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§ 1. Introduction.

Let R be a complete (not necessarily separable) HILBERT space. We
shall use the following notations:

[ B , the elements of R.

Aoty eeenns , complex numbers.

TR , the conjugate complex numbers of 2, u, .......

(f. g9) , the inner product of f and g.

e , the non-negative numbers (f, f)"-.

T, K. ...... , bounded, linear transformations in R, that is (for T),

ITf|=M]| f| for a certain M = 0 and T (2f + ug) =
= Tf + uTg for arbitrary 2, u, f. g.

T* K*, ...... , the adjoint transformations of T K, ...... , we have there-
fore (for T) (Tf,g) = (f, T* g) for arbitrary f, g.
H , a bounded, positive, self-adjoint transformation, that is, a

bounded, linear transformation satisfying (Hf,g) =

— (f.Hg) and (Hf,f) =0 for arbitrary f, g.

H'h , the uniquely determined, bounded, positive, self-adjoint
transformation, satisfying (H': )* = H.

N(f) , the non-negative number (Hf, f)':= || H': f|.

I . the identical transformation, If = f for every f.

O , the nulltransformation, Of = 0 for every f.

We suppose that H =~ O. Then the set of all elements f, satisfying
Hf =0, is a subspace [L], not identical with the whole space R. The
orthogonal subspace will be denoted by [M]. As well-known, every
element f € R can be written uniquely in the form f = h + g withh € [L]
and g € [M]. By g = Ef the projection E on [M] is defined; the pro-
jection on [L] is | —E, and we have E =4 O. From H(I —E) f =0 for
every f € R follows Hf — HEFf, so that H = HE.

Two elements f and g will be called H-orthogonal when (Hf, g) =0,
and the system Q of elements is called H-orthonormal when, for ¢ € Q,
y € Q we have (Hep,y) =1 for ¢ =y, and =0 for ¢ £ . The
Haments Fi, Fas oo s Wil b galled Findependent when B ¥ Jifi = 0

i=1

implies 4, = 2y = ... = 2s = 0. Evidently, if f{, f.. ..., fa are H-inde-
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pendent, they are linearly independent,. It is also not difficult to prove that
if the elements ¢y, ..., ¢n form an H-orthonormal system, they are H-
independent.

If Tf = Af for an element f £ 0, this element is called a characteristic
element of the transformation T, belonging to the characteristic value J.
The set of all characteristic elements, belonging to the same characteristic
value 2, is a subspace of R, and the dimension of this subspace is called
the multiplicity of the characteristic value .

The bounded, linear transformation K is said to be completely continuous
when every bounded, infinite set of elements contains a sequence f. such
that the sequence Kf. converges. We shall assume the following theorems
about transformations of this kind to be known:

Theorem 1. If K is completely continuous, the same is true of K*.

Theorem 2. If K is completely continuous, every characteristic value
4 =0 of K has finite multiplicity. The number of different characteristic

values /n is finite or enumerable and in this last case lim /in = 0.
n—» o

Theorem 3. If K is completely continuous, and 1 5~ 0 is a characteristic
value of K, having a certain multiplicity, then 1 is a characteristic value of
K* with the same multiplicity. In this case the equation Kf —if — g has,
for a given element g, a solution f for those and only those elements g that
are orthogonal to all characteristic elements of K*, belonging to the char-

acteristic value i. In the same way the equation K*f — if = g has, for a
given element g, a solution f for those and only those elements g that are
crthogonal to all characteristic elements of K, belonging to the characteristic
value /.

If 7 = 0 is no characteristic value of K, both the equations Kf —if = g

and K*f — Jf = g have uniquely determined solutions for every element g.
In this case the complex number ) will be called a regular value of K.

§ 2. Bounded, symmetrisable transformations.

The bounded, linear transformation K is called symmetrisable (to the
left, and relative to the transformation H), if the transformation HK is
self-adjoint, that is, if (HKf, g) = (f, HKg) for arbitrary [, g. .

Theorem 4. If K is symmetrisable, the same is true of T — EK.
Further Hf — 0 implies Tf = 0.

Proof. From H — HE follows HT —HEK — HK if therefore HK
is self-adjoint, the same is true of HT.

