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If in threedimensional space a negative or positive definite fundamental
tensor gix is introduced it is possible to consider orthogonal coordinate
systems. Denoting orthogonal coordinates by &1, &2, £3 1) we have

gn=gn—gn==F1: gn=0; iFh; hi=1,23. . (26)
The quantity
def
g=|Detlgn)p « = s+ + s « + s (27)
is a scalar density of weight 4 2, having with respect to every orthogonal
coordinatesystem the value + 1. For orthogonal coordinatesystems we have
£. = =1 and accordingly the difference between ordinary quantities and
densities vanishes. This identification can be got by multiplying with g/
or g—'l:respectively. Accordingly we get the following table of identification
(in orthogonal components)

1 ) 23 123 123 :
S mm g 5 - . s . . X - . D _
J=7 / "N ﬁ ’ Fawo,, o hygmuys pPr=700,-8,,
cyct 1:2:3
volume = scalar /=/ §= % . Q = & ﬁ = ;[ volume = scalar

Fig. 2

From fig. 2 we see that the identification is brought about by means of
the unity volume fixed by g. For instance to derive the arrow of v* from
the tube of §* we have to construct two parallel planes cutting the unit of
volume from the tube. Then v* fits precisely between these planes and its
direction and orientation is that of the tube. Using the fundamental tensor
only as far as the unit of volume is concerned we have got four different
quantities. In physical publications these are often called (in the order of
fig. 2) polar vector, polar bivector, axial bivector and axial vector. But the
fundamental tensor fixes also the notion “perpendicular” and this gives
rise to more identifications. The fundamental tensor establishes a one to
one correspondence between co- and contravariant vectors and bivectors
according to the formulas

wy =g v"; v'=g"w;

i o 1s 28
hi, = Gio grs f”; fM p— gzg g)" hiﬂ ( )

1)  'We always use greek indices ruaning from 1 to 3 (4) for general coordinates and
latin indices running from 1 to 3 (4) for orthogonal coordinates.
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Hence we get the identifications of fig. 3 (orthogonal components):

1 1 Tw =;f
5 - 5 ] v o= = 1 1
_ i £23
%—ﬁ—&-% nyh,= W
cycl. 1,2,3
Fig. 32?)

Now there remain only two quantities, in physical publications often
called polar vector and axial vector according to their simplest geometrical
representation.

The difference between these two quantities depending only on the
difference between inner and outer orientation, it is possible to get a last
identification by introducing next to gi» a definite screwsense in space.
Then we get the identification

V= =Fw, =F [, =0, =hy; =wB=f2; cyd.1,2,3. (29)
leaving only one quantity, the “vector”, having eight different geometrical
representations. It has to be remarked that these different identifications
have not to be mixed up (as is often done) but that at each stage it has to be
absolutely clear what we have introduced: either only the unit volume or
the whole fundamental tensor or the fundamental tensor and a screwsense.

The following algebraic operations (corresponding to the scalar and the
vectorial product of vectors in ordinary vectoranalysis) are invariant with
general coordinate transformations:

1. The transvection of a contravariant and a covariant vector:

vow=vlw,; A=123;. . . . . . . (30

2. The alternating product of two contravariant or covariant vectors:

g=vXw; v =20l u,=2v,wy;x4i=123; . (31)
In orthogonal components the scalar product can be written in the following
ways
v.w=Fv'w' + cycl. =v'w, + cycl. =F v, w; + cyc. =
=F vBw! 4 cycd. =vB w, + cyc. = F v w' 4+ cycd.= (32)
—vpw;, +cyd =
=F vBwB 4 cyd. = F vB w,; + cycl. = F v ws 4 cycl.
For the vectorial product we have in orthogonal components the forms
W =u? = w’— P wl =y w— v, w =0 w?— 2w, (33)

and all the forms that can be deduced from these by raising and lowering
of indices with the aid of the fundamental tensor.

