whereas the second one will be called the “bending" system,
characterized as it is by N = 0.

The first system A, if suitably magnified, leads to the generalized buck-
ling problem of the circular ring, which will be treated in this paper, but it
is seen at once, that an arbitrary loadsystem, consisting of both components
A and B, gives rise to a problem, which again is analogous to a well-known
problem, viz. the straight rod subjected to axial thrust and transverse
bending loads. Just as well as with the straight rod the axial forces tend
to increase the deflections caused by the transverse loads, the A load-
system of the circular ring will affect the deflections due to the B-system.
In a subsequent paper this latter question will be treated in connection with
a particular problem, which led the authors to the present investigation,
and which itself will be treated in a third communication.

1) Comp. f.i. C. B. BIEZENO und R. GRAMMEL, Technische Dynamik, Chapt. VII, 7,
509 (Springer 1939).
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2. The A and B-system. If a ring is subjected to radial and tangential
loads g and ¢ per unit of circumferential length the equilibrium of a
ringelement requires

Ndp—qrdp—dD =0 N—D' =gqr )
dN+ Ddo + trdp=0  resp.: N'+D=—¢tr . . (1)
dM + tdN + tr2dp =0 M'—}—rN’:—trzS

(@ denoting the angular coordinate of the ringelement under consideration).
The requirement D — M = 0 leads to

N=qr , NN=—¢t . . . . . . . (2

from which it follows, that a A-loadsystem is characterized by
t—=—igls s « w w % % ® w @ @ (3)
At the other hand the condition N = 0 requires
—D'=gqr D—=—t M=—t* . . . . 4
from which it is seen, that a B-loadsystem is characterized by
q=¢t'"?.. . . . . . . . .. 0

It can easily be shown that any arbitrary equilibrium loadsystem (q, t)
can be decomposed in a unique way into a A-system (q* t*) and a B-
system (g**, t**). Let all quantities be expanded into their Fourier-series,
so that:

q=ao+s’akcos ke + E‘bk sin ko, t:c—}-g'ck cos kq)—{—f’dk sin kp  (6)
1 1 1 1

q¢ =ap —I-Zm'ai cos kg -f-ib; sin kg, £ =cp -}—2ch cos k(p—}—fd}; sin ke (7)
1 1 1 1

q*=ay + 2:‘0 a)’ cos ktp—f—‘? by sinke, *=c;" + 271 ¢y cos ktp—I-Zl' d;’ sinkg( (8)

then it must be remarked beforehand, that in consequence of the equili-
brium-conditions

27 2x 27
[(qsintp—{-tcosq))rdtp:O,J (qcosqo—tsintp)rd:O.ftrqu)ZO 9)
0 0
the following relations hold

by+¢,=0 a,—dliO =0 . . . . . (10

Analogously the conditions
b} +c=0 a] —d; =0 G =0. . . . (11)
b* +c'=0 a;’—d*=0 g=0. . . s« (12)
must be fulfilled.

2) Strictly spoken it must be proved that inversely (3) leads to D = M =0, and (4)
to N = 0. This may be left to the reader.
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Furthermore we have, in consequence of (q,t) = (q*.t*) + (q
ay + ay = a, a, +a, =a, b, + by =b,
Gt =q &t =c¢ dy+d’=d,
in consequence of t* — —q*:
* * * * __ *
=0 & —=—kb; d;=ka, .
in consequence of ¢** — **:
. kg% " ___ _*=
a; =0 —kc' = b} kd,’=a .

t*' t**)

(13)
(14)

(15)

(16)

From these equations we deduce, having due regard to (10), (11) and (12)

*_ ® ___ x___ w% ___
ay,—ay a;, =cy=c,; =0

aj=a"=%a,bj=b"=1%b,.ci=c"=—14{b,.d| =d"=1}a,
32=—,%_lak+%dk b;:_mbk_*_,%ck
a?_“kzkzlak k’k—ld" b;“:kzlil~b"+k2ilc
dl::—kZL_lak—}_k%dk C;:,ﬁbk'f'kzk—_zlck
df:kzilak_kzl—ldk "7:“k2k—1bk—k21—1°k

(17)

Therefore the A and B components of the loadsystem (g, ) are represented

by
. . = —1 S Lo
q :ao+galcosq)+%’ . lak+ 1 dr |coske+ 1 by sinp +

o 1 k
+%‘[—k2_lbk—k2_lck:| sink

* =] k k2 .
£ =1%bcose —I-Zz'(kz_lbk—l-kz_lck]cosktp—{——‘,—a, sin @ +

® k k?
—I—%‘[— kz_lak—}-kz_ldk:l sink @

*x = k? R
q :%a,cosqv-’r—%[kz_lak—sz_ldk:‘coskq)—l—%b,smtp—l—

+2[k,

S x 1 .
¢ :—%beOS¢’+zz‘7|:— kzilbk—kz_lCkilcosk(p-{—%alsmtp-l—

k?

by + k2 ck:| sin k p

® 1
+§|:k2£ R — dk] sink ¢

(18a)

(18b)

29
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In the following sections attention will only be paid to A-load systems.

