Mathematics. — On the G-function. II. By C. S. MEIJER. (Communicated
by Prof. J. G. vaAN DER CORPUT.)

(Communicated at the meeting of February 23, 1946.)

§ 4. The fundamental systems of the differential equation satisfied by
Gp/q (2)
The function y = G}’ (z) defined by (2) satisfies the homogeneous
linear differential equation of the g-th order
p q
3(—1)"‘”"”2 T (6—a; +1)— IT G—bply=0, . . (39)
1

J= ji=1

where 6 denotes the operator z di
z

This may be established in a very simple way. For the particular case
with m = 1, n = p = q = 2 and b; = 0, that is if the function Gp,q ()
reduces to the ordinary hypergeometric function oF, it has been proved
by BARNES 21). The proof of the general case is almost similar to that of
BARNES' special case, so that it may be omitted here.

Replacing z by ze(r—m-n+1)71 we find that the q functions 22)

elm+n—p-1)zibp GI]’:Z (Z elpP—m—n+1)mi

a,, , ap >
bp, by, ..., ba1, basr, ..., by

1T [(14by—a;)

_ =1 200 ,F,_, ( 1+br—ay,...1+br—ap; ) 65)
= plig- . I
ﬁ I'(14+by—b)) 1+bp—by,..%.. 14+bp—bg: (—1P-m" 2
fzh
where h = 1, ..., q satisfy too the differential equation (34). When
bi—b; 0, +1,+2,... (h=1,...,q;j=1,...,q;: h F£)).

the functions (35) are obviously linearly independent and form therefore
a fundamental system of solutions valid in the vicinity of the origin 23).
Hence the function Gp,q (z) must be linearly expressible in terms of the
functions (35). The actual expression is given by (7).

We now proceed to determine a fundamental system of solutions of (34)
valid near infinity; for this purpose we distinguish two cases:

21) BARNES, [5], 145.

22) Egquation (35) follows from (7).

23) If one or more of the differences b,—b; (h 5% j) is equal to 0, * 1, * 2, ...,
some of the fundamental solutions (35) must be replaced by expressions involving
logarithmic terms.
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First case: g>p. To every value of argz it is possible to
determine an integer A such that

—(gq—tp+l)a<argz+(q—m—n—2i4+1)a<((q—%p+1)n . (36)

It is also possible to determine an integer w such that 24)

_(q_p_l_g)n<atgz+(q—m—n—2w)n<(q——p—}—8).7‘t. : % @ W (37)
for y=w, 0 +1,..., o + qg—p—1.

We now suppose
aj—apn70, 1, +£2,...(=1,....p;h=1,....p;jFh). (38

and consider the functions

Gy (zele—m—n=240i |l a)  (¢=1,...,p). . . . (39)

They obviously satisfy the differential equation (34). On account of
(36) and (13) it follows from theorem A that these functions tend
algebraically to zero or to infinity for | z | = o; it is further clear in virtue
cf (38) and (13) that they have a mutually different algebraic behaviour
for large values of | z|. Hence they form a system of p linearly independent
solutions of the differential equation (34). The fundamental system is-
therefore not yet complete. '

In order to determine the failing solutions we consider the ¢ —p
functions

Gig(ze@-m-n=2p)  (y=w,041,...,0+q—p—1) . (40)

It is easily seen that these functions satisfy too the differential equation
(34). Because of (37) and (25) it follows from (26) that they tend
exponentially to zero or to infinity as | z| — oo; besides it appears from
(26) and (25) that they are mutually linearly independent. Hence they
supply the g—p failing fundamental solutions of (34).

We have therefore proved: When q > p and the conditions (36), (37)
and (38) are satisfied, a fundamental system of (34) valid in the vicinity
of z = o is formed by the p functions (39) and the q—p functions (40).