2) In the figures with two arrows the arrow to the left belongs to the case of a negativ
definite fundamental tensor and the arrow to the right to the other case.
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The following differential operations (corresponding to the operations
grad, div en rot in ordinary vector analysis) are invariant with general
coordinate transformations:

1. the gradient of a scalar s:

def a

wi=2015; 6;.::651; A=1,2,3; . . . . . (39
2. the rotation of a covariant vector:
ha=208,wy; Ap=1,2,3;. . . . . . (35
3. the rotation of a covariant bivector:
Qi =30uhu; oopd=1,2,3: « « « « « (36)

4. the divergence of a contravariant vectordensity of weight + 1:
p=0u0% =123 . «~ « & = « 37

5. the divergence of a contravariant bivectordensity of weight + 1:
=0.w"; »,u=1,2,3; . . . . . . (38

6. the divergence of a contravariant trivectordensity of weight + 1:
w* =0, G"; x,Au=1,23. . . . . . (39

The equations

20 wy=0 and O0,Ww*=0. . . . . . (40)

express the invariant property, that the double-planes of the field (con-
structed on an infinitesimal scale) fit together to form a system of double-
surfaces, filling the whole space.

The equations '

3 a['n hlul'.] — 0 aﬂd a‘u b!‘ = 0 . . . . . . (41)

express the invariant property, that the tubes of the field (constructed on
an infinitesimal scale fit together, filling the whole space.

§ 4. The electromagnetic equations independent of the choice of the
electromagnetic unities.

The electromagnetic equations are mostly formulated with respect to
ordinary orthogonal coordinates and certain well chosen electromagnetic
units, In general this is very convenient but the special choice of coordinates
and units has as a consequence that the difference between vectors, bi-
vectors and densities gets lost and that the equations do not give a clear
insight into the possibilities concerning the choice of the electromagnetic
units. In this section the equations will be made independent of the choice
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of these units. The units of mass, length and time may be arbitrarily chosen.
We start from the equations

a) VXF+4+aB=0 e) K=6QF
b) V.B=0 f) F:ig ’
er .. (#1)
0 BD—yVXH=—0ou g B=g¢¢F
d) tV.D=Fp? h) B=yuH
where
= electric fieldstrength o = electric charge density

D — electric displacement Q = electric charge

H — magnetic fieldstrength ¢ = dielectric constant

B — magnetic induction (¢ = ¢¢ in vacuum) (4.1a)

1 = permeability
(x = po in vacuum)
K = force; u = velocity of electric charge

and where a, 8, 7, £, 0, «, ¢ and v are eight constant parameters depending
on the choice of the electromagnetic units. The fundamental units of mass,
length and time being chosen, the electromagnetic units can be fixed by the
following seven assumptions:

1. Unit of F. The unit of F is the field strength exerting the force a
on the charge 1.

2. Unit o} Q. Two positive unit charges on a distance 1 exert on each
other a force h’-1.

3. Unit of D. D has the value h on a distance 1 of a unit charge in
vacuum,

4. Unit of H. The unit of H is the fieldstrength on a distance 1 of an
infinitely long straight conductor carrying a current § k. '

5. Unit of B. If the current of magnetic induction through a closed
curve changes with &’ units in the unit of time, the electromotoric force in
the curve (i.e. the integral of the electric fieldstrength along this curve)
has the value 1.

6. Unit of e. The unit of ¢ is%’

7. Unit of u. The unit of u is “°
p

Every one of these assumptions contains one constant, that can be fixed
in an arbitrary way. In consideration of (4. 1) we get from them

b=a. . . . . . . . .. 42
o
= 4.3
2, (4.3
3) The sign — beloags to a negative definite fundamental tensor and the sign + to a

positive definite one: v.w =1 vl wl I v2 w? I v wd,
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I roog—_1
C_;n—ﬁ; peo—ahh’; ﬂ——énh (4.4)
k
' =4 (4.5)
”:El" (4. 6)
g==p 4.7)
to=p' (4. 8)

From the fact that the propagation of electromagnetic phenomena has the
velocity ¢ in vacuum it can be deduced that

kK

o e (4.9)
P Y Mo
or
kK’
Y = ;ﬁTE)’—CZ = (4. 10)

Hence the eight parameters a, 8, y, £, 0, t. ¢ and y and the values of ¢,
and uy can now be expressed in terms of the seven constants a, k, k’, h, A,
p and p”:

1 =
‘K T ak’
1 ahh’
P == ? =0
3 kK (4. 11)
P Y= an'p @
1
= A
6=a to=p'

That implies that there have to exist just three relations between the eight
parameters and ¢y, and uq. In fact it is readily proved that

i -7 1
p=i= 4 (pw_aﬂso,uocz' #12)
The equations (4. 1) now take the form
a) K VXF+B=0 e) K=aQF
_ _p 1Q
b) V.B=0 N F=>po 5
1 -k o __ahk (4.13)
1 kk'
d) mVD—-:’:Q h) —W‘u
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The choice of the seven constants a, k, k’, h, #’, p and p’ is entirely free.
It is allowed to give them a dimension, i.e. to take them dependent on the
choice of the fundamental units of mass, length and time. To every choice
belongs a system of electromagnetic units.