3. The differential. equation of the buckling ring. The differential
equation of a bent circular ring, the central line of which does not change
its length is represented by

1 1 Mr?

o= 19

o r EI (19)
(1/r = curvature of the unbent ring, .1/jo — curvature of the bent ring;
M = bending moment, positive if it increases the curvature of the ring;

EI = flexural rigidity of the ring). From geometrical deductions it follows
that

—— == e e e (20

u representing the increase of the radius vector r. From egs. (1) it follows,
by eliminating N and D:

M'+M=—(@+92 . . . . . . . (21)
and from (21) and (19) we find
’ 4
W’ + 0"+ (@ 4y =9 JEI‘)’ @

This equation can be applied to a buckling ring subjected to a critical A-
loadsystem (q*, ¢*) if only q and ¢ be replaced by those supplementary
loadcomponents to which — by the deformation of the ringelement
— the prevailing external and internal loads q*rdg, t*rdp, N and N + dN
give rise. Two different cases must be distinguished, according as the
external loads ¢* and t* keep their directions with respect to the ring-
element or with respect to a fixed system of coordinates. In this paper we
confine ourselves to the first one, so that g has to be replaced by

o

—N (l‘__ Y= N(u” + u)/r? (comp. 20) and ¢ by zero.
r

Consequently eq. (22) changes into:

(" + )" 4+ W +u)= B AR (23)
If we denote u” + u by U, eq. (23) can be replaced by
’ __Nr?
u —{—U_-EIU-{—C. e e e e e (29

where C represents a constant of integration to be found in the course of
our investigation.
Both quantities N and U are periodic functions of ¢ with the period 2,
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so that they may be expanded into Fourier-series:

N=iIN,=1[A, -{—E'Akcosktp-l—S,‘Bksinktp]
k=1 k=1 (25)

U=a, —{—Is,'alcos lo -l—;‘i'b sinl g
=1 =1

These expressions, however, are subject to some distinct restrictions, which
must be discussed beforehand.

Firstly it must be remembered that we have to deal with a closed ring,
so that — if the ring was cut at say ¢ — 0, and if the disturbed internal
forces were restored — neither relative displacements nor relative rotation
of the opposite ends of the ring would occur. These conditions are analytic-
ally expressed by the equations

27
‘JEI’d'P— ersth rdep=0, fMnglcﬂ’_),dq,:o,_, (26)
0

relating to well-known properties of the so-called ‘“reduced” bending
moment M/EI. As, according to (19) M/EI is proportional to u” +u = U,
we find

27 27
fUdQJZO' JUsinqodthO, flIcosrpdgv:O . . (27
0 0

from which it follows that
ag—a;=b,=0 . . . . . . . . (28)

All further restrictions (relating to N) follow from the fact, that (24)
must identically be fulfilled if N and U are replaced by the expressions
(25). To control this required identity the product NU, occurring at the
right hand side of (24), evidently must be written in terms of cos and sin
of multiples of ¢. In doing so it is seen at once, that no terms A;. cos ¢ and
B;sing in N are admitted if U contains the terms ascos2¢ and
by sin 2 @; otherwise the product NU would give rise to terms cos ¢ and sin ¢
in the right hand side of (24), which in virtue of (28) are missing in the
lefthand side. The presence of A, cos ¢ and B; sin ¢ would require the
disappearance of a, cos 2 ¢ and b, sin 2 ¢ in U, so that the Fourier-series
for U should have to start with azcos3 ¢ and bs sin 3 p. However, the
product of these terms with A, cos ¢ and B; sin ¢ would in the righthand
side of (24) now produce terms with cos 2 ¢ and sin 2 ¢ which, in conse-
quence of the preceding remark, are absent in the lefthand side. Proceeding
in this way all terms of U must disappear, and therefore we conclude, that
no equilibrium position of the ring, different from the circular one, exists
if A, and B, are different from zero; any departure of the circular shape
sets the ring into motion,
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Moreover all multiples of ¢, occurring in the remaining terms of N must
have a factor, different from one, in common. The statement is proved by
showing first, that the presence of two terms cos k,p and cos kg, k; and
ks, having no factor in common, leads to an absurdity. It is seen at once,
that in such a case U is deprived from its terms cos (k; =1)¢, sin
(ky = 1)@, cos (ks = 1)@, sin (ks = 1), because otherwise the righthand
side of (24) would contain the terms cos ¢ and sin ¢, which do not occur
in the left hand side. But then terms of the type cos (2k; ==1)¢, sin
(2ky = 1)@, cos (2ks = 1)¢, sin (2k, == 1)¢ are as well forbidden terms
for U; if such terms would exist, the righthand side of (24) would contain
terms cos (k; == 1) a.s.o. which — after the preceding statement — do not
occur in the lefthand side. Proceeding in this way, we find that all terms
cos (ak, = 1)¢, sin (aky = 1)@, cos (Bks = 1)@, sin (Bky = 1)@, (a and g
representing arbitrary pos. or neg. integers) are forbidden terms for U.
A similar reasoning leads to the conclusion firstly, that terms of the type
cos (ak; = ko = 1)@, sin (ak, = ky = 1) are inadmissable, then that all
terms cos (ak, = Bky = 1)@, sin (ak, = Bky = 1)@ must be excluded in U
(a and B representing arbitrary pos. or neg. integers). But this means that
all terms in U have to be excluded because of the fact that any integer
may be written as ak, + Bk, provided only that k; and k,; have no factor
in common. Again, if N should contain the terms cos ki, cos kyp, cos
k3py — k4, ko, k3 having no factor in common — all terms cos resp. sin
(aky + Bks + ykz = 1)@ (a, B, y pos. or neg. integers) would be excluded
from U, but this again would mean that all terms of U should vanish; a.s.o.
Our final conclusion with respect to the possibility of buckling of the ring
therefore is:
1°. Adl multiples of ¢ in the Fourier series of N must have a factor in
common.

2°. If the greatest factor in common of all these multiples is called p, the
terms to be excluded from U are a, a;cose, bysing, agpi; cos
(ep = 1)@, buepsy sin (ap = 1)p, a representing any integer pos.
number =% 0.