Second case: g=p. We shall assume that the numbers a; ..., ap
satisfy the condition (38). Besides we suppose
argz + (p—m—n)n#0, +2n, +4n, ... . . . . (41)

Then it is possible to determine an integer 4 such that

—n<largz+ (p—m—n—244+al~ . . . . (42)

We now consider the functions

Ghyp(zeP—m=n-2240xi||a)  (¢=1,...,p). . . . (43)

24)  The number ¢ is defined by (24).
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These functions satisfy the differential equation (34) with ¢ = p.
Because of (42), (31) and (38) it follows from theorem F that they have
outside the unit-circle a mutually different behaviour for |z | tending to
infinity. The functions (43) form therefore a system of p linearly inde-
pendent solutions of the differential equation (34) with ¢ = p.

Hence, if ¢ = p and the conditions (41), (42) and (38) are satisfied,
the p functions (43) form a fundamental system adapted for the region
outside the circle |z| = 1.

Remark. Sometimes there occur in a formula not the p functions
(39), respect. (43) but only the first n of these functions, viz. the functions

Ghg(zela-m=-n-22+07i | 2)  (¢=1,...,n),
respect.
Ghp (ze-m—n-24+0ai || a)  (¢=1,...,n).

In order that these functions are linearly independent, it is not necessary
that the condition (38) is satisfied. We may replace (38) by the less
stringent condition (20).

If we have to do with less than g — p functions G%§ , namely with the »
(»<q—p) functions

Gg:g(ze(q—‘nl"n—ZVV)ni) ('l,U —~—w,w + 1, wicar g v ) + "’_1)'

then it is evident that the condition (37) needs not to be satisfied for
y=ow wot+1 .., o+ qg—p—1, but only for y = w, o +1, ...,
o+ v—1,

§ 5. Contents of the paper.

The function Gp'y' (z) can by means of (7) be linearly expressed in
terms of the functions of the fundamental system of (34) valid near z = 0.
But now that we have constructed a system of fundamental solutions of
(34) valid in the neighbourhood of z = oo, it must also be possible to

express the function Gpg (z) as a linear combination of these last
fundamental solutions. That is to say: There must exist relations of the
form

mng \__ £ q,1 (q—m—n—2A+1)=i - q,0 (q— m—n—2h—2w)=i
r.a(2)=2CiGpgl(ze lla)+ 2 D Gplg(ze ). (44)
] =1 h=0 .
where
va; (zelg—m-n—22+07i | 5)) and Gg,g (z elg—m-n—2h—20) i)

are the in § 4 defined fundamental solutions in the neighbourhood of z =

and where the coefficients C+ and D» do not depend on z.

On account of the generality of the function Gp'q'(z) and the great

number of important functions which are particular cases of it 25), it will

25) See the lists in [18]—[25]; these lists are nct complete.
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be interesting to investigate this subject more fully. In the present paper
I will determine the coefficients Ct and D» for all values of m, n, p and gq,

for which the function Gpq' (z) has been defined and for all values of
|z| and arg z 26). It appears necessary to distinguish several cases. In
most cases the coefficients Ct and D» are much more difficult to determine
and much more complicated than the coefficients in formula (7). ’
§8 6, 7, 8 and 13 supply some definitions and a great number of lemmas.
In §§ 9, 10, 11, 12 and 14 I prove four expansion formulae (theorems 1,

2, 3 and 5) which render it possible to write the function Gp,q in a special

. o . <k, [—1
way as a linear combination of functions G% £ and Gy §

These expansion formulae are the most powerful instruments of the
present paper. Their most important particular case appears when we put
Il =1 and k = q. The in this manner specialized expansion formulae are
written out in § 16. In §§ 17 and 19 I will show that the desired relations
of the type (44) are particular cases of the specialized expansion formulae
of § 16. § 17 is devoted to the case with g > p; the case with ¢ = p will
be examined in § 19.

In § 2 I have mentioned BARNES' asymptotic expansion of the function

Gpq(z) (g>p). His results bear upon the two following cases only:
A 1=n=p<q, 1=m=q, m+n>ip+1iq.
B. n=0, m=q, |largz| <(q—p+¢) .

argz|<(m+n—%ip—%q)7.

