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The birational transformation of a linear system of curves on a surface
can easily be so defined that the transform of a system without fixed
components is again a system without fixed components. But according to
this definition the notion of a “complete system” (VOLLSCHAR), that is of
a linear system which is not contained in a larger one, is not invariant.
For instance, a Cremona transformation of the well-known type with 3
singular points:
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transforms the complete system of all straight lines of the plane into a
system of conics with three basic points, which is not complete, because
it is contained in the larger system of all conics of the plane.

In order to establish the invariance of the notion of a complete system,
the Italian geometers have introduced the notion of virtual multiplicity of
an assigned base-point of a linear system. The system of conics with 3
base-points, obtained by the above transformation, is complete, if these
base-points are assigned with virtual multiplicity 1, that means, if only
those larger systems are let into consideration, whose curves have in these
points at least these multiplicities.

But it is not enough to consider ordinary base points with assigned multi-
plicities; one has to consider also “infinitely near’’ base points. For instance,
the transformation
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transforms the system of all straight lines of the plane into a system of
conics with two ordinary base points P and Q and a “neighbour point” Py,
infinitely near to P. The conics of the system have at least multiplicity 1
at P and Q, and the sum of their multiplicities at P and P, is at least 2,
some of them having a double point at P and others passing through P and
P;. With these assigned virtual multiplicities the system is complete.
-The notions of neighbour points and multiplicities in them can be strictly
defined, according to NOETHER, ENRIQUES, and ZARISKI, but the. analysis
is very complicated and the extension to more than 2 dimensions seems
hardly possible. Therefore it is desirable to find a simpler notion, by which
the analysis of neighbour points is avoidable and which can easily be
generalised. This simpler notion turns out to be the notion of valuation.
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Let £ be a general point of an algebraic surface F. Rational functions of
& are quotients of forms f(&)/g(&) of equal degrees. They form a field,
invariant on birational transformation. Now consider valuations w of this
field, whose values w(#) are real numbers, with the well-known properties

w(nl) = w(n) + w(¢)
w(n + ¢) = Min { w(y), w(¢))}

w(a) = 0 for constant a

Any such valuation defines a valuation ideal p, consisting of those
elements # whose values are positive, situated in the valuation ring p, which
consists of the elements 7 of non-negative value, and a rest class field
o/p, which is a field of algebraic functions of 0 or 1 variable.

This number 0 or 1 is called the dimension of the valuation. In the more
general case, when F is replaced by a variety of r dimensions, the dimension
of the valuation can be any one of the numbers 0, 1, ..., (r—1). We
restrict ourselves, however, to valuations of dimension (r—1). As
ZARISKI has shown, these valuations are discrete, that is, they can be
normed in such a way that the values w(#) are whole rational numbers.

Any valuation w can be extended to forms f of arbitrary degree g, by
the definition

w () = Max. w (72 £(€)

The values w(f), so defined, are non-negative whole numbers. Secondly,
if the surface F is free from singular curves, the valuation w can be
extended to curves C on F, the value w(C) being defined as the minimum
of all values w(f) for all forms f, whose intersections with the surface
contain the curve C. These values w(C) are again non-negative, and the
value w(C + D) for a reducible curve C 4+ D is the sum of the values
w(C) + w(D). Moreover, the value w(C) of any curve C of a linear
system of curves is at least equal to the minimum of the values of the basic
curves of the system.

An example of such a valuation is the multiplicity w(C) of the curve C
in a point P of F. Another example is the sum of the multiplicities of C
in P and in a neighbour point P, of P. This sum can also be defined as
the minimum of the multiplicities of intersection of C with an arbitrary
curve branch passing by P and P,. In the same way a valuation can be
defined for any neighbour point of P, also to those of higher order, by
means of branches passing through them.