One way in which we could now pursue the solution of eq. (24) would
consist in substituting the expressions (25) — liable to restrictions laid
upon them — into (24), and by identifying the corresponding terms of
both sides of this equation; this would lead to an infinite system of recur-
rent relations between the coefficients a: and b:. Though in fact we do not
intend to follow this way, one useful remark, to which this method would
lead us, must be made, viz. that the system of relations just mentioned
breaks up into a number of minor systems, each of which relates to a
distinct class of coefficients a:, bi, [ being defined by

9=023...27 1 podd
=+ q,modp ... (29

q:0,2,3...§. p even
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(If ¢ = 0, the value | = 0 obviously must be excluded). With any pres-
p-;l or —g— cases in
every one of which U is composed exclusively of terms relating to one
of the congruences (29).

We conclude this section by a remark with respect to the constant of
integration C, occurring in eq. (24). If the product NU in the righthand-
side of this equation happens to miss a constant term after being written
as an ordinary Fourier-series, then C must be suppressed; if not so C
serves to annul this term.

4. The integral equation of the problem. In the next sections up from
sect. 5, eq. (24) will be solved in an iterative way. The justification of
this method, however, makes it desirable to express our problem in terms
of an integral equation, which therefore will be deduced first. To this end
we apply to the ring an equilibrium loadsystem consisting of a concentrated
force P of unit magnitude, acting at the fixed point (y) and a com-
plementary continuous radial load q., which at any point (@) of the ring
amounts to g, = —P cos (¢ — y)/ar. The bending moment at the point ¢
of the ring, due to this loadsystem is called K(g, v). It has been stated in
sect. 3 that the deformation of the buckling ring must be maintained by the
continuous radial load ANy(y) U(vy)/r2, where ANy(vy) stands for the
normal force in the cross-section () and —U (y)/r2 for the local change
in curvature. If every infinitesimal part AN (y) U () rdy/r? of this load
(acting on the ring element rdy) is supplemented by a continuous load all
over the ring of the specific amount —AN(w) rdy/r2 — cos (¢ — ) /ar,
then the total bending moment M., at the angle ¢ amounts — in accordance
to the just given definition of K(¢, y) — to

M?:leo(w)U(w)K(w-w) dy . . . . . (30)

cribed p our buckling problem therefore is split up into

r
whereas at the other hand (comp. (20))
EIU
M, =— 2 %) . (31)

Consequently U. satisfies the integral equatioﬁ'

2n
U?:—f“N“”’)U("’)K("""’)dw. ... (32

EI

0
which also may be written as follows:

27
Nylg)r — No (y). No(v)
[Vue = Ly,

‘/N_%(*PI)_' .K((p,tp)]dtp
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The kernel ]/E%"T; ]/NO—EV;" K(¢, ) of this equation is sym-

metrical with respect to ¢ and v in consequence of the fact that K(g, y)
— by its mechanical meaning — is symmetrical with respect to its argu-
ments. Therefore all general theorems, relating to homogeneous integral
equations with a symmetrical kernel can be applied to this special equation.
In particular it may be remembered: 1°. that there exists an infinity of
characteristic numbers J for which eq. (32) is satisfied in general by one
and exceptionally by more corresponding characteristic functions U; 2°.
that any two characteristic functions U and U, corresponding to different

characteristic number 4, and J, are orthogonal in that fNO(cp_) U,(p)

U,(p)dp = 0; 3°. that any arbitrary function V(gp) can be expanded
into a series of the characteristic functions U.

It must be emphasized that our deductions only have a bearing on our
proper problem if the infinite collection of introduced supplementary con-
tinuous loads —AN(y)U () cos (p — y)dy/r2 does influence the ring
nowhere. The effect of these loads at a fixed angle ¢ is represented by

2z 2

. [ AN, () U (y) cos (p—v) f No(y) U (y)cosy dy—
r

. dy=—Acosgp

0

27
g (pro (w) Ur(‘/’) sin y do

0
which really is zero in virtue of the equilibrium-equations

27

2n
No(w)U(p)cosy , No(w) U(y) siny ,
f it 2 dw_O,f ot} = dw =0

of the buckling ring.

Yet the problems represented by-the eqs. (24) and (32) are not identical,
for eq. (24) restricts itself to those loads NU/r2 which are in equilibrium
whereas eq. (32) equally refers to loads NU/r2, which — not in equilibrium
themselves — are balanced by a suitable load a cos ¢ + b sin . The reason
of this discrepancy obviously is due to the fact, that in section 3 in the
expression for N (25) the terms cos ¢ and sin ¢ and in the expression
U (25) the terms cos lp and sin lp (I = = 1 mod p) explicitely have
been suppressed. Not before these exclusions should have been raised and
the congruences (29) should have been completed with [ = + 1 mod p,
(mechanically spoken, not until the buckling problem treated in sect. 3
should have been extended to such cases, in which the supplementary
buckling loadsystem — eventually not in equilibrium itself — is balanced
by a suitable radial loadsystem of the type (a cos ¢ + b sin ¢)), complete
conformity between egs. (24) can exist. Obviously this conformity is
formally indispensable if the theorems connected with eq. (32) shall be
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transferred to eq. (24); especially if it is stated that any arbitrary function
V(@) can be expanded into a series of the characteristic functions of (24).
On the other hand it is seen at once that two characteristic functions U %
and U9 relating to two different congruences ! = q; mod p and [ = q»
mod p, never will have any cos. or sin. term in common. Consequently the
statement can be made — which is essential for the method to be developed
hereafter — that any arbitrary Fourier-series, containing only terms cos lp
and sin Iy for which [ = q; mod p, can be expanded in the characteristic
functions U ! relating to the same congruence ! = g, mod p. For if we put

Vap=ar U . - . . . . . . (39

where in the righthand side the summation provisionally must be extended
over all characteristic functions of (32), the coefficient ax is given by

22
a=Nolo) [Vo ) Uslprde . . . . . (69
0
provided that the characteristic functions have been normalized such that
2‘.1
beu@z&a@d¢:q. R ¢ V)
0

