Mathematics. A theorem concerning analytic continuation. By ]J. DE
GRroOT. (Communicated by Prof. J. G. vAN DER CORPUT.)

(Communicated at the meeting of January 26, 1946.)

1. Two one-valued analytic functions f;(z) and fy(z), originally
defined in the respective regions G; and G, are identical in G; + G, if
they take the same values in the points of an arbitrarily small region
belonging both to G; and G,; and, what is more, they are identical even
it they take the same values in infinitely many points which have a limit-
point belonging both to G; and G,. In this case we say that the original
f1(z), defined only in G,, may be continued analytically in the region G,.

Conversely we may ask ourselves the following question: in the complex
Z-plane be given infinitely many points 2y, zy, z3, ... converging to the point
2. Each point z; (i =1, 2, ...) is given a certain complex “function-value”
wi. To which extent is it possible to find a one-valued analytic function
f(z), defined in a certain region in the Z-plane, which exactly in the points
z; takes the given values wi; in other words, to which extent is it possible
to continue the function defined in z; to a certain region? In the following
we shall — after giving the problem a more accurate form — give a
necessary and sufficient condition for analytic continuation (theorem I).
For part of the proof we need HANS FREUDENTHAL's mean value theorem
of the theory of complex functions, which is generalized by us for higher
difference-quotients (theorems II and III).

2. In the problem of continuity mentioned in 1. one must make a
distinction between the two following principally different cases: 1°. the
region where one wishes the function to be continued does not necessarily
contain the limit-point 2’; 2°. the region in question does contain z’. Case
1°. immediately leads to the well-known problem of composing an integral
function which in the points z; (i = 1, 2, ...), that nowhere in the finite
have a limit-point, takes the prescribed value w; (comp. K. KNopP, Funk-
tionentheorie (Sammlung Go&schen) II, 4th ed., p. 38 problem 3, p. 45
problem 4). The following function f(z) (composed by J. VAN IJZEREN) .
satisfies this demand:
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Here II is a WEIERSTRASZ-product, being 0 in the points z:; p: is the
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suitably chosen integral rational functions securing convergence (in case

a z; = 0 the shape of f(z) must be slightly altered). f(z) is an obviously

value of this infinite product if it is divided by (1—
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integral function, which in the points z; takes the values wi. By submitting
the complex plane and thereby the points z; and the variable z to the
following linear transformation
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where the sequence of points z; converges to z’, and by substituting these
values in f(z) one finds an analytic function f(z) which is everywhere
one-valuedly analytic except perhaps in the point 2/, and which in the
given points z; takes the given values wi. Thus f(z) offers a solution to
the problem put in case 1°.

We may further confine ourselves to case 2°., where analytic continu-
ation must be possible in a region containing the limit-point z’ of the point-
sequence z;. If such a function exists it is (according to 1.) uniquely
defined (contrary to the problem put in 1°., where several continuation-
functions f(z) are possible). The required function must take the given
values w; in the points z:. It is, however, asking too much when we demand
that the region in which analytic continuation is possible contains besides
2’ also all points zi, as in this case — because of the uniqueness of the
function — the required continuation would be impossible by every change,
however small, of but one of the values wi. So we finally ask ourselves the
following question: on which conditions is it possible to find an analytic
function, defined in a region containing the limit-point 2’ of the sequence
z; (and so nearly all points z;), which in almost all points z; takes
prescribed values w;?

3. It must be possible to expand the required continued function f(z)
into a power-series in 2"
» ) (2')

f)=2

= nl! (z—2') (1)
Thus necessarily all derivates of f(z) in 2z’ exist. The values w; in z:
therefore must be chosen such that the limit of the nth difference-quotient
exists for every natural number n if the (n + 1) points Zigs Zigs e+ s Zi, ON
which this difference-quotient is defined, tend to z’. Further we must
demand that these limits do not tend too quickly to the infinite for n —
and that in such a way that the convergence-radius of (1) is > 0. At first
sight one might expect these two conditions to be sufficient for the required
analytic continuation. We shall, however, show by an example that this
is not the case. We define f(x) with real x by

1

flx)=e * for x#0 ; f(O)=0.

