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1. Two one-valued analytic functions f 1 (z) and f 2 (z) , originally 
defined in the respective regions G l and G 2 , are identical in G l + G 2 if 
they take the same values in the points of an arbitrarily small reg ion 
belonging both to G l and G 2 ; and, what is more, they are identical even 
if they take the same values in infinitely many points which have a limit
point belonging both to G l and G 2 • In th is case we say that the original 
f d z ), def.ined only in G l , may be continued analytically in the region G 2 · 

Conversely we may ask ourselves the following question: in the complex 
Z -plane he given infinitely many points Z l ' z 2' z3' ... converging to the point 
z'. Each point Zi (i = 1, 2, . . . ) is given a certain complex " function-value" 
Wi. To which ex tent is it possihle to find a one-valued analytic function 
t (z) , defined in a certain region in the Z-plane, which exactly in the points 
Zi takes the given values Wi ; in other words, to which extent is it possible 
to continue the fundion defined in Zi to a certain region? In the following 
we shall - af ter giving the problem a more accurate form - give a 
necessary and suf ficient condition for analytic continuation (theorem I) . 
For part of the proof we need HANS FREUDENTHAL'S mean value theorem 
of the theory of complex functions, which is generalized by us for higher 
difference-quotients (theorems 11 and lIl). 

2. In the problem of continuity mentioned in 1. one must make a 
distinction between the two following principally different cases: 1°. the 
l'egion where one wishes the function to be continued does not necessarily 
contain the limit-point z' ; 2°. the region in question does contain z' . Case 
1 0. immediately leads to the well-killown problem of composing an integral 
function which in the points Z i (i = 1. 2, . . . ). that nowhere in the finite 
have a limit-point, takes the prescribed value Wi (cornp. K. KNOPP, Funk
tionentheorie (Sammlung Göschen) 11 , 4th ed., p. 38 problem 3, p. 45 
problem 4). The following function f (z) (composed by J. VAN IJ ZEREN) . 
satisfies this demand: 

{(Z)=ll (1_~)e~+H:)2+· · ·:I(:)ki . ~ ( WI -gdZ)). 
1=\ Z 1 1= \ ( 1 Z ) Pi - - -

ZI . 

Here n is a WEIERSTRAsz-product, being 0 in the points Zi ; pi is the 

value of this infinite product if it is divided by (1- ~) , while g;(z) are 

suitably chosen integral rational functions securing convergence (in case 
a Zj = 0 the shape of f(z) must be slightly altered) . f( z ) is an obviously 
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integral function, which in ûhe points Zi takes the values Wi. By submitting 
the complex plane and thereby the points Zi and tJhe variabl<! Z to the 
following linear transformation 

2i= I " 

Zj -z 
Z=-_--" z-z 

where the sequence of points zj converges to z', and by substituting these 
values in f (z) one finds an analytic function f (2;) which is everywhere 
one-valuedly analytic except perhaps in the point z', and which in the 
given points 2'j takes the given values Wi. Thus f(z) offers a solution to 
the problem put in case 1 0. 

We may further con fine ourselves to case 2°., where analytic continu
ation must be possible in a reg ion containing the limit-point z' of the point
sequence Zi. If such a function exists it is (according to 1.) uniquely 
defined (contrary to the problem put in 1 0 ., where sev'eral continuation
functions f (2;) are possible). The required function must take the given 
values Wj in the points Zj. It is, however, asking too much when we demand 
that the region in which analytic continuation is possible contains besides 
z' also all points Zj, as in this case - because of the uniqueness of the 
function - the required continuation would be impossible by every change, 
however smalI, of but one of the values Wj. So we finally ask ourselves the 
following question: on which conditions is it possible to find an analytic 
function, defined in a region containing the limit-point z' of the sequence 
Zj (and so nearly all points Zj), which in almost all points Zj takes 
prescribed values Wj? 

3. It must be possible to expand the required continued function f(z) 
into a power-series in z': 

ex> {(n) (z') 
{(z) = 2 --(z - z')n. 

, n=O n! 
(1) 

Thus necessarily all derivates of f(z) in z' exist. The values Wi in ZI 

therefore must be chosen such that the limit of the nth difference-quotient 
exists for every natural number n if the (n + 1) points Z/o' ZII' .... Zln on 
,which this difference-quotient is defined, tend to z'. Further we must 
demand that these limits do not tend too quickly to the infinite for n ~ ro 
and that in such a way that the convergence-radius of (1) is > cr. At first 
sight one might expect these two conditions to be sufficient for the required 
analytic continuation. We shall, however, show by ' an e~ample that this 
is not. the case. We define f (x) with real x by 

for x=/= 0 {(O) = O. 