Obviously the righthand side of (35) is zero for every function U¢:, which
does not belong to the class of characteristic functions, defined by the
congruence ! = q; mod p. For (possibly apart from a constant term), the
product No(tp)UZ-z consists of the same terms as U$: itself (comp. (24))
and therefore has no terms in common with V% (¢), which was supposed
to consist of the same cos and sin-functions as ug. The expansion (34)
therefore reduces to

Vo (p)=Xaud? . . . . . . . . (37

5. The iterative method. It has already been stated that every con-
gruence (29) defines a distinct infinite class of characteristic functions U«
and a set of corresponding characteristic numbers 2« (]2, <|Zo| <|23]...).
To find the smallest of these numbers we start with an arbitrary function
V (@), containing only such cos and sin terms as appear in the functions
Uy, so that it can be represented by

m:?aw........(m

From this function we derive another one, defined by the differential
equation

N, r? ® ay r> Ny Uk

+C . . . (39
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and the condition that it does not contain terms of the type a + § cos ¢ +
7 sin @ (C being a constant to be determined a posteriori). Obviously Vo
is represented by

szza"lf”‘ N € (1)

for on account of the relations

U;+Uk:lkg’;rzuk+lk k=1,2,..) . . . (4])
(comp. (24)) eq. (39) can be written as
Vi + sz[i"’—"yu"]#{ s U"}L c-$%hk .
1 k 1 1

By the appointment, that C must be chosen such that C —E'aklkllk is zero,
1

(40) follows from (42). If now analogously a third function V5 is derived
from V,, a.s.0. we find successively

u u sy I gax U
Va-—lzak £ V3 “Z'§%ka,. -V _Zalkn lkt Vn+l_2al’;'le
and therefore
o (A \"!ay
U|+2( l) _Uk
lim 2 =1im"”‘Lf".3j"""U"_1m M =1 (43

n-1
n+o Va1 now Ak T A" =¥ U1+2( ) ?Uk
1

In practice the iteration process can be stopped as soon as two consecutive
functions Vm and V1 are practically similar, 1, then being approximated
by the slightly varying factor of similarity Vm(@): Vmii1(p). The
approximation can be refined and the numerical work efficiently reduced
by putting 3)

fNo Vm Vm+]d(P f No an d(P
either 4, 2 5= or 4, 2 5= . (49

f No m+l fNo Vm Vm+|d(p
0

By using these formulae the iteration can be stopped at very low values of
the index m (m =1 or 2).

The iterative method is not restricted to the calculation of the smallest
characteristic number 4, but can as well be used if 4, (or any higher
characteristic) number should be required. We only have to start with an

3) Comp. footnote 4.
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initial function V', which does not contain the first characteristic function
U;. The way, in which an arbitrary function V; can (approximately) be
“cleaned” from U,, and the way in which the iterations of such a nearly
cleaned function Vy can themselves be freed from rests of U;, which they
might contain, will not be treated here 4).

6. The iteration scheme. The only thing still to be described is the
scheme along which the iteration has to be performed in fact. Let, to fix
our mind, N be given in the simple form

N=INy=1(1 +ecoskp) . . . . . . (45

and let

Vi=coslp . . . . . . . . . (46)

be our starting function, ! representing any number, which is compatible
with our problem. Then V, must satisfy the equation

2 \
vy + sz—glcosl(p(l +ekcosk(p)+C:—£TI|:cosltp+(
 (47)
+%‘cos(l-}—k)q:-{—%‘cos(l—k)cp]—!—c 5

4) Comp. f.i. J. ]. KOCH: Eenige toepassingen van de leer der eigenfuncties op vraag-
stukken uit de Toegepaste Mechanica, Doctor Thesis 1929 Delft, or C. B. BIEZENO und
R. GRAMMEL, Techaische Dynamik, III, 14, 15, Springer 1939, Berlin. In these treatises
only the first mentioned approximation is discussed but the second one can analogously
be verified. It may be stated here without proof, that from the four approximations

fNo 2y d ‘JNoV -1 Vmde fN detp

. .
’ 2a H ’

fNo Vi de f N, V2, fNoV,,, Vi d

fNo Vi Vin d(P
ll — 2 2n _

f N, Vi, dy
0

each one excels the foregoing in accuracy provided that all characteristic numbers are
positive. If negative characteristic numbers occur, the statement becomes doubtful with
respect to the third and second approximation, though in general it may be expected that
in this case too the statement holds true,
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from which we deduce
R —1

£ 2 '

= Z)El[cosltp—l—ezk([ (E—1) cos(l—l—k)q)—l—)
(48)

The condition that no constant term shall be present in V', requires either
C=0 (if k=£1) or C:———%k(l?—l): [(I—k)2—1] (if k=1).
Furthermore it may be emphasized that the factor r2: (/12— 1)EI repre-
sents the constant normal force N in the crosssections of a ring subjected
to the critical normal pressure ¢ = (/12— 1)EI/r3. By placing this factor
before the [ ] brackets a convenient comparison is made possible with this
case of buckling. For if we write

\ . l'2 n—1 . .
v, = ((1’ 1)51) Vighi.... Vo= ((zz )E1> Vi) (49)
the characteristic number 2; will be represented by

_ 1%
_(@—nEI

2

L= h

n— o Vn+l r

(50)

=y 8 Vn+l
and the corresponding critical load by

(12— 1)51

*

+ ex cos k) lim V—," . (51)

n=> o ¥y

A
q=", (1 +excoske) =

If we compare the functions Vi (=V,) and V we see that V7 (apart
from the constant C) is composed of the unchanged function V] and of
well defined multiples of the two functions cos (I + k)¢ and cos (I—k)¢.
The function V} consequently can be deduced from V} by applying the
same law of development to each of the individual terms of V73; and obvi-
ously the same holds for any following iteration V=V V,—> V; aso.

