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§ J. Intraductian. 

We suppose the reader to be acquainted with the conlents of the first 
paper bearing the same title, to which we shall refer with I. Let 
a" bi (i = J ..... m) be real and such that ai < bi (i = I. .... m) . Then 
6 = [al ' bI; a2. b2; ... ; am. b m] is an interval in the m-dimensional Eucli­
clean space. The point (xl' x2 ' ... , Xm) in th is space will be denoted by x . 
Further we shall denote the function space of all functions [(x). with 
complex values. such th at I [(x) 12 is summabIe (in the sense of LEBESGUE) 
over 6. by Lim ) (6 ) or L 2 (6) or shortly by L 2 • As well-known. L 2 is a 
HIlBERT space. if addition and multiplication with complex numbers are 
clefi.ned in the usual way. and the inner product of [ and g as 

(f. g) = Jf(x) g (x) dx. 
I:; 

EO that 

Ilfl l = (Jlf l2 dx )112 . 
I:; 

Com'ergence of the sequence Sn (x) to [(x) in the space L2 means that 

'" lim 11 [ - Sn 11 = 0; convergence of the series I [;(x) to [(x) means 
n~ '" ;=1 

n 
that lim 11 [- }; [i 11 = 0; to avoid misunderstandings. we shall say that 

n~", i=1 

0: 

I [;( x) converges in mean to [( x) . and write 
i= 1 

", ' 

f(x) (/) I f;(x). 
i= '1 

reserving the term convergence for ordinary point-wise convergence. The 
interval [al ' bl ; ... ; am. bm; al' b 1 ; ... ; am. bm] in 2m-dimensional Euclidean 
space will be denoted by 6 X 6. and the function space of all functions 
f (x. y) (x. Y € 6 ). with complex values. for which I [(x, y) 1

2 is summabIe 
over 6 X 6. by L~m) (.6) or L~2m). This function space is also a HILBERT 
space with inner product 

({. ghm = J f(x. y) g (x. y) dx dy. 
I:; x I:; 
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so that 

11 {l lzm = ( J I {(x. g)I Z 
dxdg r·· 

b. X 6. 

Convergence in mean of i f;(x. y) to f(x. y) means that 
i=1 

n 

fim 11 {(x.y)- 2{dx.g)l llm=0. 
n-+<1l i=1 

and we shall write 

00 

{(x. y) (/) }; {i (x. g). 
i = 1 

Let now the measurable function K(x. y) be defined in 6 X 6 , such th at 

II K (x. y) Il zm = ( j' I K (x. g)i2 dx dy)' /. 

/, X b. 

is finite, in other words, K(x, y) f L~m) . Then it is well-known that the 
Iinear transformation K in the space L2' defined by 

K {=.! K (x. y) ((y) dg 

f'.. 

is completely continuous. H, moreover. 11 K(x, y) 11 2m ~ 0, the trans­
formation K is not identical with the nulltransformation O . We shall 
consider now the linear integral equation K f - J.f = 9 or 

JOK (x. y) {(y) dY-,l ((x) = g (x) (1) 

f'.. 

where f , gE: Lz, the kemel K(x, y) E: L~m), and }. is a complex number. If 

K(x, y) = K(y, x) for al most all points (x, y) E: 6 X 6, the kernel 
K(x, y) is called Hermitean. It follows easily by FUBINI'S Theorem on 
successive integrations that then (Kf, g) = (f, Kg) for arbitrary f, 9 E: L2' 
so th at in th is case the transformation K is completely continuous and self­
adjoint. 

§ 2. Integral equation with Hermitean kemel. belanging ta L~2m). 

Let K(x, y) E: L~m) be Hermitean. Then the theorems, proved in I (for 
the special case, considered in I, § 4). yield the following results 1): 

1) A part of the theorems in this paragraph was proved in a different way, following 
the method of E. SCHMIDT, by F . SMIT'HIES, The eigenvalues and singular values o~ 
integral equations, Proc. of the Londo:l Math. Soc. (2) iJ (1937) , 255-279. . 



207 

Theorem 1. J;very characteristic value ), "# 0 of (1) has finite multi~ 
plicity. The total number of different characteristic values À.i is finite or 

enumerable, and in this last case lim À./ = O. 
i=r:rJ 

Proof. Follows from J. Theorem 2. 
Theorem 2. The characteristic values are reaI, and characte,ristic 

functions, belonging to different characteristic values, are orthogonal. 
Proof. Follows from I. Theorem 5. 
Theorem 3. If À. # 0 is a characteristic value of (1), this equation has, 

for a given function g(x) € L2' a solution f(x) €L2 for those and only 
those functions g (x) that are orthogonal to all characteristic functions , 
belonging to the characteristic value À.. If À. # 0 is no characteristic value, 
so that it is a regular value, the equation (1) has a uniquely determined 
solution for every g (x) € L2. 