But now that it is possible to express the function Gp'q (z) for all
values of m, n, p, q and arg z in terms of functions Gigq (¢ |a¢) and

G249 (¢) of which the asymptotic expansions for large values of | ¢ | can
be written down by means of BARNES' formulae (18) and (26), it is also
possible to deduce asymptotic expansions for the function Gpy'(2)
(g>p) for all cases which do not come under those of BARNES. Hence
we are now able, for all values of m, n, p, ¢ and argz, to determine
asymptotic expansions of the function Gy (z) (¢g>p) as |z|— .
These expansions are given in § 18; I have stated my results in the form
of six theorems,

The function Gp'y (z) has been defined in § 1 for |z| <1 and any
value of arg z. In § 3 (theorem E) I have given a formula for the analytic
continuation of this function outside the circle | z| =1 in the case

L m+nzp+1, |arggz|< (m + n—p)7.
Hence there still fail formulae for the analytic continuation of GZ',': (2)
in the two following cases:

II. m + n<p, all values of arg z.
. m+nzp+1, |argz|> (m +n—p)n.

26) If q = p, I suppose | z| > 1; the values of z on the cross-cut are excluded.
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As I have already stated in § 3, I will make in these cases across-cut
along the real axis from (—1)™+"-? to co . (—1)™+"=?. Now it is possible

to express the function Gp'y (z) for all values of m, n, p and arg z
(except values of z on the cross-cut) in terms of the fundamental solutions

near z = o of the differential equation satisfied by Gp'p (z). Since the
continuations for | z | > 1 of these fundamental solutions can be immediately
written down by means of theorem F, it is also possible to determine in all
cases (except when z lies on the cross-cut) the analytic continuation of

Gpp (z) for |z|>1. The formula in question is given in § 19.

A simple and important special case of the function Gpg41(z) is the
generalized hypergeometric function ,Fq (ay, ..., ap; f1, ..., fp; z). The
behaviour of this function for large values of |z | was a subject of investi-
gation of several writers. Most of these investigations are fairly difficult.
In § 20 I will shew that the asymptotic expansions of the function pFq (z)
can with slight labour be deduced from the analogous expansions of
G;,ZH (z)s

Now one would be apt to think, on account of (7), that it must on the

contrary also be possible to deduce the asymptotic expansions of Gpq (z)
from the known expansions of the function pF4_;(z). In many cases

however we then find for G} ;' (z) an expansion wherein the coefficients

all vanish. Now it is clear that a such expansion is worthless, so that in
these cases it is not possible to deduce a suitable asymptotic expansion for

Gp'q (z) from the corresponding expansion of pF¢_1(z). For instance the

asymptotic expansions of Gp g (z) which are exponentially small cannot be
deduced from the asymptotic expansions of pFg¢_1(z).
In § 15 I will examine some relations of the form

k
M (2) :hél rn M (z el -20)7i),

Finally, in § 21 I will determine for all values of arg z the asymptotic
expansion of WHITTAKER's function Wy n(z) as |z| — co.

§ 6. Definitions.

Definition 4. If the numbers as are defined fors = 0, =1, =+ 2, ... and

h —1

h is a positive integer or zero, the sums X as and 2 as have the usual
s=0 s=0

meaning

h =
Yas=ay+a +...+ap and 3 as=0.
s=0 s=0

-k
If k is an integer = 2, the sum X as is defined as follows:
§=0
~k
Jag—=—a_—a_—...—a_k41.
s=0
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Definition 5. Suppose that m, n and q are integers with
0=m=gq and n=0.
Then the coefficients A™ 5 and A™} are defined as follows:
MR (D)™ ot b= bg) A
_m'Z — (2ni)m+n-q e—(a,+...+an—bm+,—...—bq)ni.
Definition 6. Suppose that m, n and p are integers with
0=n=p and m=0.
Then the coefficients Bj'" and Bj'" are defined as follows:
BM" = (— 2qi) ™t P olrt b apsi—map)ad
BIn e g (et oty tphy g}
Definition 7. Suppose that m, n and q are integers with
0=m=q and n=0;

suppose further that t is an arbitrary integer.