Further (HTg, f) = (9. HTf) or (Tg, Hf) = (g, HTf) for arbitrary
f. g; the relation Hf — 0 implies therefore (g, HTf) = O for every g € R,
hence HTf — 0. Then however Tf € [L], so that, since also
Tf = EKf ¢ [M], we have Tf = 0.

Theorem 5. Let the symmetrisable transformation K be such that
Hf — 0 implies Kf = 0. Then the characteristic values of K are real and
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characteristic elements, belonging to different characteristic values, are
H-orthogonal.

Proof. Let f=£0 and Kf =Af If (Hf f) =0 we see, since
(Hf, f) = | H':f |2, that H':f = 0, so that Hf = 0 or, by hypothesis,
/f = Kf =0, from which follows, on account of f =%40, that 2 =0. If
(HLF) #0 we find A(HE ) = (HALF) = (HKE ) = (k. HKf) =
= ([, H}f) = Z(Hf, f) or 2 = 2, which shows that ] is real.

Let now 2% u, f 540, g £ 0, Kf = 2f and Kg = ug. Then
MHf, g) = (HKf. g) = (f, HKg) = 7 (f. Hg) = 1 (Hf.g) or (A—p)
(Hf, g) =0, from which follows, since 2—pu =0, that (Hf,g) =0.

Remark. Since, even if Hf — 0 does not imply Kf — 0 for the sym-
metrisable transformation K, it does imply Tf — EKf — 0 by Theorem 4,
Theorem 5 is in any case valid for the symmetrisable transformation

T = EK.

In what follows now, we shall assume that K, and therefore also
T = EK, is symmetrisable, while, moreover, T = EK is completely con-
tinuous. Then the following theorems hold 1):

Theorem 6. If HK 5~ O, the transformation T — EK has a charac-
teristic value A =~ 0, that is, there exists an element @ 7% 0 such that
Ty = ig. In the particular case that Hf — 0 implies Kf — 0, the trans-
formation K itself has also the characteristic value ). with characteristic
element p = ¢ + A-1 (I—E)K¢, hence Ky = Jy.

Theorem 7. In the case that Hf = 0 implies Kf = 0, the relations
¢ =Ey, w=¢ + 2-1 (I—E)K¢p define a one-to-one correspondence
between all characteristic elements v of K, belonging to the characteristic
values =~ 0, and all characteristic elements ¢ of T — EK, belonging to the
characteristic values =~ 0. Corresponding elements have the same char-
acteristic value.

As a consequence of Theorem 2, it is possible to range the characteristic
values =£ 0 of T into a sequence Z» such that every characteristic value
=~ 0 occurs in this sequence as many times as denoted by its multiplicity,
while moreover |2, | =|4,| = .... Choosing now in the unitary space
(space of finite dimension) of all characteristic elements belonging to a
certain characteristic value 4 =% 0 a maximal system of linearly independent
elements, we see readily that these elements, say y, ..., zp, are H-inde-
pendent. Indeed, HXa;yi —= 0 (a; complex) implying TZaiyi =0 or
2laiyi = 0, we find in virtue of 2=%0 and the linear independence of
71, .- Jp that a; = ... = ap = 0. Applying now to the elements y,, ..., 2»
a process, wholly similar to SCHMIDT's well-known orthogonalization pro-
cess, we obtain an H-orthonormal system, consisting of p elements, such
that the unitary space determined by this system is identical with the

1) A. C. ZAANEN, Ueber vollstetige symmetrische und symmetrisierbare Operatoren.
Nieuw Arch. v. Wisk. (2) 22, 57—80 (1943).
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unitary space of all characteristic elements belonging to the characteristic
value 2. Doing this for all characteristic values =% 0, we may range the
elements of all these H-orthonormal systems into a sequence ¢u, such that
for every value of n the element ¢. belongs to the characteristic value Zn.
Evidently the whole sequence ¢ is also H-orthonormal, since for Am = Za
the relation (Hopm, @n) = 0 follows from our definition of the sequence @
and for 2m 5% 1a this relation follows from Theorem 5. In the special case
that Hf — 0 implies Kf — 0, the transformations K and T = EK have,
by Theorem 7, the same characteristic values =% 0, and it may be verified
readily that every characteristic value =% 0 has, for K and T, the same
multiplicity. Consequently, denoting by v the characteristic element of K,
corresponding by Theorem 7 with the characteristic element ¢n of T, we
obtain the H-orthonormal sequence .