Proof. Follows from the preceding I:heorem and I. Theorem 3. 
Theorem 4. If 11 K (x . y) 112m # O. the equation (1) has a characteristic 

L-'alue # O. 
Proof. Follows from I. Theorem 6. 
Let now ),i ( I À. 1 1 ::> 1 )'2 I ::> ••• ) be the sequence of all characteristic values 

# O. each of them occurring as many times as denoted by its multiplicity. 
and epi (x ) a corresponding orthonormal sequence of characteristic functions . 
Then we have 

Theorem 5. If ai = (f. epI) = J f(x) ept{x) dx, then 

t:. 

J K (x. y) f(y) dy en 1: À.I al epi (x) (Expan$ion Theorem). 

t:. 

J K(x.y)f(x)f(y)dxdy=2À.i laiI2 

for any f(x) € L2 . 

Proof. Follows from I. Theorem 9. 
Theorem 6 (COURANT's Theorem) . Let )'nl (i = 1.2 .... ) be the sub~ 

sequence of all positive characteristic values where À. n1 ;:;: À.n2 ;:;: . . . , let the 
functions pdx) . P2(x) . .. .. Pi_l(X) be arbitrarily given, and let 

fli= upper bound J K(x.y)f(x)f(y)dxdy I Jlfl2dX 
t:. x t:. t:. 

for all f(x) € L2 satisfying J 1 f 12 dx # 0 and 

t:. 

j"fPi dx= . .. =JfPi-l dx=O. 
t:. f). 

14 
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The number fti depends on Pl (x) . .... pi-l (x). Letting now these functions 
run through the whole space L2• we have À.n i = min ftl 2). 

A similar statement holds for the negative characteristic values. 
Proof. Follows from I. Theorem 11. 
Theorem 7. Let À. -:::j:. 0, and let g(x)€ L2 be orthogonal to all char­

acteristic functions of (1). belonging to the characteristic value À.. (If À. is 
no characteristic value, the function g (x) is therefore arbitrary.) T hen the 
solution of (1) is given by 

. g (x) ..ti 
((x) (/) - -).- - Z ..t(J.-..ti) ai qJi (x). 

where ai - J g(x)qJ;(x)dx for À.i -:::j:. À., and where~' denotes that for 'those 

6 
['alues of i for which À.i = À. the coefficient of qJ;(X) may have any arbitrary 
value. 

Proof. Follows from I. Theorem 13. 
It is not possible to obtain an expansion theorem for the kemel itself 

directly from the theorems in I. A little consideration will show. however. 
that the following theorem holds: 

Theorem 8. We have 

J I K (x. y) 12 dg = I À.: I qJ/ (x) 12 (or almast everg x € 6. . (2) 

6 

j' IK(x. g) 1
2 dxdg =2 ..t::. . (3) 

6 X 6 

K (x. g) V1 2..ti qJ/ (x) qJi (g) (Expansion Theorem) . . (4) 

Proof. From 11 K(x. y) 112m < c.D follows that the function k(x) = K(x. y) 
belongs to the space L~m) for almost every y € 6. We shall show now that 

the relations (k. qJ;) = À.iqJ;(Y) and (k. g) = ° for every g(x) € L2 ortho­
gonal to all qJi (x). hold for al most every y € 6. so that it will be possible 

to write k = ~ (k . qJ;) qJi = ~ À.iqJ;( y) . qJi in the terminology of HILBERT 

space. Indeed. 

(k. qJi)=.f K (x. g) qJi (x) dx = J. K (g. x) qJ/ (x) dx = À. i qJ;{g) 
6 6 

2) R. COURANT. Zur Theorie der linearen Integralgleichungen. Math. Annalen 89 
(1923). 161-178. proved his theorem for a continuous kemel. approximating this kemel 
by a sequence of kemels hav~ng only a fi:lite number of characteristic vaIues. He remarks 
that his result remains valid in the case that J J 1 K (x. y) 12 dx dy is finite. and 
J I K(x. y) 12 dy is bounded. As we see here. the first condition aIone is sufIicient (ant!. 
as may be proved. not even necessary). 
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for almost every y € 6, and, if (g, <pI) = 0 for all values of i, so that by 

Theorem 5 J K(x, y) g(y)dy = 0 almost everywhere, we have 

b. 

(k,g)= J K(x,y)g(X)dx=J K(y.x)g(x)dx=O 
t:, t:, 

for almost every y € 6 . 
The relation k = ~(k, <p;)<pl implies 

n 
IIk- Z (k, <p ;)<piI1 2 = ~ l(k,<pdI 2 ; 

I=J l=n+J 

hence 

JI K (x, y) - i~J ).i <Pi (x) <Pi (y) 12 dx i=~+ /7 1 <PI (y) 12 
• • (5) 

t:, 

for almost every y € 6.. Taking n = 0, we obtain (2), and. integrating 
(5) over y, we see that 

J 1 K (x, y) - iJ ).1 <Pi (x) <PI (y) 1

2 dx dg =i=f+ /;. 

t:, x t:, 

For n = 0 we have (3). and, making n ~ co, we find (4). 