Apparently allderivates in 0 exist and have the value O. Now, if on the 
real axis we take a sequence of points converging to 0 and give these 
points the corresponding function~values f (x), the above-mentioned COD-
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ditions are satisfied, i.e., when one runs through the sequemce of points the 
nth difference-quotient tends to the fixed limit 0 for every n, and these 
limits, i.e., the nth derivates in 0, all are 0, so they all certainly are (uni
formly) bounded. Yet analytic continuation to a neighbourhood of the 

I 

origin is impossihle as e- %2 is not analytic in the origin. 
Now it is possible by sharpening the above-mentioned conditions to find 

a sufficiemt condition, namely by demanding as weIl that the n th difference
quotients "tend uniformly in n to their limits". We prefer, however, to 
derive a sufficient condition (which will prove to be necessary as weU), 
which moreover, as we may see immediately, is a direct result of the first
mentioned sufficient condition. 

4. The nth difference-quotient of f (z) may, as is generally known, be 
defined like follows: 

are the Oth and first difference-quotients of f(z) in zl' and zl and i 2 
l'espectively. By induction one defines the nth differemce-quotient by 

[ ] (f) 
- [Zl Z3' ••• Zn+l] (f) - [Z2 %3 •• • • Zn+l] (f) 

ZI Z2 • ••• Zn Zn+1 - n. . 
ZI-Z2 

Por shortness we introduce the following notation: 

[Zi Zi+l • •• Zi+n] (f) = /:::;7 (n = 1. 2 •... ; i = 1. 2 •... ). 

Our function f(z) now has already been defined in the points Zj; for 
f (z j) = W j. Thus we may compose thè difference-quotiemts L. j defined 
on a nu mb er of points Zj. 

We now demand that there may be found a sufficiently great index i 
(which we may fix from then onwards) . a positive number rand a natural 
number no such that for every natural number n ~ no 

(n = no, no + 1. ... ). (2) 

We shall now prove 
Theorem J. ff the values Wj = f(Zj) satisfy condition (2) it is possible 

to finda neighbourhood of the limit-point z' where f may be continued 
analytically; i.e., it is possible to find a uniquely defined analytic function 
f (z) (mentioned in (3)) . which in almost all points Z j takes the given 
r;alues Wj . Conversely, if f(z) is a one-valued analytic function in a neigh
bourhood of point z' and if zl' z2' ... is a sequence of points converging 
to z', then condition (2) holds true for every sequence of this kind. There
fore .condition (2) is a necessary and sufficient condition for the required 
analytic continuation. 

5. Condition (2) is sufficient for the required analytic continuation. 
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We contend th at 

(3) 

is the required analytic function in a sufficiently sm all neighbourhood of z'. 
In the first place it is evident that f(z) has exactly the required values 
Wi+k in the points Zi+k (k = 0, 1,2, ... ), as 

W/+k = Wi +.2 (6; .!il 

(Zi+k - Zi+J)) (k = 1. 2 .... ) 
n=1 n. }=fJ 

according to the interpolation~formula of NEWTON. Further the series (3) 
is uLtliformly convergent in a neighbourhood of z'. For it is possible to find 
an m ~ no and a neighbourhood of z' such that for all points Z of that 
neighbourhood and for all points Zi+m+l (l = 1. 2, . .. ) 

I Z - zi+m+ll < d (d arbitrarily small. > 0). (i) 
The absolute value of (3) then is smaller than or equal to 

I Wi + nm§_+11 (6; .7I (z - Zi+J)) \ + III Z - Zi+s I. 
n. }=o s=fJ 

I 
ex> (6'! n+1 ) I . ~ -1

1
• n (Z-Z/+J) • 

n=m+2 n J=m+1 

Further, in connection with (2) and ('4), 

I l' (67. I/ (z - Zi+J)) I ooc:: :f rn, dn- m - I = LI· .2 (r. d)n. 
n=m+2 nl J=m+1 n=m+2 d n=m+2 

We now choose d <1 /r, from which follows that the last series is con~ 
vergent and so the given series (3) is uniformly convergent in a sufficiently 
small neighbourhood of z'. As all terms of the series (3) are aLllalytic 
functions, f (z) is (according to a well~known theorem of WEIERSTRASZ) 
an analytic function in that neighbourhood of z'. 

