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§ 4. The fundamental systems of the differential equation satisfied by 

G~': (z) 

The function y = G~': (z) defined by (2) satisfies the homogeneous 
Iinear differential equation of the q-:th order 

~(_I)p-m -nz ÉI (8-aj + 1)- /!I (8-bj)~ y=O, 

d 
where () denotes the operator z d z' 

(34) 

This may be established in a very simple way. For the particular case 

with m = 1. n = p = q = 2 and bI = O. that is if the function G~': (z) 
reduces to the ordinary hypergeometric function 2F 1. it has been proved 
by BARNES 21). The proof of the general case is almost similar to that of 
BARNES' special case. so that it may be omitted here. 

Replacing z by ze(P-m-II + 1)JTi we find that the q functions 22) 

e(m+n-P-l) "i bh G'P z elp-m-n+l)lIi I ( I al' ...• ap ) 
P.q bh. bi ..... bh- I. bh+\o ...• bq 

(h = I •.... q ; j = 1 •.... q ; h 1=- j). 

the functions (35) are obviously lineé!rly independent and form therefore 
a fundamental system of solutions valid in the vicinity of the origin 23). 

Hence the function G';,'qn(z) must be linearly expressible in terms of the 
functions (35) . The actual expression is given by (7). 

We now proceed to determine a fundamental system of solutions of (34) 
valid near infinity; for this purpose we distinguish two cases: 

21) BARNES. (5). 145. 
22) Equation (35) follows from (7) . 
23) IE one or more of the differences bh-b j (h '* j) is equal to O. ± 1. ± 2 .... . 

same of the fundamental solutions (35) must be replaced by expressions involving 
logarithmic terms. 
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F i r s tea se: q> p. To every value of arg z it is possible to 
determine an integer }, such that 

-(tq-tP+ 1) n < arg z + (q-m-n-2À. + 1) n < (t q-t p+ 1) n (36) 

It is also possible to determine an integer w such that 24) 

-(q-p+e) n < arg z+(q-m-n-21p) n < (q-p+ e) n. 

for 1p = w. w + 1. .... w + q-p-l. 

We now suppose 

. (37) 

aj-ah 1=- O. ± 1. ± 2 •... (j = 1. .... p; h = 1. .... p;j 1=- h). (38) 

and consider the functions 

(t=1. .... p). (39) 

They obviously satisfy the differential equation (34). On account of 
(36) and (13) it follows from theorem A that these functions tend 
algebraically to zero or to infinity for 1 z 1 ~ CD; it is further clear in virtue 
(f (38) and (13) that they have a mutually different algebraic behaviour 
for large values of 1 z I. Hence they form a system of p linearly independent 
solutioris of the differential equation (34). The fundamental system is ' 
therefore not yet complete. 

In order to determine the failing solutions we consider the q - p 
functions 

Gq,o (z e(q - m - n-2 'I'):li) p,q (1p = w. w + 1. . ... w + q-p-l) . (40) 

It is easily seen that these functions satisfy too the differential equation 
(34). Because of (37) and (25) it follows from (26) that they tend 
exponentially to zero or to infinity as 1 z 1 ~ CD; besides it appears from 
(26) and (25) that they are mutually linearly independent. Hence they 
supply the q - p failing fundamental solutions of (34) . 

We have therefore proved: When q> pand the conditions (36), (37) 
and (38) are satisfied, a fundamental system of (34) valid in the vicinity 
of z = CD is formed by the p functions (39) and the q - p functions (40). 

Sec 0 n dca se : q= p. We shall assume that the numbers al .. .• ap 

satisfy the condition (38) . Besides ~e suppose 

arg z + (p-m-n) n 1=- O. ± 2n. ± 4n • ... (41) 

Then it is possible to determine an integer }, such that 

-n < arg z + (p-m-n-2À. + 1) n < n. . (42) 

We now consider the functions 

G~:~ (z e(p-m-n-2!. + l)lli 11 at) (t= 1. .... p) . (43) 

24) The number E is defined by (24). 
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These functions satisfy the differential ~quation (34) with q = p. 
Because of (42) , (31) and (38) it follows from theorem F that they have 
outside the unit-circle a mutually difJerent behaviour for I z I tending to 
infinity. The functions (43) form therefore a system of p lim~arly inde
pendent solutions of the differential equation · (34) with q = p. 