On comparing these examples with those given before for assigned
virtual multiplicities of base points of linear systems of conics, one sees
that the notion of virtual multiplicity can be defined just as well with the
aid of valuations without making use of the concept of infinitely near
points. For instead of assigning virtual multiplicities to base points and
their neighbour points, one can assign “virtual (minimal) values” w, for
the values w(C) of the curves C of a linear system in certain valuations w.
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In order to work out this idea, we must introduce a distinction between
“higher” and “lower” valuations. To any valuation w corresponds an
irreducible manifold I on F, such that all forms f containing I have a
positive value w(f), and all forms f not containing I have the value O.
The dimension of I can be any one of the numbers 0, 1, ..., d, where d is
the dimension of the valuation (hence in our case d =r—1). If the
dimension of I is (r— 1), the valuation is called a higher valuation, if it
is less, a lower one. The higher valuations are also called prime divisors
(“Kurvenprimteiler’” in the terminology of H. W. E. JuNG). In the case
of a surface F the higher valuations corresponds to irreducible curves I
on F: if C contains the curve I with multiplicity m, the value w(C) is m.
The lower valuations correspond to points P on F and their neighbour
points Py, P, ...: the value w(C) is the minimum multiplicity of intersection
of the curve C with an arbitrary curve branch passing through the neigh-
bour point in question.

It is a generally adopted convention, not to assign virtual values w, in
higher valuations, but only in lower valuations w. This means geome-
trically, that no fixed components are assigned for linear systems of curves,
but only basic points and their neighbour points. But even these lower
virtual values w, cannot be assigned arbitrarily, for there is a very useful
general theorem in the Italian theory, to the effect that any complete
linear system with assigned virtual values can be represented as the
difference of two linear systems without fixed components, whose virtual
values are equal to their effective omes, the effective value of a linear
system in any valuation w being defined as the minimum of the values
w(C) for all curves of the system. In order to verify this theorem it is
necessary to restrict the virtual values to those which can be represented
as differences of the effective values of two linear systems | C; | and | Cy |
without fixed components, so that the equation

wy = Min w(C;) — Min w(Cy,)

holds for all valuations w. Adopting this restriction, the theorem just
mentioned can be proved and generalised to r dimensions.

As I said before, the aim of the theory is birational invariance. Now the
notion of valuation is invariant by itself, and so is the restriction to valu-
ations of dimension (r—1). The distinction between higher and lower
valuations, however, is not invariant: any lower valuation can be trans-
formed birationally into a higher one. The transformation of a linear system
is governed in the Italian theory by the following rules:

1°. If a basic point with virtual multiplicity w, and effective multi-
plicity w; is transformed into a curve, this curve is to be taken into the
transformed system as a fixed component with multiplicity m = w; — w,.

20, If, conversely, a fixed component of the linear system with multi-
plicity m is transformed into a point, the virtual multiplicity of this point
is defined by the equation m = w; — w,,.



226

3°.  The multiplicities of all other fixed components remain unchanged.

4°. For all basic points and neighbour points which are not transformed
into curves the differences w; — w, remain unchanged.

These rules can be combined into one general principle of invariance,
valid for all higher and lower valuations:

The difference w, — w, between effective and virtual value of a linear
system in any valuation shall remain unchanged upon birational trans-
formation.

This principle can be extended without any change to r dimensions.
The virtual value in a higher valuation being zero, the effective multiplicities
of all fixed components of the transformed system are determined by the
principle of invariance. The variable components are simply the transforms
of the variable components of the original system. The fixed and variable
components of all curves of the transformed system being thus determined,
the effective values w; are fixed, and as the differences w; — w, are again
determined by the principle of invariance, the virtual values w, are fixed
also. :

If a linear system |C| is contained in a larger system |D | with the
same virtual multiplicities, the transformed system |C’| is contained in
| D’|. From this theorem follows at once the invariance of the notion of a
complete system.

The notions 'sum and difference of complete systems are also invariant
on birational transformation, if their virtual values are defined as sums
and differences of the virtual values of the component systems. The com-
plete systems with assigned virtual values form upon addition an abelian
semi-group, which can be extended to a group by the adjunction of “virtual”
differences |C|—|D|, to which may or may not correspond effective
linear systems.

The proofs of the theorems announced in this note are contained in a
manuscript, which I hope is not lost and shall be published- some time.



