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(5) the point [zo Zl Z2 z3] lies in the f"(z) ""'plane within the convex closure 
defined by the twelve difference-quotients of the right side. Each of the 
twelve tetrahedra is now likewise .divided into twelve tetrahedra, and this 
process is infinitely continued. Always af ter the mth dirvision [zo Zl Z2 Z3] 

lies within the convex closure of the 12 m corresponding difference-quo­
tients. By induction it is now possible, though complicated, to generally 
determine the division of the n-dimensional simplex Zo Zl ... Zn, correspon­
ding with the nth difference-quotient [zo Zl ... Zn] and the corresponding 
relation (7(n»). Because the general formulas are complicated we shall not 
enter further into these, but shall close this subject by the following 
remarks. It appears that one must distinguish between odd and even 
dimension. For the n-simplices with odd n the centre of gravity always 
acts as point of division, while for the n-simpiices with even n th is is not 
the case (in case n = 2 one had a "centre-simplex" Po PI P2' for n = i 
one finds a "centre-simplex" qo ql q2 q3 q4' where the points qi are the 
centres of gravity of the five tetrahedra by which the i-simplex Zo Zl Z2 Z3 Z4 

is bounded, etc.). In case n = 3 one mayalso attain one' s purpose by a 
simp Ier division, namely a division into eight tetrahedra, where instead 
of the inner eight tetrahedra of fig. 3 we have the four tetrahedra 

POl P12 P02 P13' P13 P02 P12 P23' POl P02 P23 P13 and P03 P02 P13 P23' The 
point q flOW does not appear in th is division. This di.vision is, however, no 
longer symmetrical and I do not think jt will be easy to . generalize this 
division, although it is simpIer, for a general n. 

We denote [zo Zl ... Zn] by �6�~� , and have statoo that the corresponding 
n-simplex is then subdivided into kn n-simplices, where we denote the nth 
difference-quotient of such an n-simplex by 6. n) (al = 1, 2, . .. , kn ). An a, 
equation of the character (7') holds true: 

kn 
(0 < la, < 1; 2 la, = 1). 

al =1 

From now on, if no mis take is possible, we shall denote by 6.n not only 
the nth difference-quotients but also the corresponding n-simplices. 

Each of the simplices 6. n) is again subdivided in the same way into a, 
k n n-simplices 6. n

l 
(a2 = 1,2, ... , kn), and this division is infinitely 

a) a2 
continued. Thus in general: 

(j = 1. 2, ... ) (7(n)) 

with the conditions 

The diameter of a sequence of monotonicly decreasi?g sets of n-simplices 

(8) 
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é!pparently tends to O. in other words the sets of (8) have one point 
dl a, a. a, . .. as intersection; so the sets of (8) converge to that point. The 
corresponding nth difference~quotients th en tend to the nth derivate 
fin) (dl a, a, ... ): . 

~im 6,~a, a .... a,' = f!n) (dia, a. a, ... J ,-+ cr:> 

We now consider the f(n)(z)~plane. where the values D,n are 
I a, a • ... a J 

introduced as points (comp. fig. 2). From (7(n») it follows that point D, f 
lies within the convex closure of the points D,~ a, a •. .. a J (j = 1. 2 ..... i; 
a j = 1. 2 ..... kn ). We still have to prove that point D, ~ lies within the 
convex closure V of the set of points fin) (z), where z runs through the 
con~ex closure of Zo. Zl •...• Zn. i.e .. the n~simplex D,~. Suppose on the 
contrary that point D, ~ lay outside V . V is. as the convex closure of the 
continuous image of a bounded closed set. 'bounded and closed. Between 
point D, ~ and V there is a certaÎlIl ,distance 2e. Consider an e~neighbourhood 
V e of the set V. This apparently is again a convex set while point D,~ is at 
a distance e of V e• 