Hence. if q = pand the conditions (41), (42) and (38) are satisfied. 
the p functions (43) form a fundamental system adapted for the reg ion 
outside the circle I z I = 1. 

Re mar k. Sometimes there occur in a formula not the p functions 
(39), respect. (43) but only the first n of these functions , viz. the functions 

GZ:~ (z e(q-m-n-21.+ l) ;d 11 at) (t = 1. ... , n), 

respect. 

(t = I, ... , n). 

In order that these functions are linearly independent, it is not necessary 
that the .condition (38) is satisfied . We may replace (38) by the less 
stringent condition (20) . 

If we have to do with less than q - p functions G~:~ , namely with the )I 

(v < q - p) functions 

(1jJ = w , w + 1. . . . , w + )'-1), 

th en it is evident that the condition (37) needs not to be satisfied for 
1jJ = w, w + I , .. . , w + q - p - I , but only for lJl = w, w + I, 
w + )1-1. 

§ 5. Contents of the paper. 

The function G;"; (z ) can by means of (7) be linearly expressed in 
termsof the functions of the fundamental system of (34) va lid near z = O. 
But now that we have constructed a system of fundamental solutions of 
(34) va lid in the neighbourhood of z = ro , it must also be possible to 

express the function G;"qn (z) as a linear combination of these last 
fundamental solutions. That is to say: There must exist relations of the 
form 

where 

Gq,l (ze(q-m-n-2J. + l)ni 11 a) end Gq,o (z e(q-m -n- 2h-2CNjn i) p,q t p,q 

are the in § 4 defined fundamental solutions in the neighbourhood of z = ro 

and where the coefficients Ct and Dh do not depend on z. 

On account of the generality of the function G;"qnj (z) and the great 
number of important functions which are particular cases of it 25), it will 

25) See the Iists in [18]-[25] ; these Iists are nc,t complete. 
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be interesting to investigate this subject more fully. In the present paper 
I will determine the coefficients Ct and Dh for all values of m, n, pand q, 

for which the function C;"qn (z) has been defined and far all values of 
I z l and arg z 26). It appears necessary to distinguish several cases. In 
most cases the caefficients Ct and Dh are much more difficult to determine 
and much more complicated than the coefficients in formula (7). 

§ § 6. 7. 8 and 13 supply some definitions and a great number of lemmas. 
In § § 9. 10. 11. 12 and 14 1 prove four expansion formulae (theorems 1, 

2. 3 and 5) which render it possible to write the function C';,·; in a special 

1· b" f f . C k I d C k • I - 1 way as a mear com matIon 0 unctJons p:q an P.q' 

Theseexpansion formulae are the most powerful instruments of the 
present paper. Their most important particular case appears when we put 
I = 1 and k = q. The in this manner specialized expansion formulae are 
written out in § 16. In § § 17 and 19 I will show that the desired relations 
of the type (44) are particular cases of the specialized expansion formulae 
of § 16. § 17 is devoted to the case with q > p; the case with q = p will 
beexamined in § 19. 

In § 2 I have ;nentioned BARNES' asymptotic expansion of the function 

G;"; (z) (q> p). His resu·lts bear upon the two following cases only: 

A. l-==n-==p<q. l-==m-==q. m+n>tp+tq. largzl «m+n-tp-tq)n. 

B. n=O. m=q. largz l < (q-p+E)n. 

But now that it is passible ta express the function G;"qn (z) for all 

va lues of m, n, p, q and arg z in terms of functions C~: ~ (, 11 at) and 

G~: ~ (,) of which the asymptotic expansions for large values of I' I can 
be written down by means of BARNES' formula'e (I8) and (26). it is also 

possible ta deduce asymptotic expansions for the functian c;,;t (z) 
(q > p) for all cases which do not came under those of BARNES. Hence 
we are now able. for all values of m, n, p. q and arg z. to determine 

asymptatic expansions of the function C;";(z) (q>p) as Izl~ oo. 
These expansions are given in § 18; I have stated my results in the form 
of six theorems. 