Then we have ?)

Theorem 8. |2.| = max N(Kf)/N(f) for all f satisfying the con-
ditions N(f) =# 0 and (Hf. ¢,) = ... = (Hf, ¢,_,) = 0. For f = ¢n the
maximum is attained. Further HKf — 0 or, which comes to the same thing,
N(Kf) = 0 if and only if (Hf, gn) = 0 for every value of n.

In the particular case that Hf — 0 implies Kf = 0, the elements ¢ may
be replaced by the corresponding elements v in both parts of the theorem.

Theorem 9. If an = (Hf, ¢n), then

k
klim N(Kf— 2 Anangn) =0 (Expansion Theorem),
> »

n=1

(HKf. )= 21 an|?
for any element f.

In the particular case that Hf — 0 implies Kf = 0, the elements ¢, may
be replaced by the corresponding elements wn.

Theorem 10. Let 1,, (i =1,2,...) be the subsequence of all positive
characteristic values where Jny = Jny = .... Then 2o, = max (HKf, f)IN*(f)
for all f satisfying the conditions N(f) ~0 and (Hf, @n) = ... =
= (Hf, @n; ) = 0. For { = @a, the maximum is attained.

A similar statement holds for the subsequence of all negative characteristic
values:

In the particular case that Hf — 0 implies Kf — 0, we may replace the
elements ¢ by the corresponding elements .

In the last theorem the characteristic value 1., was characterized by a
certain maximum property. It is a disadvantage however that for this
characterization the elements @ny, ..., gn;, , must be known. The question
arises therefore whether this may be avoided. That this is indeed the case,
is shown by the following theorem:

Theorem 11. Let the elements py, ..., p, | be arbitrarily given and let
i = upper bound (HKF, f)/N?(f) for all f satisfying the conditions

2)  See 1).
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N(f) # 0 and (Hf,p;) = ... = (Hf. p,_,) = 0. The number i depends
evidently on the elements p,, ..., pi_1. Letting now these elements run
through the whole space R, we have An; = min ui.

A similar statement holds for the negative characteristic values.

Proof. We shall prove first that it is possible to find an element
f_—_,\iﬁl Ck @n, such that the conditions N(f) = 1 and (Hf,p;) = ... =

= (Hf,p,_,) =0 are satisfied. These conditions are equivalent with
i i
kZ' e P=1 ande' ck (Henp pr) =0 (h=1,...,i—1),
=1 =il

and it follows immediately from a well-known theorem that the i — 1 homo-
geneous linear equations

k§|ck (Honpn)=0 (h=1,...,i—1)

i
have indeed a solution ¢y, ..., ¢; for which 3 |c«|* = 1. Observing that
k=1

(HK ¢nygs @ny) =(HT ¢nyo @ny) = 4ny and
(HK‘Pnkv Pn)) = (H T‘Pnk- ‘7‘_:':1) =0

i
for k £ I, we find then for f = 3 ck ¢n, the inequality
k=1

(HKf,f)/Nz(f)Z(HKf.f):kIZ_leEI(HK%k-<Pn1):
= 2,' ;-nk|Ck|2;Zn,- > [Ck|2:'ln,-3
k=1 k=1

it is clear therefore that «; = Za,. On the other hand we have, by Theorem
10, for

Pr=Pny - Pir =qn;_, (Hf p)=...=(Hf pi21) =0,
the relation max (HKf, f)/N2(f) = a,. Hence Z,, = min 1 3).

§ 3. Expression of the solutions of Tf —if = g and Kf —if = g in
terms of the characteristic elements.

We suppose again the transformation K to be symmetrisable and the
transformation T = EK to be completely continuous. Then, if 2 %0 is
not one of the characteristic values 4n #0 of T, it is a regular value (see
Theorem 3), on account of Theorem 3 the equation Tf—if = g has
therefore a uniquely determined solution for every element g. If on the
other hand 1 is identical with one of the characteristic values /., the
equation Tf — Af = g has a solution f for those and only those elements

3) Compare R. COURANT und D. HILBERT, Methodea der Math. Physik 1, Ch. III,
§ 4, 3.
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g that are orthogonal to all characteristic elements of T*, belonging to the

characteristic value 4. Since however all numbers 1. are real, we see that g
must be orthogonal to all characteristic elements of T*, belonging to the
characteristic value 4.