Then the coefficients Q™7 (t) and Q™ (t) are defined as follows:

(45)
(46)

(47)
(48)

QM4 (t), respect. Q™7 (¢) is the coefficient of x! in the expansion of

q g :
I (1 —xe?™ibj) I (1—xe271b))
r=mi , respect. J="*1
II (1 —xe?™i4j) II (1 —xe ?7i4j)
j=1 j=1

in ascending powers of x.

Definition 8. Suppose that m, n and p are integers with
0=n=p and m=0;

suppose further that 1 is an arbitrary integer.

Then the coefficients I';"" (1) and I'g"" (1) are defined as follows:

Y™ (4), respect. I'f"™ (1) is the coefficient of x* in the expansion of

p . p ) i
II (1 —xe?™iaj) I (1—xe?7iaj)
j=n+1 j=n+1
p . , respect. p .
IT (1 —xe?™ibj) IT (1 —xe™27ibj)
ji=1 j=1

in ascending powers of x.

Definition 9. Suppose that h, m, n, p and q are integers with
0=n=p, 0=m=gq and h=1;

suppose further that ) is an arbitrary integer.

Then the coefficients @y (h; 1) and @' (h; 1) are defined as follows:
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D, 5(h: 1), respect. Dpa(h; 1) is the coefficient of x"+i-1 in the
expansion of
p

g I (1— xeraia))
(t)xtg

J=ngd

h—1 o,p

> 827 5 s

h=R IT (1 — xe?*ibj)
j=1

respect.

p .
ks (1 —xe“z"‘“’i))
g > %09 x'i L (
t=0 IT (1 —xe—271ib)) S

ji=1

in ascending powers of x.

Definition 10. Suppose that h, m, n, p and q are integers with
0=n=p,0=m=q and h=1;

suppose further that 1 is an arbitrary integer
Then the coefficients ¥y (h; 2) and 54 (h; 1) are defined as follows:

Yot (h; 3), respect. Wpiy (h; A) is the coefftaent of x* in the expansion of

p

ho_ AT (1—xe?tay)
%g .Qo’f,’(h—-t)x‘% fontl "
=4 IT (1—xe?™ib))
Jj=1
respect.
p e g |
" il (l—xe‘z’”"J)z
?2 Q"'g(h—t)x‘g j=ntl '
t=1 II (l_xe-Z:ub ) 5
J:

in ascending powers of x.

Definition 11. Suppose that |, m, n and p are integers with
1=I1=p, 0=n=p and m=0;
suppose further that r is an arbitrary integer.
Then the coefficients ©5"" (I;r) and O3"" (I; r) are defined as follows:
O " (I: r), respect. O3 " (L; r) is the coefficient of x" in the expansion of

p P ;
II [l—xe*aj) II' (1—xe2™4;)
j=n+1 Jj=n+l
n , respect. =
(1—xe?iar) IT (1—xe?"it)) (1—xe-2ra1) IT (1—xe2ib))
I=1 Jj=1

in ascending powers of x.
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Remark. From the above definitions it follows

QU =0™")=0 for t=—1,—2,—3,..., . . (49)
Qmro)=2™'0)=1, . . . . . . . (50
rmr@=T™")=0 for i=—1,—2,—3,...., . . (51)

Pt =rrtg=1,
S (h; ) =B (h; ) =0 for Ai=—h,—h—1,—h—2,..., (52)

P (h; ) =¥g(h; )=0 for A=0,—1,—2,..., . . (53)
OF ;) =0y"(l;)=0 for r=—1,—2,—3,.... . . (59)
and
Oy " (1;0)=07"(1;0)=1.
§ 7. Lemmas.
Lemma 1.
G ) = 5o feriomut GEEM™ (zei)— e~lbmn GE3" (zem), . (55)
hale)= 21 feriantt Gy (zem)—e~*lant1 Gpg" (ze™)}.. (56)

Proof. From (2) it follows

1
2ni

fe™ibm41 G'"“ "(ze—"i) —e " i0m41 Gmﬂ "(ze™i)}

m+1 n
HF(bj—s)HF(l—aj +S)