The function C;'·; (z) has been defined in § 1 for I z 1< 1 and any 
value of arg z. In § 3 (theorem E) I have given a foqnula for the analytic 
continuation of th is function outside the circle I z I = 1 in the case 

I. m + n G p + 1. I arg z I < (m + n - p) n. 

Hence there still fai! formulae for the analytic continuation. of C;'·; (z) 
in the two fallowing cases: 

11. m + n :;;;; p. all va lues of arg z. 
111. m + nGp + 1. largzl> (m + n-p)n. 

26) If q = p. I suppose I z I> 1; the values of z on the cross-cut are excluded. 
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As I have already stated in § 3. I wiIl make in these cases a ' cross-cut 
along the real axis from (-1) m+n_p to CD • (-1) m+n-p. Now it is possible 

to express the function G;"; (z) for all va lues of m. n, pand arg z 
(except values of z on the cross-cut) in terms of the fundamental solutions 

near z = CD of the differential equation satisfied by G;"; (z). Since the 
continuations for I z I > 1 of these fundamental solutions can be immediately 
written down by means of theorem F . it is also possible to determine in all 
cases (except wh en z lies on the cross-cut) the analytic continuation of 

G;"; (z ) for I z I > 1. The formula in question is given in § 19. 

A simple and important special case of the function G;'q~1 (z) is the 
generalized hypergeometric function pFq (a l . . .. . ap ; {ll ... .. (lp; z). The 
hehaviour of this function' for large values of I z I was a subject of investi
gation of several writers. Most of these investigations are fairly difficult. 
In § 20 I will shew that the asymptotic expansions of the function pF q (z) 
ean with slight labour be deduced from the analogous expansions of 

' p Gp',q+l (z) . 
Now one would be apt to think. on account of (7). that it must on the 

contrary also be possible to deduce the asymptotic expansions of G;"qn (z) 
from the known expansions of the function pFq-l(z) . In many cases 

however we then find for G;' -; (z) an expansion wherein the coefficients 
all vanish. Now it is clear that a such expansion is worthless. so that in 
these cases it is not possible to deduce a suitable asymptotic expansion for 

G;"; (z) from the corresponding expansion of pF q _ dz). For instance the 

asymptotic expansions of G;"; (z) which are exponentially small cannot be 
deduced from the asymptotic expansions of pF q-l (z). 

In § 15 I wiIl examine some relations of the form 

k 
M (z) = }; l'h M (ze(Y-2h) .'l i). 

h=1 

Finally. in § 21 1 wiIl determine for all values of arg z the asymptotic 

expansion of WHITTAKER 's function Wk.m( z ) as Izl ~ CD. 

§ 6 . Definitions. 

Definition 4. f[ the numbers a s are de[ined [or s = O. -+- 1. -+- 2 . . . . and 
h -I 

h is a positiv'e integer or zero, the sums ~ a s and ~ a s have the usual 
s=O s=o 

meaning 
h -I 

}; as = ao + al + .. . + ah and }; as = O. 
s=O s=o 

-k 
f[ k is an integer ;:;;: 2. the sum ~ as is de[ined as [ollows: 

s=o 
-k 
}; as = - a_I-a_2- . .. -a- k+l' 

s=o 
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Definition 5. Suppose that m, n and q are integers with 

o -== m -== q and n =- O. 

Then the coefficients A m,.~ and Am, ~ are defined as follows: 

Definition 6. Suppose that m, n and pare integers with 

o -== n -== pand m =- O. 

Then the coefficients B;' n and lJ;' nare defined as follows : 

B m,n _ (-2 .)m+n-p (b,+ ... +bm-an+l-· ·· - ap)"i 
p - :Tl I e 

B- m, n _ (2 .)m+n-p -(b,+ ... +bm-an+l-· ··-ap):ri 
p -:Tli e . 