Apparently all derivates in 0 exist and have the value 0. Now, if on the
real axis we take a sequence of points converging to 0 and give these
points the corresponding function-values f(x), the above-mentioned con-
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ditions are satisfied, i.e., when one runs through the sequence of points the
nth difference-quotient tends to the fixed limit 0 for every n, and these
limits, i.e., the nth derivates in 0, all are 0, so they all certainly are (uni-
formly) bounded. Yet analytic continuation to a neighbourhood of the
1

origin is impossible as e # isnot analytic in the origin.

Now it is possible by sharpening the above-mentioned conditions to find
a sufficient condition, namely by demanding as well that the nth difference-
quotients ‘‘tend uniformly in n to their limits”. We prefer, however, to
derive a sufficient condition (which will prove to be necessary as well),
which moreover, as we may see lmmedlately, is a direct result of the first-
mentioned sufficient condition,

4. The nth difference-quotient of f(z) may, as is generally known, be
defined like follows:

2] () =f(z)  and [z 2] ()= Lﬂ(f) [z2] (F)

1— 22

are the Oth and first difference-quotients of f(z) in z;, and z; and 2z,
respectively. By induction one defines the nth difference-quotient by

- [z, 23.-~2n+1](f)_[zzza-w-znﬂ](f).

Z1— 2

[zi22.... 20 zan] (F) =

For shortness we introduce the following notation:
[zi ziv1 o o ziga] (F) = A7 =1,2,u0eii=12 .

Our function f(z) now has already been defined in the points z;; for
f(z;) = wj. Thus we may compose the difference-quotients AR defined
on a number of points z;.

We now demand that there may be found a sufftczently great index i
(which we may fix from then onwards), a positive number r and a natural
number n, such that for every natural number n = n,

| A | =nlen (n=no,no+1,...). (2)

We shall now prove

Theorem 1. If the values w; — f(z;) satisfy condition (2) it is possible
to find a neighbourhood of the limit-point 2’ where f may be continued
analytically; i.e., it is possible to find a uniquely defined analytic function
f(z) (mentioned in (3)), which in almost all points z; takes the given
values w;. Conversely, if f(z) is a one-valued analytic function in a neigh-
bourhood of point 2’ and if zy, z,, ... is a sequence of points converging
to 2/, then condition (2) holds true for every sequence of this kind. There-
fore condition (2) is a necessary and sufficient condition for the required
analytic continuation,

5. Condition (2) is sufficient for the required analytic continuation.
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We contend that

fl2)=w;+ % (Zi[" HI_I (z — Zi+j)> 3)

is the required analytic function in a sufficiently small neighbourhood of 2’.
In the first place it is evident that f(z) has exactly the required values
wiyk in the points ziyx (k=0,1,2,...), as

A” n—1 )

oyl JI—Io (zi+k — Zi4j)

w1+k——w1+21(

according to the interpolation-formula of NEWTON. Further the series (3)
is uniformly convergent in a neighbourhood of 2’. For it is possible to find
an m 2 n, and a neighbourhood of 2z’ such that for all points z of that
reighbourhood and for all points ziym+1 ([ =1,2,...)

|z — zigmer| < 8 (6 arbitrarily small, > 0). 4)

The absolute value of (3) then is smaller than or equal to

m+1 (AT n=1
’wi‘l' 2 <—' 1 (Z—li+j)>

n=1 n! j:o
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© An n+1
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Further, in connection with (2) and (4),

3 (A? i7g > ‘ § mo ! 5
. ¥ s s = n Sn—m—-1 — __~ ) LA
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We now choose 6 <l/r, from which follows that the last series is con-
vergent and so the given series (3) is uniformly convergent in a sufficiently
small neighbourhood of 2z’. As all terms of the series (3) are analytic
functions, f(z) is (according to a well-known theorem of WEIERSTRASZ)
an analytic function in that neighbourhood of 2’.