6. For the second part of the proof of theorem I the mean value 
theorem of the theory of complex functions is of importance. This theorem 
may be formulated as follows: 

Theorem 11 (HANS FREUDENTHAL). f(z) be defined and analytic in a 
\ 

canvex regian G. Cansider all va lues of the derivate f' (z) and the canvex 
clasure G' af the carresponding paints. We naw cantend that all difference~ 

quatients f(ZI)-f(Z2) (where Z1 and Z2 belang ta G) belang ta G' 1). 
ZI- Z 2 

To our purpose we have to generalize this theorem for higher difference~ 
quotients. We shall prove 

1) And even: this difference-quotient belongs to the convex closure of the values f' (Z/), 
where z' runs through the segment (ZI, Z2) . 
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Theorem 111. [(z) be defined and analytic in a convex region G. 
Consider all values of the nth derivate [(n)(z) on G (n is an arbitrarily 
chosen but fixed natural number) and the convex closure G(n) of the 
corresponding points . We now contend that all nth difference-quotients 
[zOZl '" Zn] (f) , where zo' zl' . .. , Zn are arbitrary points belonging to G, 
belong to G (n) 2) 3) . 

ProoI. We start with two remarks: 
1 0. Be vo, vl' ... • Vn (n + 1) arbitrary complex numbers. and so as weIl 

points situated in the complex plane (for shortness we shall often identify 
the point of the complex plane with the corresponding complex number). 
then point v is situated within the convex closure of VOo Vl • ... . Vn only if 

v = Ào V o + ÀI VI + .... + Àn Vn l 
Ài real with 0 -== Ài -== 1 for Î= 0,1 • . .. n ; and ~. 

Ào + ÀI + .. .. + }.n = 1 

2° . We may. as known, write the nth difference-quotient 
[zOzl ... Zn] (f). 

(5) 

which in tJhis proof is denoted by [ZOZl ... Zn]. in the following symmetrical 
form : 

n ((Zi) 
[zo ZI •••• Zn] = [zo ZI • ••• Zn] (f) = n! ~ n • (6) 

i=O II(zi-zj) 
j=O 
j::fi 

Let us first consider the case where n = 2. We take three arbitrary 
points zo. Zl and Z 2 of G (fig. 1) and consider the middles Po. P1 and P2 

z, 

Fig. 1. 

of the sides of the corresponding triangle. We shall prove that the following 

2) And even: this difference-quotient belongs to the convex closure of the values 
t(n)(z'). where z' runs through all values of the CO:lvex cios ure of the points ZO. Zl .... . Zn . 

3) By specializing the FREUDENTHAL proof and ours for the real axis one reaches an 
(especially for higher derivates) fairly short proof of the (extended) mean value theorem 
of the common calculus. . 
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[zo ZI Z2] = t [Po PI P2] + t [zo PI P2] + t [Po ZI P2] + t [Po PI Z2]' (7) 

For the equation (7). which we must prove. we may write (according 
to (6)): 

({zo) , + {(ZI) + {(Z2) 
(zo - ZI) (zo - Z2) (ZI - zo) (ZI - Z2) (Z2 - zo) (Z2 - ZI) 

_ 1 ~ { (Po) + + { (Z2) ~ 
- i ~ (Po - PI) (Po - P2) •• . . (Z2-PO) (Z2 - PI) ~. 

IC we put z2 - Zl = 00. Zo - Z2 = 01 and Zl - Zo = 02. then the coeffi~ 

cient of f (zo) on the left is ~ _1_. and on the dght - i 1 1 I ; so 
02.01 y02·yOI 

these coefficients are equal. The coefficient of f (Po) on the right is 

By changing the letters for the rest of the coefficients (7) is generally 
proved. 

Geometrically (7) may be interpreted thus. where we suppose the second 
difference~quotients to be points in the plane of f" (z): the difference~ 
quotient [zOZlZ2] is situated in the centre of gravity of the four points 
[POP1P2]. [ZOP1P2]. [POz1P2] and [POP1Z2] (fig. 2). Therefore [ZOZlZ2] 
certai.nly lies within the convex c10sure of these four points. Af ter this we 
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~ 

subdivide each of the four triangles of fig. 1 in the same way into four 
triangles, namely by taking the middles of the sides. In each subdivided 
triangle th ere is again a relati9n analogical to (7) .. in other words the 
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four difference~quotients . each of which is defined by the vertices of a 
triangle. again group themselves " around" the corresponding difference~ 
quotient (fig. 2). Therefore [zOzlZ2] certainly lies within . the convex 
closure of the sixteen points which were formed by the second division. 
This process may be continued infinitely. 