Table I shows for k = 4, ex = 4, | = 2 now the successive iterations
best can be performed.

The columns of Table I are provided with the superscriptions cos 2¢, cos
6, ... cos (2+ (n—1)4)p, and the corresponding factors (22—1):
(22—1), (22—1) : (62— 1) a.s.o. As starting function has been chosen
cos 2¢; it is represented by the number 1 in the first row and first column.
As stated before this term gives in the first iteration rise to certain multiples
of cos —2¢ and cos 6¢p (comp. 48). If, provisionally, only attention is
given to the multiplicatior &/2 = 0,25, the number 0,25 X 1 should be
shifted one place to the left and one place to the right. As cos — 2¢ = cos
2@, the numbers destined for column cos —2¢ (not present in table I),
can be placed in the column cos 2¢, and this indeed has been done as can
be seen from the first number in the second row in table I. Thereupon the
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numbers placed above the first short horizontal line in Table I have been
summed up to find the coefficients of the product W} = N,V} (comp. eq.
(47)). Multiplication of these results with the multiplicators mentioned in
the heads of the columns gives the coefficients of the required function V'

V; =125000cos 29 + 0,02143 cos 4. . . . . (52)
TABLE 1.
=2 2-1_ [2=1_3 [ 2-1_1 [ 2-1_1
k=4 221 62—1 35 [ 102—1 33 | 142—1 65
4 =14 cos 2 ¢ cos 6 ¢ cos 10 ¢ sos 14 ¢

.00000
.25000 - 0.25000

1
0

Wi =NoVi | 1.25000 0.25000
1
0

vi .25000 0.02143
.31250 0.31250
0.00536 0.00536
W32=NoV3 | 1.56786 0.33393 0.00536
v 1.56786 0.02862 0.00017

0.39197 0.39197 g
0.00716 0.00004 0.00716 0.00004

W3 =N,V3 1.96699 0.42063 0.00733 0.00004

Vi 1.96699 0.03605 0.00022 0.00000
0.49175 0.49175
0.00901 0.00006 0.00901 0.00006

Wi=Ny Vi 2.46775 0.52786 0.00923 0.00006

Vi | 2.46775 | 0.04525 | 0.00028 | 0.00000

vi/vi 0.7971 0.7939 0.7727 —

vi/ Vs 0.7910 0.7967 0.7856 -

wi vi 1.25000 | 0.00000 | 0.00000 | 0.00000 | 3i _ .o
w1 V2 1.56250 0.00536 0.00000 0.00000 | 22

w3 V3 1.95983 0.00710 0.00000 0.00000 | X _ o o000
w3 V3 2.45818 0.00956 0.00000 0.00000 | 22

w3 V3 3.08396 | 0.01204 | 0000000 | 0.00000 | 2 _, ,o-00
W3 Vi 3.86905 0.01516 0.00000 0.00000 | =2

Wi Vi 4.85404 | 0.01903 | 0.00000 | 0.00000 | = _ so-00
Wi Vs 6.08979 0.02389 0.00000 0.00000 | 22

(In controling this step, the reader has to pay due attention to the fact,
that the factor (12— 1) : [(I— k)2 — 1] of the third term between brackets
[ ] of eq. (48) has the value one in virtue of k — — 21). The coefficients
of V3 again are shifted one place to the left and one place to the right after
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having been multiplied with the factor ex/2 — 0,25, under the understanding
that every number destined for column cos — 2¢ be placed in the column
cos 2¢. The numbers thus obtained (and placed beneath the first long
horizontal line of Table I) are added, — giving as result the coefficients of
W; = N,V; — and these coefficients in their turn have been multiplied
by the factors 1, 3/35, 1/33 .... In this way we find

V; = 1,56786 cos 2 ¢ + 0,02862 cos 6 ¢ + 0,00017 cos 10¢. . . (53)

As will be seen from Table I the iteration has been pursued up to V3. Then
the quotients of the corresponding coefficients of V3 and V3 (resp. of V7
and V}) have been calculated and it may be stated that a high degree of
similarity between these coefficients exists. Clearly the factor of propor-
tionality is best approximated by the figures in the first column and there-
fore we put:

4, =0,7971. 3EI N - 7))

Il we should have used the second of the formulae (44)

2n

f N, Vi dp N, V& do
7 = _(P—1)EI % _
1 = — pr 2x -
fNo V Vm+l d()? J No Vm Vw+l d‘P
2 (55)
W Vnde
__3EI §
- t'2 2a

Wi Vi e
we should have found (with m =1, 2,3, and 4): 4, = 0,7973; 0,7971;

0,7971; 0,7971 3TE27 respectively 5). It appears that, even if we had stopped

the iteration with V7, the relative error in 1; would have been less than
1/4000. ’
Some additional remarks with respect to the iterative process have to
be made. Firstly it must be stated, that in the case just treated the iteration
could as well have been started with V; = V] = sin lp, [ again represen-

5) The work to be done in computing these successive approximations for 1; is

2n
represented in the last 8 rows of Table I. Obviously an integral such as f Wi V3 dp

X 0
can be evaluated by multiplying the corresponding coefficients of WY1 and V3 and by
summing up the so-acquired products.
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ting a number compatible with our problem. Then we should have found 6)

s rP—1
Vz—(lz—____l)m[smhp'f-z(l_l_k)z sin(l+k)p +

56
&k 12 1 ( )

2 I—h—1 sin (I — k) q:]

The same scheme of calculation as given in Table I can be used here,
provided that the superscriptions cos 2¢, cos 6¢ ... be replaced by sin 2¢,
sin 6@ ...; it must, however, be put in mind, that the transition of a term
sin ({—k)g from the column sin (I—k)g to the column sin [[—k|¢
involves the introduction of a factor (—1). It would be found that the
characteristic value 4;, calculated in this way is greater than the first one.
If V| = cos lp + sin lp had been chosen as the starting function one is
invariably led to the first characteristic value (54) and to the corresponding
characteristic function. A slight modification would occur if the special
case N = 1 (1 + &, cos 2¢), (k = 2) would be examined. It may be left
to the reader to iterate once with V] = cos 2¢ and once with V] = sin 2¢
as starting functions. He will be led to the same characteristic number 2,
and to two linearly independent characteristic functions!