6. For the second part of the proof of theorem I the mean value
theorem of the theory of complex functions is of importance. This theorem
may be formulated as follows:

Theorem II (HANS FREUDENTHAL). f(z) be defined and analytic in a
convex region G. Consider all values of the derivate {’(z) and the convex
closure G’ of the corresponding points. We now contend that all difference-
quotients f(zl);i(h) (where z, and z, belong to G) belong to G'1).

1— 22

To our purpose we have to generalize this theorem for higher difference-

quotients. We shall prove

1)  And even: this difference-quotient belongs to the convex closure of the values §'(z'),
where 2/ runs through the segment (zy, z2).
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Theorem III. f(z) be defined and analytic in a convex region G.
Consider all values of the nth derivate f("(z) on G (n is an arbitrarily
chosen but fixed natural number) and the convex closure G(" of the
corresponding points. We now contend that all nth difference-quotients
[z021 ... za](f), where zy, 2y, ..., zn are arbitrary points belonging to G,
belong to G(n) 2) 3),

Proof. We start with two remarks:

1°. Bevgy, vy, ...,vn (n + 1) arbitrary complex numbers, and so as well
points situated in the complex plane (for shortness we shall often identify
the point of the complex plane with the corresponding complex number),

then point v is situated within the convex closure of vy, vy, ..., va only if
v:lovo—l-l, U +....+lnvn
A real with0=2;=1fori=0,1,...n;and ;- )

Byt dy o p o Pedg=

2°. We may, as known, write the nth difference-quotient

(2021 .- za1 (),
which in this proof is denoted by [zz; ... z»], in the following symmetrical
form:

f(zi) (6)

s

[2g21 555 2n] =202 s.550 2] (F)=mnl

4

(zi—2zj)

n
° 11
j=0
i#

Let us first consider the case where n = 2. We take three arbitrary
points zg, z; and z, of G (fig. 1) and consider the middles py, p; and ps

of the sides of the corresponding triangle. We shall prove that the following

2) And even: this difference-quotient belongs to the convex closure of the values
f(n)(2'), where 2’ runs through all values of the coavex closure of the points zg, z1, ..., Z5.

3) By specializing the FREUDENTHAL proof and ours for the real axis one reaches an
(especially for higher derivates) fairly short proof of the (extended) mean value theorem
of the common calculus. ° p
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equation holds true for [zyz,25]:

[z0z1 22 =% [Po o1 P2l + % [2oP1 P2) + % [Pozi P2l + % [Po 21 22). (7)
For the equation (7), which we must prove, we may write (according
to (6)):
f (zo) ) f(zl) f (z2) —
(20— 2z1)(20—22) (21— 29) (21— 2) (22— 20) (22— 7))
-y £ (po) f (z2)
“Heo—po—rd T m—p) e —p

If we put zo— 2z, = ay, 29— 2o — a; and z; — zy = ao, then the coeffi-

cient of f(zy) on the left is — , and on the right —1 .——— so
ay.a; 302.30Q;
these coefficients are equal. The coefficient of f(py) on the right is
1 1 1 a+a, 1 q |
a,.0;  G;.00 0,00 Gp 0G0 000 Go Q0  Go0p

By changing the letters for the rest of the coefficients (7) is generally
proved.

Geometrically (7) may be interpreted thus, where we suppose the second
difference-quotients to be points in the plane of f”(z): the difference-
quotient [2zoz;25] is situated in the centre of gravity of the four points

[PoP1p2]. [20P1P2]. [Poz1P2] and [popize] (fig. 2). Therefore [z0z12,]
certainly lies within the convex closure of these four points, After this we

Fig. 2.

subdivide each of the four triangles of fig. 1 in the same way into four
triangles, namely by taking the middles of the sides. In each subdivided
triangle there is again a relatipn analogical to (7), in other words the
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four difference-quotients, each of which is defined by the vertices of a
triangle, again group themselves “around” the corresponding difference-
quotient (fig. 2). Therefore [z(z;zo] certainly lies within the convex
closure of the sixteen points which were formed by the second division.
This process may be continued infinitely.