Definition 7. Suppose that m, n and q are integers with 

o -== m -== q and n =- 0 ; 

suppose further that t is an arbitrary integer. 

Then the coefficients SJm, ~ (t) and SJ m, ~ (t) are defined as follows: 

(45) 

(46) 

(47) 

(48) 

SJm, ~ (t) , respect. SJm, ~ (t) is the coefficient of x t in the expansion of 
q 

IJ (l-xe2 :db j) 
j=m+l j=m+l 
~-n--'--------- . respect. -'----~n '-'-------

IJ (l-xe2 :riaj) IJ (l-xe- 2 " iaj) 
j=l j=l 

in ascending powers of x. 

Definition 8. Suppose that m, n and pare integers with 

o -== n -== pand m =- 0 ; 

suppose further that À is an arbitrary integer. 

Then the coefficients r;,n (À) and r;·n (À) are defined as follows: 

r;,n (À), respect. r;,n (À) is the coefficient of x" in the expansion of 
p 

IJ (l-xe2 :n iaj) 
j=n+l 

m 
IJ (I _xe2 :rib j) 
j = l 

in ascending powers of x. 

• respect. 

p . 
IJ (l-xe-2"laj) 

j=n+l 
m 
IJ (l-xe-2 "ibj) 
j=l 

Definition 9. Suppose that h, m, n, pand q are integers with 

o -== n -== p. 0 -== m -== q and h =- 1 ; 

suppose further that À is an arbitrary integer. 

Then the coefficients r[>;"~ (h; À) and 4);"~ (h; À) are definedas follows: 



350 

tJ>;"~ (h: Jo), respect. Çp;"~(h: 2) is the coeflicient of Xh + À-l in the 
expansion of 

respect. 

Definition 10. Suppose that h, m, n, pand q are integers with 

o -== n -== p, 0 -== m -== q and h ==- 1 ; 

suppose further that }, is an arbitrary integer. 

Then the coefficients ~n;: ~ (h ; },) and ~~:~ (h; 2) are defined as follows: 

p;"qn (h; 2). respect. p;"qn (h; .1.) is the coeflicient of x À in the expansion of 

respect. 

U, QO':(h-t)X'! j 
in ascending powers of x . 

fI (l-xe-
21tia

j)l 
j=n+ 1 

m . 

IJ (l_xe- 21t ib j) 
j = 1 

Definition 11. Suppose that l, TTJ, n and pare integers with 

1 -== I -== p. 0 -== n -== pand m ==- 0 ; 

suppose further that r is an arbitrary integer. 

Then the coefficients e;' n (1; r) and e;' n (1 ; r) are defined as follows: 

e;' n (l ; r), respect. e;' n (1; r) is the coeflicient of x' in the expansion of 

p 
IJ (l-xe2n ia j) 

j=n+1 
---'-----'--:m=-------. respect. 
(l-xe21tial) IJ (l_xe21tib j) 

j=1 

in ascending powers of x. 

p 
TT (l-xe-2;tiaj) 

j=n+1 
m 

(I _xe-2nia I) IJ (I _:xe-21tib j) 
j=1 
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Rem ark. From the above definitions it follows 

.Qm.~ (t) = :Qm.~ (t) = 0 for t= -1. -2,-3. .. . . (i9) 

.Qm. ~ (0) = :Qm. ~ (0) = 1. . . . .' (50) 

r;·n(À)=r;·n(À)=O for À=-1,-2.-3 ... . , (51) 

r;' n (0) = r;' n (0) = 1. 

~;:~(h; À) = ~;:~ (h; À) = 0 for À = -h.-h - l,-h -2,.... (52) 

'l';: ~(h ; À)= 'l';: ~(h;À)=O for À=O,-1,-2 .... , (53) 

e;· n (l; r) = e;· n (l ; r) = 0 for r = - 1. - 2. - 3. . . . . (54) 

and 

§ 7. Lemmas. 

Lemma 1. 