A second remark refers to the fact, that a slight complication appears if
N = 2 (1 + & cos kg) is replaced by N = 4 (1 + & sin k). Obviously
we then have to start with a function composed of cos and sin terms, for
instance V| = a cos lp + B sin lp. The first iteration, defined by

V) + V2:——Er——21[acoslq>+ﬁsinlq)] [1 + exsinke] +C . (57)

then proves to be

v __ ar ar? + ’2— I+ k) 2—1 .
@—1)EI| 2(I+k)2 yoin (K e— 2(1 =1 ¥n

r2

r—1
(l—k>¢]+( ﬂl)E,Lsmhp % sy s Ro e (58)

&k 12——1
+ é- (I——k)z———l Ccos (l—-k) (p] -I- C.

Again the constant C is determined by the condition, that ultimately no
constant term in V, is allowed.

Table II represents the scheme of iteration, adapted to this case, with
ex =1, k = 2, and cos 2¢ + sin 2¢ as starting function. It has, for the
first three iterations been indicated by asterisks and cross-signs how the

6) The constant of integration C of eq. (48) vanishes here under all circumstances as the
sine-functions in (56) for no siagle value of k give rise to a constant term.



TABLE I

L

1=2 21, 2_-1_3 2—1_3 2—1_1 | 2-1_1
—2 I 21 3 62_1 35 821 33 | 1021 33
’kzl cos 2¢ sin 2¢ cos 4¢ sin 4¢ cos 6¢ sin 6¢ cos 8¢ | sin 8¢ cos 10¢ sin 10¢

vl 1.00000* * | 1.00000* ) i
—0.50000¢ | 0.50000* §
Wi || 1.00000 1.00000 || —0.50000 0.50000%" '
v 1.00000* | 1.00000¢ || —-0.10000** |  1.00000%
0.05000= | 0.05000** | —0.50000* | 0.50000* || —0.05000= | — 0.05000**
W2 . 1.05000 1.05000 | —0.60000 | -0.60000 || —0.05000 | —0.05000
vi |l 1.05000* | 1.05000 || —0.12000** | 0.12000% || —0.00429***| —0.00429*
0.06000% | 0.06000% | —0.52500¢ | 0.52500 || —0.06000%x | —0.06000**
[ —0.00214%  0.00214*** 0.00214%x | —0.00214***
w3 1.11000 | 1.11000 | —0.64714 " 0.64714 | —0.06429 | —0.06429 || 0.00214 | —0.00214
v 1.11000 1.11000 || —0.12943 0012943 || —0.00551 | —0.00551 || 0.00010 | —0.00010
0.06471 0.06471 —0.55500 0.55500 || —0.06471 | —0.06471
—0.00276 0.00276 0.00276 | —0.00276
‘ . —0.00005 | —0.00005 0.00005 0.00005
wi 117471 | 1.17471 —0.68719 0.63719 || —0.07027 | —0.07027 || 0.00286 | —0.00286 0.00005 0.00005
ve || 117471 | 117471 || —0.13744 | 0.13744 || —0.00600 | —0.00600 || .0.00014 | —0.00014 || |
vi/vil o946 [ 00946 || o942 | o922 || o9 | o098 || — | — [ - | -
Wi Vi 1.00000 1.00000 3| =2.00000 3 _
¥ 5+ =0.95238
W1 V3| 1.00000 1.00000 0.05000 0.05000 >, = 2.10000 2
W3 V3 | 1.05000 1.05000 0.06000 0.06000 0.00000 0.00000 3} = 2.22000 21 _ 0.94491
W3 V3| 1.10250 1.10250 0.07200 0.07200 0.00021 0.00021 3 =2.34942 2
W3 V3| 1.16550 1.16550 0.07766 0.07766 0.00028 0.00028 3 = 2.48688 21 _ 0.94473
W3 Vil 1.23210 1.23210 0.08373 0.08373 0.00035 0.00035 3, =2.63236 =3
Wi Vi ‘ 1.30393 1.30393 0.08894 0.08894 0.00039 0.00039 3\ =2.78552 21 _ 0.94470
Wi V3| 1.37994 1.37994 0.09445 0.09445 0.00042 0.00042 3, =12.94962 2

(44
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different figures have to be shifted. As to the iteration it will be seen, that
the first figure of V7 has been placed (multiplied by /2 = 1/2) on the
fourth place of the next row; the second figure multiplied by — ¢5/2 on the
third place; the third one, multiplied by £,/2 and — &,/2 respectively on
the sixth and second places; the fourth one, multiplied by — &5/2 and &5/2
respectively on the fifth and first place. Then the corresponding figures of
the two rows under consideration have been added, and the results have
been multiplied by the factors inserted in the headings of the columns. The
iteration has been stopped with V3 and it is seen by comparison of V7 and
V. that the required smallest characteristic number 1; (with considerable
approximation) can be represented by 1 — 3El/r2.0,946. The second
formula (44) leads for m =1, 2, 3, 4 to the following .values

Ay = 0,95238, 0,94491, 0,94473, 0,94470

and it is confirmed again that much labour can be saved by the use of this
formula.