We shall now try to find arelation like (7) and 3IIl infinitely continued 
division for the nth difference~quotients with n > 2. Let us first consider 
the case n = 3. Though the four points zo. Zl. z2 and z3. on which a third 
difference~quotient is defined. .He in the complex plane. it is better to 
imagine these points to be spacial. as in that way the generalisation may be 

z., 
Fig. 3. 

more easily realized. One divides every triangle of the tetrahedron zOzlz2z3 

(fig. 3) in the same way as in fig. land joins all thus formed points pij . 

Three of these joining lines meet in the centre of gravity q. One easily 
proves - by comparing the coefficients on both sides - that the following 
relation holds true: 

1 1 
[ZOZI Z2Z3] =23 [ZoPo,Po2Po31 + 23 [ZIPOIPI2PI3] + 

1 1 + 23 [Z2P02PI2P23] + 23 [Z3P03PI3P23] + 
(7'). 

In the right si de of this relation we find twelve terms corresponding with 
the twelve tetrahedra into which Zo Zl Z2 z3 is divided. In connection with 
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(5) the point [zo Zl Z2 z3] lies in the f"(z) ""'plane within the convex closure 
defined by the twelve difference-quotients of the right side. Each of the 
twelve tetrahedra is now likewise .divided into twelve tetrahedra, and this 
process is infinitely continued. Always af ter the mth dirvision [zo Zl Z2 Z3] 

lies within the convex closure of the 12 m corresponding difference-quo
tients. By induction it is now possible, though complicated, to generally 
determine the division of the n-dimensional simplex Zo Zl ... Zn, correspon
ding with the nth difference-quotient [zo Zl ... Zn] and the corresponding 
relation (7(n»). Because the general formulas are complicated we shall not 
enter further into these, but shall close this subject by the following 
remarks. It appears that one must distinguish between odd and even 
dimension. For the n-simplices with odd n the centre of gravity always 
acts as point of division, while for the n-simpiices with even n th is is not 
the case (in case n = 2 one had a "centre-simplex" Po PI P2' for n = i 
one finds a "centre-simplex" qo ql q2 q3 q4' where the points qi are the 
centres of gravity of the five tetrahedra by which the i-simplex Zo Zl Z2 Z3 Z4 

is bounded, etc.). In case n = 3 one mayalso attain one' s purpose by a 
simp Ier division, namely a division into eight tetrahedra, where instead 
of the inner eight tetrahedra of fig. 3 we have the four tetrahedra 

POl P12 P02 P13' P13 P02 P12 P23' POl P02 P23 P13 and P03 P02 P13 P23' The 
point q flOW does not appear in th is division. This di.vision is, however, no 
longer symmetrical and I do not think jt will be easy to . generalize this 
division, although it is simpIer, for a general n. 

We denote [zo Zl ... Zn] by 6~ , and have statoo that the corresponding 
n-simplex is then subdivided into k n n-simplices, where we denote the nth 

difference-quotient of such an n-simplex by 6. n) (al = 1, 2, . .. , k n ). An a, 
equation of the character (7') holds true: 

k n 
(0 < la, < 1; 2 la, = 1). 

a l =1 

From now on, if no mis take is possible, we shall denote by 6. n not only 
the nth difference-quotients but also the corresponding n-simplices. 

Each of the simplices 6. n) is again subdivided in the same way into a, 
k n n-simplices 6. n

l 
(a2 = 1,2, ... , kn), and this division is infinitely 

a) a2 
continued. Thus in general: 

(j = 1. 2, ... ) (7(n)) 

with the conditions 

The diameter of a sequence of monotonicly decreasi?g sets of n-simplices 

(8) 



221 

é!pparently tends to O. in other words the sets of (8) have one point 
dl a, a. a, . .. as intersection; so the sets of (8) converge to that point. The 
corresponding nth difference~quotients th en tend to the nth derivate 
fin) (dl a, a, ... ): . 