Theorem 12. For 1 =£0, the equation Tf—Af = g has a solution f
for those and only those elements g that are H-orthogonal to all char-
acteristic elements of T, belonging to the characteristic value 1. (If 7 is no
characteristic value of T, this means that g may be any element.)

In the case that Hf — 0 implies Kf — 0, the same statement holds for
the transformation K.

Proof. We shall prove first that, if the p-dimensional unitary space of
all characteristic elements of T, belonging to the characteristic value 4, is
determined by the linearly independent elements yy, ..., 7p, the p-dimen-
sional unitary space of all characteristic elements of T*, belonging to the
characteristic value /, is determined by Hyy, ..., Hyp. Indeed, the relation
Ty = }yz implies, for every f, '

(T°Hy, f) = (Hy, Tf) = (3, HTf) = (HTy, {) = (1Hy, {):
hence T*Hy — )Hj. The elements Hy,, ... Hyp are therefore characteristic
elements of T*. We have still to show that they are linearly independent.
This follows from the fact that

p P
YaiHyi=0o0r H X a; 7i=0
i=1 i=1

implies

T flai ¥i=0 or 2{‘: da; 1 =0,
co that, since 2 % 0, we have a; = ... = a, = 0. Finally we observe that,
if g is orthogonal to an element Hy, this means that g and y are H-ortho-
gonal. The result is therefore that Tf — if — g has a solution f for those
and only those elements that are H-orthogonal to all characteristic elements
of T, belonging to the characteristic value 1. Evidently this solution is only
determined to within an arbitrary linear combination of these characteristic
elements. This completes the proof of the first part.

Let now Hf =0 imply Kf — 0. Then, since H = HE or H(I —E) = O,
we have also K(I—E) = O or K = KE. We shall prove now that if
one of the equations Kf—if =g and Tf—Af = g has a solution, so
has the other. Indeed, from Kf—Iif —g follows, since K = KE,

TEf— JEf = EKE}f — JEf = E(K[—if) =Eg=g— (I—E)g,
hence TEf — J(Ef — A-1(I — E)g) = g or, on account of T(I—E)g =0,

T(Ef —2-'(I —E)g) — MEf —1-1(I —E)g) = g.
The element f; = Ef —1-1(I —E)g satisfies therefore the relation
Tf—24,=g.
Conversely, from Tf — Af — g we infer
Kf—if = EKf + (I —E)Kf—f = g + (I — E)K[,
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hence Kf — A(f + 2-1(I — E)Kf) = g or, on account of K(I — E)Kf = 0,
K(f + i-t(I —E)Kf) —A(f + 2~ (I —E)Kf) = 0.

The element f, = f + A-1(I — E)Kf satisfies therefore the relation

Kf, —if; = g.

Thus we find that the equation Kf — Af — g has a solution f for those
and only those elements g that are H-orthogonal to all characteristic
elements ¢ of T, belonging to the characteristic value 2. Observing finally
that (Hg, ¢) = 0 is equivalent with (Hg, w) = 0, where y is the char-
acteristic element of K corresponding with ¢, we obtain the desired result.
Evidently the solution of Kf — if = g is only determined to within an
arbitrary linear combination of the characteristic elements of K, belonging
to the characteristic value 1.

Theorem 13. Let 2 = 0, and let the element g be H-orthogonal to all
characteristic elements of T, belonging to the characteristic value 2. (If 1
is no characteristic value, the element g is therefore arbitrary.) Then every
solution of Tf— if — g satisfies the relation

’ )‘ﬂ
lim N<f+ + V manwn)zo.

k— x n=1

where an = (Hg, ¢n) for In % 1, and where 3’ denotes that for those
values of n for which in = } the coefficient of ¢n has the value-(Hf, ¢n).
For every set of arbitrarily prescribed values of the latter coefficients there
exists a solution of Tf —if = g.

In the case that Hf — 0 implies Kf = 0, every solution of Kf —If = g
satisfies the relation

An
lim N(f—{- + Zl m_—ln)an wn) =0,

k—> o

where an = (Hg, ya) for An 5% 1, and where X’ denotes that for those
values of n for which 2n = 1 the coefficient of yn has the value-(Hf, vyn).
For every set of arbitrarily prescribed values of the latter coefficients there
exists a solution of Kf —If = g.