1 eilbmy1—s) —e—7i(bymi1—S)
~ 2ai 2ni z5ds
¢ I I(—bs+s) 11 I'aj—
j=m+2
m+1F
1 (enlber-dw i oY II r'(1—a; +s) g
o 2ni 7T A S
¢ 7§ T(1—bj+s) n T(aj—s)
j=m+2
1 Hp(bl—s) I I'(1—a; +s)
= 2xi z2ds=G}q(2).
1 F(l—bj+s) I I(aj—s)

C Jj=mh j=n+1
so that formula (55) has been established.
The proof of (56) is similar to that of (55).
23
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Lemma 2. If k, I, p, q. s and t are integers with
1SI=s=p=q, 1=t=s—1+41 and 0=k=q,
then
Gyq* (zlla) =e27!at Gpg* (ze2™! ||a) +2nie="!% Gpg " (ze™) (57)

and
Gy’ (z]la) = e*™1at G5 (ze~27||a)—2mie™iat G "* (ze—™1).  (58)

Proof. Since G&%(z) is a symmetric function of ay, ..., a, and also
of a,,,, ..., ap, we have by (56) and the definitions of Gk ls nd G“_”

(see the end of § 1)
22i Gpg " () =e"'at Gy g* (ze~™! [la) — ="'t Gpig* (ze™!||ay).

From this formula follow (57) and (58) without difficulty.

The most important lemma is

Lemma 3. Suppose that m, n and q are integers with 0 <m < q and
n20; further that r is an arbitrary integer; finally that the numbers
ajy, ..., an satisfy the condition

aj—ar#0,+1,+2,...j=1,...,n; t=1,...,n; jF6. (20)
Then the following formula holds:
zn' elm+n—q+2r=ia; A’"rg (t)
t=1
- (59)
=— 5 |A™ T Q™ () — A" ™ (q—m—n—1)}.

Proof. Letus suppose that the numbers ay, ..., an satisfy the condition

ol F o G=1,....n; t=1,...,n; jF0).
By U we denote the coefficient of x” in the expansion of
(l—ﬂ,x)

— (s=0; n=0)
(1—ajx)

ISHESE

in ascending powers of x. By V. we denote the coefficient of x" in the
expansion of

=B
T
|
R ®
S—

=8
P
et
|
\QNIX
N——

in ascending powers of x.
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Finally we write

From the definition of the coefficient U it follows that for small values
of | x| the following expansion holds

jI_Il(ﬂ/x——j) ﬁ

_" i =(—1)"" =s Z'U,x’ . . . (60)
II (aj x——) H,B

j=1 aj j=1

for large values of | x| however we have according to the definition of
the coefficient V',

S 1 5
a (ﬂ/ x—E) 11 g, m
== . FWVyartmh, . , . . {6])
1 T k=
(aj x——) II aj
j=1 aj j=1
The coefficients U, and V', satisfy further the relations
U,=V,=0forr=—1,—2,—3, ...

We now consider the expansion of the left-hand side of (61) in partial
fractions. This expansion runs as follows 27)

Na| T

. Y .
11 (Bjx— —) I B; s e

Alo=s, ez AW
n 1 n h=0 t=1 1

i <a,x——) II q; at x——

j=1 aj j=1 at

Now the coefficient of x” in the expansion of the right-hand side of (62)

. n
in ascending powers of x is — 23 af—s*2r Wy,
=

If r =0, we find therefore on account of (62) and (60)

n S
n H aj i ﬂf
Jarsr Wy=(—1)""" S U+ 2V, . (63)
t=1 I ﬂj I aj
j=1 j=1
this relation still being true when r>s—n, since V4 =0 for h = —1,
—2,—3, ...

We may yet show that (63) also holds when r << 0.

27)  Since V; = 0 for h <0, formula (62) also holds when n > s (comp. definition 4).
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For we have by (61)

S 1 s s

E@ﬂ‘m) LT ap

J . I/ Ji=1 S Vyxs—nh = J=t > Vhpxs—nh,
n n n

I (ajx—‘—l— II o;"=° II a;"=""%!

j=1 aj j=1 F=1

From this formula and (62) it follows
s
ngn—s— II B
Za'; s IVIl/tz j=nl 2“2 Vi xs=n—h,
H . h=s—n+1

t=1 arx — — a;
at j=1

Since the coefficient of x—# in the expansion of the left-hand side of this

n
relation is equal to 2 a?~$-2# W+, we get for u>0
t=1 .