7. The compressive force N = ANy = A(1 4 2 cos kg). In this section
the numerical results are collected, with regard to the special normal force
distribution N = 2 (1 + 2 cos kg), up to k = 12. The example has chiefly
been chosen to get an insight in the influence of a strong fluctuation of N
with respect to its mean value on the buckling force of the ring. As has
already been stated in sects. 3 and 4 that for every value of k the buckling
problem is split up into (k—1)/2 or k/2 separate problems connected with the

k—1

congruences | = =g mod k (¢ = 0,2,3... —(— orii; the characteristic

2 2

A2

TABLE III. Giving the values of =
(2—1) EI

if N=4(142 cos ko).

70 8 | 9 | 10| n| 12

=~

Z
N
[*N)
=N
wn
=)}

0.8 — | — | ~ = e | el el =] =

0.499| — 0808 — | — | — | = | - | = | = | =
BIB] — | = OB = f 2] = | =] = | =] =
OBl0fOARE] — | — (@B — { — | — = | = |
0.866/0.63¢| — | — | — 1079 — | — | — | — | —
0.899|0.728| 0.487| — | — | — 079 — | — | — | —
0.922) 0.789| 0.598| — | — | — | — |0.798 — | — | —
0.937| 0.831] 0.679| 0.486| — | — | — | — 0.7 — |

0.948| 0.862| 0.738 | 0.577  — ' o} o | o | = [0 =
0.957( 0.885| 0.782 0.647 0.4861 |

O 00 N O U1 b W N

P
N — O
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functions of each of these problems is built up of terms cos lp and sin lp
in which ! is determined by one of these congruences.

Table III contains all values of 22: (12—1)EI for 2§’; <12. It may

be emphasized that for any prescribed number ! the smallest value of 2
corresponds to k — 2I. This fact becomes explicable by the consideration
that for k = 2 the angles both of maximum and minimum deflection coin-
cide with those of maximum compressive force N.

8. The compressive force N = ANy = 4 (1 + &5 cos 2¢ + &4 cos 4¢),
&y = 2, ¢4 = 1; the second iteration. As an illustration how to handle the
iterative method if the compressive normal force has a more complicated
form like N = 4(1 + 2 cos 2¢ + 4¢) and how to act if apart from the
first characteristic function the second one should be required, we insert
in this section Tables IVa, and IVb, from which all necessary data can
be borrowed. The starting function V7 is represented by cos 2¢. This term
has to be shifted one place to the right and one place to the left after multi-
plication with the factor 52 = 1 on account of the term &, cos 2¢ in N.
The shifting to the left gives a term in the column cos Op which must be
suppressed (comp. sect. 6). Furthermore the starting term cos 2¢ has to
be shifted two places to the right and to the left after multiplication with
the factor ¢4/2 = 1/2 on account of the term &, cos 4p in N. The shifting
to the left provides us with a term in the column cos — 2¢, which there-
fore must be placed in the column cos 2¢. Summation of all terms occurring
in the different columns gives the coefficients of the function W7 . Finally
these coefficients have to be multiplied by the factors 1, 1/5, 3/35 ...
mentioned in the heads of the columns, to obtain the coefficients of the
first iteration V. Analogously the terms of V; have to be shifted one
place to the right and left after multiplication with the factor £5/2 and two
places to the right and left after multiplication with the factor e4/2, with
due regard to the fact, that every number in the column cos 0. ¢ has to be
suppressed and every number in the column cos — 2¢ has to be transported
to the column cos 2¢. Summing up all terms in the different columns pro-
vides us with the coefficients of W3, whereas multiplication of these
coefficients with their respective multiplicators 1, 1/15 ... furnishes the
coefficients of V73: a.s.o. The iterative process has been carried on to the
sixth iteration V7, though the computation of the first characteristic number
Z; in itself would require no more than the iterations V3 and V. By pro-
ceeding as far as V;, however, great accuracy is obtained in the first
characteristic function U; which is approximated by

U, »» Vi =18,493 cos 2 ¢ + 2,627 cos 4 ¢ + 0,650 cos 6 ¢ +

+ 0,058 cos 8 + 0,007 cos 10 ¢ (39)
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TABLE IVa.
N=1[14+2cos2¢ + cos4p]; .2 =2, ¢4 = 1.