We shall now try to find a relation like (7) and an infinitely continued
division for the nth difference-quotients with n > 2. Let us first consider
the case n = 3. Though the four points z,, z;, zo and z3, on which a third
difference-quotient is defined, lie in the complex plane, it is better to
imagine these points to be spacial, as in that way the generalisation may be

Fig. 3.

more easily realized. One divides every triangle of the tetrahedron zyz;z525
(fig. 3) in the same way as in fig. 1 and joins all thus formed points pi;.
Three of these joining lines meet in the centre of gravity gq. One easily
proves — by comparing the coefficients on both sides — that the following
relation holds true:

1 1
[20212,25] :? [zoP01P02P03] + 23 [zipo1p12p13] +

1 1
3 bE [z2002P12023] + K [23P03p13P23] +

1 1 (7).
+ 2 [qpoipi2p13] + 2 [apo1po2p12] +

1
. + 2 [gposp13p23]

In the right side of this relation we find twelve terms corresponding with
the twelve tetrahedra into which zgz, z, z3 is divided. In connection with
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(5) the point [z z; z, z3] lies in the f”(z)-plane within the convex closure
defined by the twelve difference-quotients of the right side. Each of the
twelve tetrahedra is now likewise divided into twelve tetrahedra, and this
process is infinitely continued. Always after the mth division [z(zy 25 23]
lies within the convex closure of the 12™ corresponding difference-quo-
tients. By induction it is now possible, though complicated, to generally
determine the division of the n-dimensional simplex zg z; ... z», correspon-
ding with the nth difference-quotient [zg 2z, ...22] and the corresponding
relation (7(")). Because the general formulas are complicated we shall not
enter further into these, but shall close this subject by the following
remarks. It appears that one must distinguish between odd and even
dimension. For the n-simplices with odd n the centre of gravity always
acts as point of division, while for the n-simplices with even n this is not
the case (in case n — 2 one had a ‘“‘centre-simplex” pgp;ps, for n =4
one finds a “centre-simplex” qqqy g2 g3 g4, Where the points gi are the
centres of gravity of the five tetrahedra by which the 4-simplex zo z; 25 23 24
is bounded, etc.). In case n = 3 one may also attain one's purpose by a
simpler division, namely a division into eight tetrahedra, where instead
of the inner eight tetrahedra of fig. 3 we have the four tetrahedra
Po1 P12 Po2 P13- P13 Poz P12 P23, Po1 Poz P23 P13 and po3 Poz P13 P2s- The
point ¢ now does not appear in this division. This division is, however, no
longer symmetrical and I do not think it will be easy to generalize this
division, although it is simpler, for a general n.

We denote [z z;...2zn] by A?, and have stated that the corresponding
n-simplex is then subdivided into k. n-simplices, where we denote the nth
difference-quotient of such an n-simplex by AT, (a;, =1,2,...,ka). An
equation of the character (7’) holds true: A

kn Kn »
A= 3 1; AL 02,1 Z dg=1) (7™)
a=1 ! a;,=1

From now on, if no mistake is possible, we shall denote by A" not only
the nth difference-quotients but also the corresponding n-simplices.

Each of the simplices A7, is again subdivided in the same way into
kn n-simplices A Tas (ag = 1,2, ..., kn), and this division is infinitely
continued. Thus in general:

kﬂ
A;laxaz...aj—:a{l 1laj+l 'A’l.lalag....ajajﬂ (j=1'2"”) (7(’1))
J —
with the conditions
kll
0<'1aj+1<1 H 2 'laj_H:l‘
aj+1=1

The diameter of a sequence of monotonicly decreasing sets of n-simplices

ArS A, DAL D ... @8)

la,a,
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apparently tends to 0, in other words the sets of (8) have one point
dya,a,a,- - - @S intersection; so the sets of (8) converge to that point. The
corresponding nth difference-quotients then tend to the nth derivate

f(") (dl a, a, ...):

1a, a,...

lim A~” gy f(") (dlal a, a,....)-
j* e J

We now consider the f(*)(z)-plane, where the values o . _a; are

introduced as points (comp. fig. 2). From (7(") it follows that point AJ
lies within the convex closure of the points AT, a...aj (=12 ..14
aj=1,2,...,ka). We still have to prove that point A" lies within the
convex closure V of the set of points f(®(z), where z runs through the
convex closure of zg, 2y, ..., 2, ie., the n-simplex A Suppose on the
contrary that point A;‘ lay outside V. V is, as the convex closure of the
continuous image of a bounded closed set, bounded and closed. Between
point A" and V there is a certain distance 2¢. Consider an ¢-neighbourhood
Ve of the set V. This apparently is again a convex set while point A? is at
a distance ¢ of Ve.