~im 6,~a, a .... a,' = f!n) (dia, a. a, ... J ,-+ cr:> 

We now consider the f(n)(z)~plane. where the values D,n are 
I a, a • ... a J 

introduced as points (comp. fig. 2). From (7(n») it follows that point D, f 
lies within the convex closure of the points D,~ a, a •. .. a J (j = 1. 2 ..... i; 
a j = 1. 2 ..... kn ). We still have to prove that point D, ~ lies within the 
convex closure V of the set of points fin) (z), where z runs through the 
con~ex closure of Zo. Zl •...• Zn. i.e .. the n~simplex D,~. Suppose on the 
contrary that point D, ~ lay outside V . V is. as the convex closure of the 
continuous image of a bounded closed set. 'bounded and closed. Between 
point D, ~ and V there is a certaÎlIl ,distance 2e. Consider an e~neighbourhood 
V e of the set V. This apparently is again a convex set while point D,~ is at 
a distance e of V e• 

The points D, nl (al = 1. 2 . ...• k n ) of the first division have a convex a, 
cios ure to which point D, ~ belongs according to the afore~said . Therefore 
th ere exists at least one point D,~b, lying outside V e• With the simplex D,~b, 
corresponds a division into kn n~simplices D, n

b 
(a.., = 1. 2 . ... . kn ). For at 

I ,a. -
least one of these points again the corresponding point D,~b,b. lies outside 
V e• By infinitely continuing this process we find a sequence of points 

6,~. 6,~ b,' 6,~b, b,' ....• such that for the corresponding n~simplices an 
equation of the character (8) holds true. in other words. this sequence of 
points converges to a point determining a value f(rl)(dlb,b •. . J Here 
dl b, b.... apparently belongs to the convex closure of Zo Zl Z2 ..• Zn. 

But t hen f (n) (d lb,b, ... ) bust belong to V. which is impossible as the 
points D,~ 6,~ b, • .... conver,ge to a point of the boundary of V e or outside 
V e• Thus the required contradiction is reached. by which theorem 111 (and 
then by specialization also theorem 11) has been proved. 

7. Following directly from the mean value theorem derived in 6. is 
Theorem IV. Be f(z) defined and analytic in a convex region G. We 

consider the nth dilference~quotient D, n (n = 1. 2 . ... ) defined on (n + 1) 
arbitrary points of G. Now 

1 6,n 1-== 1 f!n) (z') 1 • (9) 

where z' is a suitably chosen point of G 4). Or in other words: the upper 
bound of 1 D, n 1 in G is smaller than or equal to the upper bound of 
1 f(n)(z)1 in G. 

Proof. Point D,nin the complex plane of the points f (n)(z) lies. accor~ 

4) 'z' even is a point of the convex closure of the (n + 1) points. - REMARK. As G 
is a region the =~mark ia (9) may even be Jeu out. 
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ding to theorem lIl, on the joining line of two points {(n)(p) and {(n)(q). 
where pand q are suitably chosen points of G. In the triangle determined 
by the points 0, {(n)(p), ((n)(q) the distance I!:::.n 1 between 0 and !:::.n is 
smaller than or equal to 5) 1 (In) (p) 1 or 1 fIn) (q) 1 by which the theorem has 
already been proved. 

8. Condition (2) mentioned in theorem l is also necessary. ((z) is a 
given function, which certainly is one~valued and analytic in a drcle~ 

reg ion around point z'. According to an extension of a well~known in~ 

equality of CAUCHY 

1 [ln) (z) 1-== 2 n1nM . 
. (! 

Here z is an arbitrary point of a (sufficiently small) circle~region C 
(within the given circle~region) with z' for centre, and e for radius; M is 
the maximum of 1 {( z) 1 on the circumference of a circle with z' as centre 
and radius 2 e. According to (9) now for all poilIlts of C 

1 6. n 1 -== 1 rn) (z') 1 -== 2n! ;:...r . 
e 

(10) 

If 2 M :;;;; I, then (10) is :;;;; n ! r n where 1 Ie = r. If 2 M > I, then (10) is 
also :;;;; n! rn , wh ere 2 MIe = r. 

Thus in both cases the required condition (2) holds true as one may 
take i so great that all points Zi, Zi+1 , ... , on which !:::. 7 is defined: belong 
to the circle~region C. 

By th is we have also proved the following 
Theorem V. lf {(z) be analytic in a point z'. we may write ((z) -

besides the power~series-expansion in z' - by an expansion of the shape 

where Zl' Z2' Z3' ... is an arbitrary sequence of points con verging to z'; these 
points have to Zie within a sufficiently small neighbourhood of z' 6). !:::. n is 
the difference~quotient [Zl z2 ... zn+d (n. 

As this ex pan sion is a generalization of the interpolation~formula of 
NEWTON (for infinitely many terms) one might call this the NEWTON~ 
expansion of ((z) to the sequence Zl' Z2' .... 

5) When pand q coincide. 
6) For that neighbourhood we may alwavs take the above-mentio:led circle-region C. 

In this region the series in question is certainly converging. 