1 1/5 3/35 1/21 1/33 3/143
cos 2 ¢ cos 49 | cos 6¢ | cos 8¢ cos 10¢ cos 12¢
1741 1.0000
1.00007
0500007,
5.00000! |
w1 1.500 | 1.000 |0.500 | |
172} 1.5000 | 0.2000 | 0.043x
1.50007 | 0.2000r | 0.043xr
0.2000! | 0.043x!
0.75000r| 0.100007|  0.022xxr
0.022xx1
0.75000!
w3 2.472 | 1.743 |0.993 |0.143 | 0.043
1721 2.472 0.349 | 0.085 | 0.007 0.001
2.472 | 0.3499 | 0.085 0.007 0.001
0.349 0.085 | 0.007 | 0.001
1.236 | 0.175 0.043 0.004
0.043 0.004 | 0.001
1.236 ] |
w3 4.100 |2.910 |1.678 |0.268 | 0.051 | 0.005
vi 4.100 | 0.582  0.144 | 0.012 0.002 0.000
4.100  6.582 ‘ 0.144 0.012 0.002
0.582 0.144  0.012 | 0.002
2.052 y 0.291 0.072 0.006
0.072 0.006 | 0.001
2.050 | }
Wi 6.704 | 4.832 [2.789 |0.449 | 0.086 | 0.008
%43 6.704 0.966 | 0.239 | 0.021 0.003 0.000
6.70¢4 | 0.966 | 0.239 0.021 |  0.003
0.966 0.239 | 0.021 | 0.003
3.352 | 0.483 | 0.120 0.011
0.120 0.011 | 0.002 |
3.352 1
W5 | 11.142 |7.920 |4.580 |o0.746 | 0.144 | 0.014
Ve 11.142 1.584 | 0.392 | 0.036 0.004 0.000
11.142 | 1.584 | 0.392 0.036 0.004
1.584 0.392 | 0.036 | 0.004
5.571 | 0.792 0.196 0.018
0.196 0.018 | 0.002
5.571
_ We | 18.493  [13.136 | 7.585 |1.22¢ | 0.236 | 0.022
1% 18.493 2.627 | 0.650 | 0.058 0.007 0.000
18.493 | 2.627 | 0.650 0.058 0.007
2.627 0.650 | 0.058 | 0.007
9.247 | 1.314 0.325 0.029
0.325 0.029 | 0.004
9.247 | ,
- W7 | 30.692  [21.799 [12.586 | 2.029 0.390 0.036
Wi V§ | 341.96 ;34.53 4.93 6.07 3, =381.50 §=1,=0.60253
W7 V7| 467.59 57.27 8.18 0.12 3,=633.16| 22
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TABLE IVb. N =1 [1+4 2cos2¢p + cos4p]. o =2, ¢4 = 1.
1 1/5 3/35 1/21 1/33 3/143
cos 2¢ cos 4¢ cos 6@ cos 8¢ cos 10¢ cos 12¢
Vi | 100.000
Vs W7 |3069.200
—4.8474 V7 | —89.643| —12.724 —3.151 —0.281 —0.034 —
Vs 10.357| —12.734 —3.151 —0.281 —0.034
10.357 | —12.734 —3.151 —0.281 —0.034
—12.734 —3.151 —0.281 —0.034 :
5.179 —6.367 —1.576 —0.141
—1.576 —0.141 —0.017
5.179
B w3 1.226 —5.669 | —11.004 —9,833 —1.891 —0.175
Ve 1.226 —1.134 —0.943 —0.468 —0.057 —0.004
Vs Vi 37.628| —24.720 | —11.869 —0.950 —0.022
—0.000106- V7 | —0.002 — — - —
Vs 1.224 —1.134 —0.943 —0.468 —0.057 |  —0.004
1.224 —1.134 —0.943 —0.468 —0.057
—1.134 —0.943 —0.468 —0.057 —0.004
0.612 —0.567 —0.472 —0.234
—0.472 —0.234 —0.029 |  —0.002
+40.612
w3 0.230 —1.087 —1.962 —2.037 —1.001 —0.295
Vio | 0.2300| —0.2174| —0.1682| —0.0970| —0.0303 | —0.0062
VioW? 7.059 —4.739 —2.117 —0.197 —0.012 —
-+0.0000095 V7 0.0002 ]
vio | 0.2302] —0.2174| —o0.1682| —0.0970| —0.0303| —o0.0062
Vit |0.04379 | —0.04078 | —0.03280 | —0.01940 | —0.00659 | —0.00178
Viz |0.008495 | —0.007900 | —0.006375 | —0.003813 | —0.001338 | —0.000379
Vh:vh | s.ss) 5.162 | 5.145 | 5.064 | 4.889 | 4.670

The characteristic number 1; has been computed with the aid of the first

formula (44)

27

% =

!

No V6 V7 d(P

2n

f N, V2 dy

0

r?

27

j N, V2 do

0

J Wi Ve dy

_3EI%

[‘2

2

j W: V; dg

0

2x
f N, Ve V7 do
_3El's

2x

= 0,60253

3EI

\rz

(60) -
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Table IVb is devoted to the calculation of 4. The starting function is
represented by V3- = 100 cos 2¢. The coefficient a, in the development of
V7 into a series of the characteristic functions U

Vs':a,U1+azuz+... L (61)
is given by

2z
J N, Vs U, dp
.0

a = —5 - and approximately by

JNo us de
o

. (62)
meW@
_ 0 ——— —4,847

quﬁw
0

»
a, —

2z

If a; and U, would have been obtained exactly, the iteration process
applied to Vi —a;U,; obviously would lead to the enumeration of the
second characteristic number ,. In reality both U; and a;,; are only
approximately known and therefore, if the process is applied to the function

V;: Vi — a, V; which to a certain (but small) amount contains the first
characteristic function U; — serious difficulties are to be expected. For
indeed, however small the contribution of U, in any starting function may

be, the iteration process always and invariably leads to 1, if U, initially is
present. These difficulties are surmounted by iterating V3 from ‘7;, by
cleaning V7§ from U, o V7 in the same way as V; has been cleaned from
U,, and by repeating this combined iteration and cleaning process till two
consecutive ‘‘cleaned” functions T/:" and _‘7:" 4+ are sufficiently propor-
tional. Here too considerable abbreviation of the cipherwork can be attained
by the use of the formulae (44) if the characteristic number 1, alone should
be required, as will be seen from the results

i, =5,2602, 5,1331, 5,1234, 5,1228 . . . . (63)

which have been found by the first of the formulae (44) with m = 8, 9, 10
and 11 respectively. The second of these values already approximates 1,
quite satisfactory.

The determination of the second characteristic function, however,
requires the continuation up to V7,

V12 = 0,008495 cos 2 ¢ — 0,007900 cos 4 — 0,006375 cos 6 p —

64
—0,003813 cos 8 ¢ —0,001338 cos 10> — 0,000379 cos 12 ¢. € (64)
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9. Negative characteristic numbers. It has already been stated that
dealing with buckling problems one has to expect negative characteristic
values in all such cases, where the normal force N changes its sign. A
negative value of A interchanges the compressed and the stretched parts of
the construction, and a sufficiently great negative 1 therefore causes the
buckling of the initially stretched parts. As an example it may be stated
that with a compressive force N = 2 [1 + 4 cos 2¢] the second charac-

3EI

teristic number proves to be negative, 2o = —2,1133 =, whereas the first
r

3EI
ra

characteristic numbers 2, equals to 1; = 0,6275.