The points D, nl (al = 1. 2 . ...• k n ) of the first division have a convex a, 
cios ure to which point D, ~ belongs according to the afore~said . Therefore 
th ere exists at least one point D,~b, lying outside V e• With the simplex D,~b, 
corresponds a division into kn n~simplices D, n

b 
(a.., = 1. 2 . ... . kn ). For at 

I ,a. -
least one of these points again the corresponding point D,~b,b. lies outside 
V e• By infinitely continuing this process we find a sequence of points 

6,~. 6,~ b,' 6,~b, b,' ....• such that for the corresponding n~simplices an 
equation of the character (8) holds true. in other words. this sequence of 
points converges to a point determining a value f(rl)(dlb,b •. . J Here 
dl b, b.... apparently belongs to the convex closure of Zo Zl Z2 ..• Zn. 

But t hen f (n) (d lb,b, ... ) bust belong to V. which is impossible as the 
points D,~ 6,~ b, • .... conver,ge to a point of the boundary of V e or outside 
V e• Thus the required contradiction is reached. by which theorem 111 (and 
then by specialization also theorem 11) has been proved. 

7. Following directly from the mean value theorem derived in 6. is 
Theorem IV. Be f(z) defined and analytic in a convex region G. We 

consider the nth dilference~quotient D, n (n = 1. 2 . ... ) defined on (n + 1) 
arbitrary points of G. Now 

1 6,n 1-== 1 f!n) (z') 1 • (9) 

where z' is a suitably chosen point of G 4). Or in other words: the upper 
bound of 1 D, n 1 in G is smaller than or equal to the upper bound of 
1 f(n)(z)1 in G. 

Proof. Point D,nin the complex plane of the points f (n)(z) lies. accor~ 

4) 'z' even is a point of the convex closure of the (n + 1) points. - REMARK. As G 
is a region the =~mark ia (9) may even be Jeu out. 
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ding to theorem lIl, on the joining line of two points {(n)(p) and {(n)(q). 
where pand q are suitably chosen points of G. In the triangle determined 
by the points 0, {(n)(p), ((n)(q) the distance I!:::.n 1 between 0 and !:::.n is 
smaller than or equal to 5) 1 (In) (p) 1 or 1 fIn) (q) 1 by which the theorem has 
already been proved. 

8. Condition (2) mentioned in theorem l is also necessary. ((z) is a 
given function, which certainly is one~valued and analytic in a drcle~ 

reg ion around point z'. According to an extension of a well~known in~ 

equality of CAUCHY 

1 [ln) (z) 1-== 2 n1nM . 
. (! 

Here z is an arbitrary point of a (sufficiently small) circle~region C 
(within the given circle~region) with z' for centre, and e for radius; M is 
the maximum of 1 {( z) 1 on the circumference of a circle with z' as centre 
and radius 2 e. According to (9) now for all poilIlts of C 

1 6. n 1 -== 1 rn) (z') 1 -== 2n! ;:...r . 
e 

(10) 

If 2 M :;;;; I, then (10) is :;;;; n ! r n where 1 Ie = r. If 2 M > I, then (10) is 
also :;;;; n! rn , wh ere 2 MIe = r. 

Thus in both cases the required condition (2) holds true as one may 
take i so great that all points Zi, Zi+1 , ... , on which !:::. 7 is defined: belong 
to the circle~region C. 

By th is we have also proved the following 
Theorem V. lf {(z) be analytic in a point z'. we may write ((z) -

besides the power~series-expansion in z' - by an expansion of the shape 

where Zl' Z2' Z3' ... is an arbitrary sequence of points con verging to z'; these 
points have to Zie within a sufficiently small neighbourhood of z' 6). !:::. n is 
the difference~quotient [Zl z2 ... zn+d (n. 

As this ex pan sion is a generalization of the interpolation~formula of 
NEWTON (for infinitely many terms) one might call this the NEWTON~ 
expansion of ((z) to the sequence Zl' Z2' .... 

5) When pand q coincide. 
6) For that neighbourhood we may alwavs take the above-mentio:led circle-region C. 

In this region the series in question is certainly converging. 