Proof. Let Tf—if —g. Writing b, = (Hf, pa), we have by
Theorem 9

lim N(Tf— Z An by (p,,) = lun N(Kf— Z' An bn?’n) =0,

k—> »
hence
lim N(if—{—g—Zlnbnq)n)_O. s » o« m m (1)
k—> o
From
(HTF, ¢n) = (f. HT@n) = (Hf, An ¢n) = 4n ba
we derive

lnbn:(HTf' ‘Pn):(H(Q'*'}‘f)-‘Pn):an‘{"lbm
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so that for An =~ ] we find bn = —an/ (2 — 2a). It follows therefore from
(1) that
k ;n |
lim N [+ 27 n®n| —
k— o n=1 4

L .
_llm N(f—{- + 2 "'}U )a,,tp,,):O.

Since, if g is given, f is determined to within a linear combination of those
elements . for which 2, = , there exists a solution f for every set of
arbitrarily prescribed values of the coefficients bn = (Hf, ¢a) for these
values of n. This completes the proof of the first part.

The proof of the second part runs in a similar way, substituting every-
where K for T and . for ¢n.

§ 4. Self-adjoint transformations as a special case of symmetrisable
transformations.

Identifying the bounded, positive, self-adjoint transformation H £ O
with the identical transformation I, we see that the subspace [L] of all
elements satisfying Hf — If — 0 contains only the nullelement, so that
the orthogonal subspace [M] coincides with the whole space R. The
projection E on [M] is therefore the transformation I. The notions of H-
orthogonality and H-independence are now identical with the usual notions
of orthogonality and linear independence, while N(f) = || f||. That the
bounded linear transformation K is symmetrisable means now that IK — K
is self-adjoint, further-we have T — EK = K.

A bounded symmetrisable transformation K such that T — EK is
completely continuous is therefore in this case simply a completely continu-
ous self-adjoint transformation K. The condition that Hf — If = 0 implies
Kf = 0, is always satisfied. The Theorems 4 and 7 lose their meaning; we
leave it to the reader to pronounce the other theorems for this case.

§ 5. Transformations of the form K — AH, where A is self-adjoint.

Theorem 14. If A is a bounded, self-adjoint transformation, the trans-
formation K = AH is symmetrisable. Further Hf — 0 implies Kf = 0.

Proof. (HKf,g) = (HAHf,g) = (f, HAHg) = (f.HKg): the trans-
formation HK is therefore self-adjoint, in other words, K is symmetrisable.‘
The proof of the second part is trivial.

Making now the assumption that one at least of the transformations A
and H is completely continuous, the transformation K —AH is symmetri-
sable and completely continuous. The same holds then for T — EK. All
theorems in §§ 2—3 are therefore valid for the transformation K. It is
possible, however, to prove somewhat more.

Theorem 15. (Expansion Theorem.) If vi is the H-orthonormal
sequence of characteristic elements of K = AH, belonging to the sequence
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of characteristic values 1i = 0, and if ai = (Hf, y:), then
Kf =2%iaiyi+p.
where Hp = 0. For n = 2 we have
Krf=23a"a; yi.

Proof 1). We observe first that, the system yu being H-orthonormal,

the system H': vy, is orthonormal, since (Hyu, yx) = (H': vy, H':yy).
K

Writing ai = (g, H' i) for an arbitrary g, the sums sk = 3 ai H'ly,

i=1
converge therefore to an element h. Taking g = H':f, we find then

ZaiH':y;— h, where a; = (H'l: f, H'hy) = (HF, yi). From this we derive
AH’/“h :AH"ﬂZ'a,- HI/'-' l/’iZEaiAHl;'i:Zl,' ai yYi.

The convergence of the series XZ:aiy enables us now to make k — < in
the relation

3 k
fim N(K[— S a,-tp,-) —o,
k—> o =1 /
proved in Theorem 9. Writing Kf— 2 4ia; yi — p, we obtain then
N(p) = 0; hence, N(p) — 0 being equivalent with Hp = 0,
Kf =Z2%iaiyi +p,
where Hp = 0.
From this we deduce
K*f=%laKyi+Kp=2X2a;y:+ Kp,
but, since Hp = 0, we have Kp = AHp = 0; hence
K2f = X X% a; yi.
The relation
Krf=222a;yi
for n > 2 follows easily by induction.