By direct computation it may be verjfied readily that the iterated kernels 

Kn(x,y) J'K(x , z)Kn_l (Z,y)dz (n=2,3 , ... ) existalmosteverywhere 

t:, 

in 6 X 6, that they are also Hermitean and belong to the space L~2m). It 
is not diHicult to prove that the sequence ).7 (i = 1. 2, ... ) is the sequence 
of all characteristic values ~ 0 of K n (x, y). and that <pI( x) (i = 1, 2, ... ) 
is a corresponding seqUeiI1ce of characteristic functions. The Theorems 
1-8 hold therefore for the tntegral equation with kernel Kn(x , y), 
replaöng everywhere ).1 by ).7. 

The numbersJ Kn (x, x)dx are called the traces of K(x, y) . If n is even 

t:, 

(n = 2p) , we have 

J'Kn (x. x) dx= J IKp (x. z) 12 dxdz = Z ).;p = ~ ).7· 
t:, t:, x t:, 

We shall prove that th is relation is also true for odd n > 1. 
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Theorem 9. J Kn (x, x)dx = ~).7 [or n:> 2. 

6. 
Proof. Let n :> 2. From 

= IJK (x. z) [ Kn-I (z. x) -i! 1J-I qJ;(Z) qJ;(x) J dz I ~,(J 1 K(x.z)12 dz )"'" 
6. 6. 

'J'I P _1 2 

)1
/ 
• . \ Kn-I (z. x) -/~}J-I qJi (z) qJi (x) dz . 

6. 

holding for almost every x € 6, follows on account of SCHWARZ's inequality 

IJ Kn (x. x) dx -i~/J I = II J~ Kn (x. x) -i!/J I qJ, (x) 1
2 ~ dx l ~ 

6. 6. 

~JI Kn (x. x) -i! 17 1qJi (X) 12
1 dx ~ 

6. 

( J 1 K(x, Z) 1
2 dXdz)"' . ( J I Kn-I (z. x) -i~11J-I qJi(Z)qJi(X)r dX1z)"' ; 

6.X 6. 6. X 6. 

hence, since the last factor on the right tends to 0 as p ~ co by Theorem 
8, (4), 

J'Kn (x. x) dx= 21J. 

6. 

Remark. It is well-known that if K (x, y) satisfies the conditions that 

JI K (x, y) 12 dy is Einite for every x € 6 ·and 

6. 

firn JI K (X2' y) - K (XI' y) 12 dy = O. 
x~ .... Xl 

6. 

several oE the results in th is paragraph can be improved. The convergence 
in mean in the Theorems 5 and 7, and also the convergence almost every­
where in Theorem 8, (2), may he replaced by uniform convergence. More-

over, Eor n :> 2, the series Z 17qJt{x)qJt{y) converges uniformly in 6 X 6 
toKn(x,y). 
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§ 3. Positiv.e Hermitean kern els. 

It was proved by J. MERCER that, given the positive Hermitean kernel 
H(x, y), continuous in 6. X 6., we have, uniformly in 6 X 6, 

H (x, y) = Z li epi (x) epi (y), 

where 1; (i = J, 2, ... ) is thOe sequence of all characteristic values -# 0 of 
H (x, y) and ep;( x) a correspondirlg orthonormal sequence of characteristic 
functions. As well-known, all 1; are non-negative (follows easily from 
Theorem 5). 

Theorem 10. If in the space L2 (6.) the bounded. positive, self-adjoint 
transformation H is given by 

H f= J H (x, y) f(y) dy, 

;:" 

where H(x, y) is a positive Hermitean kernel. continuous in 6. X 6.. then 
there exists a positive Hermitean kern el H". (x, y) for which 

J 1 H,. (x, y) 1
2 dy 

;:" 

is bounded, such that the uniquely determined. bounded, positive, self­
adjoint transformation H", is given by 

H", f= J H,. (x. y) f(y) dy. 

;:" 

Proof. From 

H (x. y) = ~ li epi (x) ep, (y). 

holding uniformly in 6. X 6., follows 

J H(x. x)dx= Zli =~(1'l.)2; 
;:" 

the series ~ I;. ep;( x ) ep;( y) converges therefore in mean (convergence in 

the HILBERT space L~m)) to a function H" . (x, y) € L~m), and it is not 
difficult to see that the transformation A, defined by 

A f= J H,. (x. y) f(y) dy. 

;:" 

has 1 'jo (i = J, 2, ... ) as the sequMce of its characteristic values # 0, and 
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ep;( x) as a corresponding sequence of characteristic functions. This trans­
formation is therefore identical with H I/. , so that 

HI/. f= J Hl, (x. y) f(y) dy. 

t; 

By Theorem 8 we have 

J IH/' (x. y)i2 dy =:E li I epi (x)i2 = H (x. x) 

t; 

for almost every xE 6, and, since it is allowed to change the values of 
HII, (x, y) im a set of measure 0, we may even suppose this relation to hold 
for every XE6. Observing finally that H(x. x), as a continuous function , 
is bounded, we obtain the desired result. 