G m•n (z) = _1_1 e"ian+l G m• n+l (ze- " i)_e-ntan+l G m•n+1 (z en i) I. . (56) 
P. q 2 :n: i P. q P. q 

Pro of. From (2) it follows 

_ 1_ I e n i bm+ 1 Gm+ l•n (ze-n i) _e-nibm+1 G m+ 1•n (ze"i) 1 2:n: i P. q P. q 

m+1 n 

= _ 1_ f e" i(bm+I-S)_e-n i(bm+I-S) 

2:n:i. 2:n:i 
C 

IJ r(bj-s.) IJ r(l-aj + S) 
j=1 j=1 ZS ds 

q P 
IJ r(l-bj+s) IJ r(aj-s) 

j=m+2 j=n+1 

m+1 n 

J
IJ r(bj-s) IJ r(1-aj + S) 

= _1_ sin (b m+ 1-s):n: _~j=:-,-I __ --"'---· =-_.1_--::-___ _ ZS ds 
2:n:i :n: q P 

C II r(l-bj+s) II r(aj-s) 
j=m+2 j=n+l 

m n 

1 r.IJ r(bj-s) .IJ r(l-aj + s) 
- __ ,=1 , =1 S d - Gm•n (z) - 2:n: i q P Z S - P. q • 

~ IJ r(l-bj+s) IJ r(aj-s) 
C j=m+l j=n+l 

so that formula (55) has been es-tablished. 
The proof of (56) is similar to that of (55). 

23 
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Lemma 2. lf k, L p, q, s and t are integers with 

1 -= [-= s -= p -= q. 1 -= t -= s -[ + 1 and 0 -= k -= q. 

then 

G!;~S (z 11 at) = e-2niat G!;~S (ze2ni 11 at) +2nie-niat G!;~-\'s (zeni) (57) 

and 

G!;~S (z Il at)=e2 " ia t G!:~s (ze-2nlllat)-2nieniat G!;~-\'S (ze-ni). (58) 

Proof. Sinee G!:~(z) is a symmetrie funetion of alo ...• al and also 

of alH • .. .• apo we have by (56) and the definitions of G~:~sand G::~-\'s 
(see the end of § 1) 

2ni G!:~-\ ' s (z)=eniat G!:~S (ze-ni Ilat)-e-niat G!:~S (zeni Ilat). 

From this formula follow (57) and (58) without diffieulty. 

The most important lemma is 

Lemma 3. Suppose that m, n and q are integers with O:S; m :s; q and 
n ~ 0; further that r is an arbitrary integer; finally that the numbers 
al ....• an satisfy the condition 

aJ - at =j=- O. ± I. ± 2 •... (j = I. .... n; t = I. .... n; j t- t). (20) 

Then the following formula ho/ds: 

n 
I e(m+n-q+2r) nia t ,6. m.~ (t) 
f=\ 

. (59) 
___ 1_ IAm.n "m.n () _Am.n rim.n ( ___ )1 - 2. q:'4qr q:'4qqmnr. 

nr 

Pro of. Let us suppose that the numbers al • ...• an satisfy the eondition 

(j = I. . ..• n; t = I, ... , n; j =j=- t). 

By U, we denote the eoefficient of x' in the expansion of 

n 2 
II (1 -aJx) 

J=\ 

s 2 
II(I-fJJX) 

J=\ (5 ==- 0; n ==- 0) 

in aseending powers of x. By V, we denote the eoefficient of x' in the 
expansion of 

in aseending powers of x. 
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Finally we write 

ÎI (Pi _ at) 
i=1 at Pi 

W
t = ( )' IÎ ai at 

; =1 at ai 
-:f-t 

From the definition of the coefficient U, it follows that for small values 
of I x I the following expansion holds 

s ( 1 ) n n Pi x-- II ai 
i=1 Pi = (_I)n-s i=1 ~ U r. 

n ( 1 ) s "" r
X

, n ai X- - II Pi r=O 
}=I ai i=1 

. (60) 

for large va lues of I x I however we have according to the definition of 
the coefficient V, 

The coefficients U, and V, satisfy further the relations 

Ur= V, =0 for r=-I.-2.-3 . .. .. 