If the fundamental units of mass, length and time are multiplied by
m=1, [-1 and ¢£-1 and the constants a, k, k’, h, b/, p and p’ by o, », «", 1. ¥/
w and o’ respectively, it follows from (4. 13) that the units of F, D, H,
B, Q. £ and u get the following factors:

F B m“"a l'lntx”fi a’ Q H m"lz l—'s/a tx/—lla
D:mhllheyty ' e : !

(4. 14
H: m'hl-"hg2 y/ =" u: -t )

B : m =ty = eq

If the factor of the unit of charge is denoted by g-1, it is possible to
eliminate y’ and to express the factors in terms of m, [, ¢, q, o/, %, ', y, @
and w’:

F:m'l7'¢2qd Q: q!
D: Pqg 'y e : !

’—1

(4. 15)
H: ltq '« JE )

B:m'ltqx'1d

and these expressions do not contain any fractional exponents. Instead of
the unit of charge it would have been possible to take the unit of F, D, H
or B to get rid of fractional exponents.

In the following four wellknown systems the seven constants have the
values:

Electromagnetic Electrostatic Gauss Giorgi
c.g.s c.g.s. c.g.s. m.kg.s
a 1 1 1 1
k 1 1 1 1
h 1 1 c 1
h’ e 1 1 107/ s
p e 1 1 107/
p’ 1 Ve 1 107
(c in ==[,) (c in <*/s) (cin =)  (c in M[,).

In each of these systems the constants are chosen in such a way that ¢
en yin (4.1, g, h) have dimension [1]:

ahh’ kK '
Y= p =13 w—m’i‘—l . e e (4.17)

19
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The units belonging to these four systems are

Electromagnetic  Electrostatic Gauss Giorgi
c.g.s c.g.s. c.g.s. m. kg. s.
1 dyne 1 dyne 1 dyne 1 Newton = 10° dyne
1 erg 1 erg 1 erg 1 Joule =107 erg
10 coulomb 19/, coulomb 19/; coulomb 1 coulomb
10—8 volt/cm 10——8 .c voll/“:n 10—8 .C v()lt/cm 1 volt/m
1_ coulomb L E coulomb 3 L E coulomb 1_ coulomb 4
i 10 Joli in C Jem? i /ems e e
1 oerstedt ¢! oerstedt 1 oerstedt 103 oerstedt
1 gauss c gauss 1 gauss 10—* gauss
c? g & £ 1077 c2 ¢
Mo c ko Ho 107 po
10-8 volt 10-8. ¢ volt 10-8. ¢ volt 1 volt
10 ampére 10/, ampére 19/, ampére 1 ampére
10—° ohm 107°. ¢? ohm 109 .c?> ohm 1 ohm
(c in =[,) (c in <=[,) (c in <=/,) (c in =/5)
and the equations (4. 13) take the form
Electromagn., electrostat., Giorgi Gauss
a) VXF+B=0 cVXF+B=0
b) V.:B=0 V.B=0
c) —I—D—LVXH::—Qu —l—D—iVXHZ—Qu
47 47 4n 4n
1 L 1 .
d) 4—nV.D_¢9 4—nV.D~:FQ (4.19)
e) K=QF K=QF
_1Q 1 Q
f) F=37 F=<=
g9) D=¢F D —=¢F
h) B=urH B=rH

In every one of these four systems it is inconvenient that there occurs a
factor 4z in (c) and (d). Comparing (4.19) with (4.13) we see that
it is possible to get rid of this factor by starting from (4. 19) and choosing
o, %, %, x, ', o and o’ in such a way that

a) x—4n; b) x=4l—n. v o o» = » (4:20)

But from (4. 13) we see that then (g) and (h) also change. Now we make
the condition that the factor 4 z vanishes in all formulas but for (f) and

. (4. 18)
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that in (f) a factor 4 comes in the denominator of the right member. Then.
from (4.13, a, ¢, d, e) it follows that