S
n I8y
2 a?_s_z‘u W= J_,, — Vs-n+,u .
t=1 H aj
j=1
If herein u is replaced by —r, we find (63) (since Ur = 0 for r = —1,

—2, —3, ...) so that (63) is true for any integer.
We now put s = g—m, a; = ™%, ..., an = e*ian, f; — e*ibm+1, ..,
Bs — e™ibq. Formula (63) reduces then to (59), which proves the lemma.

Lemma 4. Suppose that m, n, q and 1 are integers with

=m=qn=1. . . . . . . . (69
and
0=i=m+n—gq—1;. . . . . . . (65
suppose further that the numbers ay, ..., ans+y satisfy the condition
aj—ar#0,x1,x2, ... (j=1,...,n+ L t=1,..,njFt).
Then the following formula holds:
t=1
q
Il sin(bj—ap)n - (66)

— — gm+n—q glm+n—g-2i-lziapy J=m+1

n
II sin (@aj—anp41) 7
ji=1

Proof. If 1 satisfies (65), it follows from (59) with r = —1—1
and n + 1 instead of n, on account of (49)

n+1

3 glmin-g-2-tistay ™ () =,
t=1
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Hence we have in view of (16)

n
2 eminmasitialay AT GH () = — elming-2i-aianys AT GH (n 4 1)

q
I sin (bj—ans1) 7
= _ pm+n—gq glm+n—g—2A-Nmia,yy J=m+1

n ’
IT sin(aj—an41) @
j=1
so that the lemma has been proved.
Lemma 5. Suppose that m, n, q and A are integers which satisfy the
conditions (64) and (65); suppose further that the numbers ay, ..., an fulfil
the condition (20) and satisfy besides the inequality

at—f=£0, =1, =2, ..(t=1,..,n).
Then the following formula holds:

m,n
g' elm+n—g—22—\)xia, A™q (0
t=1 sin (f—ay) =

IqI sin (bj—p)n . . (67)

l)niﬁ J=]:+l

II sin (a;—p) =
=

— — gmtn—q—1 glm+n—q—2i—

Proof. From the definition of the coefficient A it follows that
A™3*(t) with 1 <t <n and an+y = f is equal to
w A™ g (f)
sin (B—a¢)n’
Formula (67) is therefore a particular case of (66).

Lemma 6. Suppose that h, m, n, q and A are integers with
=m+4+1=h=qand 0=1=m+n—q—1;

suppose further that the numbers aj, ..., an [ulfil the condition (20) and
satisfy besides the inequality

ar—bn %0, =1, £2, ... (t=1, ... msm+ 1=h=q)
Then the following formula holds:
n . A™g ()
(mtn—q—22—N)mia; ___— 9\ ¢ « w o« @ 68
té‘le ‘ sin (bp—as) 7 0 - (68)
Proof. Formula (68) is a particular case of (67), since the right-hand
side of (67) vanishes for § = bx (m + 1< h<gq).

Lemma 7. Suppose that m, n and p are integers with 0 <n <p and
m 2 0; further that 1 is an arbitrary integer; finally that the numbers
by, ..., bm satisfy the condition

by—bs £ 0, 1, £2, ... (J=1, wum;s=1, ..., mi j £ s).
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Then the following formula holds:
By "y ()—Bp" Tp" (p—m—n—A)
P
II sin (aj—bs) =
— —2{mgm+n—p E' elm+n—p+2)zibg f=”"l+l ’ : - . (69)
s=1 II sin (bj—bs)n
J#s
Proof. If we replace m, n, q, r, a; and b, successively by n, m, p, 4,
b, and aj, the coefficients A™j, A™7, Q™7 (r) and Q™G (r) transform

successively into Bp", Bp*", I'p»"(1) and I'y"" (4); on account of (16)
formula (59) reduces then to (69).