The points A?a, (a; = 1,2, ..., kn) of the first division have a convex
closure to which point A" belongs according to the afore-said. Therefore
there exists at least one point A7, lying outside V.. With the simplex A;’bl
corresponds a division into kn n-simplices A:lb,a, (ag = 1,2, ..., kn). For at
least one of these points again the corresponding point ALy b, lies outside
V.. By infinitely continuing this process we find a sequence of points

o A?b,, LT v o such that for the corresponding n-simplices an
equation of the character (8) holds true, in other words, this sequence of
points converges to a point determining a value f(")(d;p,s,..). Here
dib,b,... apparently belongs to the convex closure of zy2z2zy...2zx.
But t hen f{" (d,pp,..) bust belong to V, which is impossible as the
points Al A, -, ..., converge to a point of the boundary of V. or outside
V.. Thus the required contradiction is reached, by which theorem III (and
then by specialization also theorem II) has been proved.

7. Following directly from the mean value theorem derived in 6. is

Theorem IV. Be f(z) defined and analytic in a convex region G. We
consider the nth difference-quotient A"(n =1, 2, ...) defined on (n + 1)
arbitrary points of G. Now

A =] ()], )
where 2’ is a suitably chosen point of G 4). Or in other words: the upper
bound of |A"| in G is smaller than or equal to the upper bound of
| f*(z)| in G.

Proof. Point A” in the complex plane of the points f(*)(z) lies, accor-

4) Z' even is a point of the convex closure of the (n - 1) points. — REMARK. As G
is a region the =-mark in (9) may even be left out.
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ding to theorem III, on the joining line of two points f(*)(p) and f(®(q),
where p and q are suitably chosen points of G. In the triangle determined
by the points 0, f(*)(p), f(")(q) the distance | A" | between 0 and A" is
smaller than or equal to 5) | f(")(p)| or | f(")(q)| by which the theorem has
already been proved.

8. Condition (2) mentioned in theorem I is also necessary. f(z) is a
given function, which certainly is one-valued and analytic in a circle-
region around point z’. According to an extension of a well-known in-
equality of CAUCHY

2nlM

[ (&) | ==

Here z is an arbitrary point of a (sufficiently small) circle-region C
(within the given circle-region) with 2’ for centre, and o for radius; M is
the maximum of | f(z)| on the circumference of a circle with 2’ as centre
and radius 2 g. According to (9) now for all points of C

| A" | = fo(2) | §2nén ; (10)
If 2M <1, then (10) is <n!r” where 1jo = r. If 2M > 1, then (10) is
also < n!r”, where 2M/p = r.

Thus in both cases the required condition (2) holds true as one may
take i so great that all points zi, zi41, ..., on which A? is defined, belong
to the circle-region C.

By this we have also proved the following

Theorem V. If f(z) be analytic in a point 2/, we may write f(z) —
besides the power-series-expansion in 2 — by an expansion of the shape

@ An n
FO)=fe)+3 (—, (- z,.)>

n=1\ N j=1
where z,, 2y, z3, ... is an arbitrary sequence of points converging to 2’; these
points have to lie within a sufficiently small neighbourhood of 2z’ 6). A" is
the difference-quotient [z, zo ... za41] (f).

As this expansion is a generalization of the interpolation-formula of

NEWTON (for infinitely many terms) one might call this the NEWTON-
expansion of f(z) to the sequence zy, zo, ....

5) When p and q coincide.
6) For that neighbourhood we may always take the above-mentioned circle-region C.
In this region the series in question is certainly converging.