’/

1
d=1; x_“‘ln; ®=1; A= (4. 21a)
and from (4.13, f, g, h) that
f =4n0; oo'=1.. . . . . . (4.21b)

Considering only simple values of w, w’ and y’ there are only two possi-
bilities:

First method of rationalization (GAUSS):
L Y —=4n; o=0o' =1. (4.22a)
4”. ’

d=x"=1; x=4n; y =
Second method of rationalization:

N TR S ; 1, e
d=x»"=1; x—=4mn; A= g =l o=, @ —4n. (4. 22b)
With both methods the values of ¢ and o in (4.1 g, h) remain 1. With
the method of GAuss all units except those of ¢ and u get a factor IV 4n

or 1: |/ 4a. This is highly objectionable. Using the second method, only
the units of D, H, ¢ and u change and the unit of H gets the factor 4 .
Because of

ampére windings (4.23)
m B

4 7 oerstedt = 10

the new unit of H is certainly better than the old one for all practical
purposes. For the new units of D, H, ¢ and 1 we get for the second method
of rationalization

Electromagnetic Electrostatic = Gauss Giorgi
c.g.s. c.g.s. c.g.s. m. kg.s.
10 10
coulomb - _— ~ coulomb " _—_~ coulomb g coulomb m?
D 10 /cm C /cm C /C.m 1 /
10 amp. w
Ho10mre Tl 10907 1507 (4 2
€ 47cte, 4ne, 4me, 4n.1077c% ¢
1 1 1 1 ”
u ol 4_7!32/10 4_7,,“0 4*”-10 Ho

(c in-e=/))  (c in /) (c in =/,)
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and for both methods of rationalization the equations take the form

Electromagn., electrostat.,
Giorgi Gauss
a) VXF+B=0 cVXE+B=0
b) V.B=0 V.B=0
) D—VXH=—9u D—cVXH=—¢u
d) V.D=Fp V.D==Fp (4. 25)
e) K=QF K=QF
f) F=%43r2 F:%‘ITQrz
9) D=¢F D=¢F
h) B=uH B=uH

According to (4.24) with the second method of rationalization ¢, and u,
take the values

Electromagnetic Electrostatic Gauss Giorgi
c.g.s. c.g.s. c.g.s. m. kg.s.

£ g2 4n Yan 10 ge . (4. 26)
Mo 4n 47 o 4n 4r. 1077
(c in =/,) (c in =/,) (c in =/5)

Comparing (4. 18) and (4.19) with (4.24) and (4.25) we see that the
system of GIORGI, especially in the second rationalized form is the most
recommendable for all practical purposes.

§ 5. The relative dimensions independent of the choice of the electro-
magnetic units.

The table (4.14) or (4.15) is the base of all dimension formulas. The
constants a, h, h’, k, k’, p and p’ can be chosen in such a way that all or a
part of them depend on some natural unit (cf. § 2). In fact this is done in
the four practical systems mentioned above by relating the constants with
the velocity of light (cf. (4.16)). There would be no objection to the use
of other natural units as the mass of the electron, the charge of the electron
or the elementary quantum.

In order to deduce from (4.14) or (4.15) the dimensions in m, [, ¢ or
m, 1, t, q of the units of a definitely given system it is not allowed to drop
only the factors o, %, »’, ¥, 7', w and «’ because among the constants
a, k, k', h, ', p and p’, fixing the system, there may be some having a
dimension. This dimension has to be taken into account. Then we get the
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following general dimension formulas, valid for vectors only as far as
orthogonal components are concerned ([p] = [v] = [1]):

Q: [m'h Pl ¢] [A"h] =Iq]

F: [mhlThe)[W a1 =[mlt?2q"][a]
D: [mh[-h¢ '] h b’ =[I-2q] [A]

H: [m': ' ¢2] [k~! h''h] =[I"'t'q] [k]
B: [m:-h] [k B "ka"] =[mt'q"][k a7']
e : [pl=[h A a] =[m '3 £q* [ha]
w: [pl1=[12)[kk' " at=[mlq? [kk'a™!]
E: [m':Tk¢e 1 [A—ha™'] =[mPt2q'][a]
I : [m'a [l ¢72) [R7'] =[t"q]

R: [I"'e)[p'—'a™] =[mPlt'q?[a]

(5.1)