It may be asked whether the element p, occurring in Theorem 15, is not
always identical with the nullelement. The answer to this question is
given by

Theorem 16. The element p in Theorem 15 is not necessarily identical
with the nullelement.

Proof. Let R be a complete, separable HILBERT space in which ¢» is a
complete orthonormal system, and let ug, uy, ... and »3, »4, ... be sequences
of positive numbers for which lim un = limvs =0 and uz3> uy > ...,
v, > vy > .... Defining the positive, self-adjoint transformation H and the
self-adjoint transformation A by

He =¢, Hp,=0. Hp;, =, ; (i=3:% .4
Api=q Ap,=¢, Ag, =7 i (i=3,4,...)

4) This proof is simpler than that in 1).
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it is not difficult to see that both H and A are completely continuous. We
have

AHop,=q¢,, AHp,=0, AH p; =v; i pi (i=314...).
To find the characteristic elements of AH belonging to characteristic values
=% 0, we write AHf = Af for f = > aiqpi and 2 =£0. From this we
i=1
derive
a V’z—i—%’"i#i aipi= Zl')»ai Pis

hence a; —=ay, =0 and »iwia; = Jai(i = 3,4, ...). Since wiui & vipr
for i 54 k we have therefore 4 — »xux for a certain value of k(= 3) and
ai = O for i=£k, which shows that the elements arpr (k= 3) are

the only characteristic elements with characteristic values =% 0. Making

them H-normal, we obtain axr = ux—":, so that, by Theorem 15,
AHf=2v(Hf ¢) 0i +p

for every f. Taking f = ¢y, we have (Hf, ¢:) = (Hey. ¢i) = (p1. @i) =0

(i==3) and AHf = AHgp, = ¢,; hence p = ¢» 0.

Theorem 17. Let 1. =~ 0, and let the element g be H-orthogonal to all
characteristic elements of K — AH belonging to the characteristic value J.
(I} % is no characteristic value, the element g is therefore arbitrary.) Then
every solution of Kf — Af = g satisfies a relation of the form

9 M
f=—7 21(/1 z)a"”'+q'

where ai = (Hg, yi) for 4i 5%~ 1, Hq = 0, and where 2" denotes that for
those values of i for which ); = ] the coefficient of v has the value (HFf, ).
For every set of arbitrarily prescribed values of the latter coefficients there
exists a solution of Kf —If —= g.
Proof. Let Kf — /f = g. By Theorem 15 we have
Kf = AHf = X Jibiyi + p,

where b; = (Hf, yi) and Hp = 0. Since, as we have proved in Theorem
13, bi = —ai/(2—2) for Ji =% 2, we obtain
1:
Mf+g=—23 =g avi+p
- i

or

A ;‘l B S
f— > l(l_)‘)az%%-q.
where we have written ¢ — p/2. The last statement of the theorem has
been proved already in Theorem 13.

Theorem 18. The self-adjoint transformation K = H'l: AH': possesses
the same sequence i of characteristic values =~ 0 as the transformation
K = AH. If i is an H-orthonormal sequence of characteristic elements



204

of K, corresponding with the characteristic values i, then H'l:y; is an

orthonormal sequence of characteristic elements of K, also corresponding
with the characteristic values 2i.

Proof. Let Ky = AHy = /i where 2y =~ 0. Then, writing H'ly = y,

we have
Ky=H"AHy=1H"%yp=1y,
where 2y =% 0 since 4 5% 0 and AH':y = AHy = ly 7 0. Conversely, if
If(l — Ay where 1y =% 0, we find, writing y = Ai-1AH 4, that
Hl/e Y = l—]Ex = x;
hence
Klp:AH'/‘lH'lny:AH'/':l:lg),

where Ay =~ 0 since H'Ay = 4y =~ 0. This shows that K and K have the
same characteristic values =~ 0, and that with the H-orthonormal sequence
wi of characteristic elements of K corresponds the orthonormal sequence

H'lyp;i of characteristic elements of K.