. (61) 

We now consider the expansion of the left-hand side of (61) in partial 
fractions. This expansion runs as follows 27) 

s 

II Pi s-n n 
_ } =_I _ 4 V h X S- II - h = 4 

n h=O t=1 
na} 

i=1 

a~-s-I W t 
1 . 

atX-
at 

(62) 

Now the coefficient of x' in the expansion of the right-hand si de of (62) 
n 

in ascending powers of x is -Z a~-S+2r W t . 
t=1 

lf r ;;;;: O. we find therefore on account of (62) and (60) 

n s 

n . n ai II Pi 
4 a~-S+2r W t = (_1(-8+1 J~I_ U r + i=,/ V s- n- r , . (63) 
t=1 II Pi II ai 

}=I i=1 

this relation still being true when r> s - n, since V h = 0 for h = -I, 
-2, -3, ... . 

We may yet show that (63) also holds when r < O. 

27) Sin ce V h = 0 for h < O. formula (62) also holds ,when n> s (comp. definition 4) . 
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For we have by (61) 

II (pj x-~) II p. .ll PJ 
j=1 PJ J' =I J s-n V _ -h J=I ex> h 

- --}; hXs n =-n - }; Vhx s- n-. 

II (a j x- .~) II aj h=O IJ aJ h=s-n+1 
j=1 aj j=1 j=1 

F rom th is Eormula and (62) it Eollows 

s 
n all-S-I W IJ PJ 
~ t t _ j = 1 ~ V s-n-h L.; - .:;., hX . 

1 IJn h=s-n+1 
t=1 atX-- aj 

at j=1 

Since the coefficient oE x-p. in the expansion oE the leEt-hand side oE th is 
n 

relation is equal to Z a~-S-2p. W t. we get Eor fA, > 0 
t=1 . 

s 
n IJ pj 

}; a n- S- 2P. W t = j=l- VS-n+/o" 
t=1 t n 

IJ aj 
j=1 

IE herein fA, is replaced by -r. we Eind (63) (since U, = 0 Eor r =-1. 
-2. -3 . ... ) so that (63) is true Eor any integer. 

We now put s = q - m. al = e n1a, • ...• an = en1an . PI = e ni bm+I •...• 

ps = enibq. Formula (63) reduces th en to (59). which proves the lemma. 

Lemma 4. Suppose that m. n. q and À are integers with 

o -c::: m -c::: q. n ==- 1 . 

and 

O-C:::I-C:::m+n-q-I; 

suppose further that the numbers al ..... an+I satisfy the condition 

aj-at ~O. -+-1. -+-2 .... (j= 1 •. . .• n+ 1; t= 1 ... .. n; j~t). 

Then the following formula holds: 

n 
}; e(m+n-q-2J.-I) nia t 6. m. ~+I (t) 

t=1 

(64) 

(65) 

. (66) 
q 

n sin (b r- an+l) ;re 
= _ ;rem+n-q e(m+n-q-2!.-I':tian+1 -!.i-==:..:cm::,-+-,-,--I _____ _ 

n 
IJ sin (ai -an+I);re 

i=1 

Proof. IE À satisEies (65). it Eollows Erom (59) with r=-À-I 
and n + 1 instead oE n. on account oE (49) 

n+1 
Z e(m+n-q-2!.-I)nlat .6. m. ~+l (t) .- O. 

t=1 
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Hence we have in view of (16) 

n 
.E e(m+n-q-2J.-I) niat 6. m. ~+1 (t) = _ e(nt+n-q-2J.-I)"ian+1 6. m, ~+1 (n + 1) 

t=1 
q 
II sin (b j - an+I):n 

= _ :nm+n-q e(m+n-q-2J.-I)nian+l ..t.i-==::..::m:.:...+.:....:....1 -----
n 
II sin (aj-an+I):n 
j=1 

so that the lemma has been proved. 

Lemma 5. Suppose that m, n, q and À are integers which satisfy the 
conditions (64) and (65); suppose further that the numbers alo "', an fulfil 
the condition (20) and satisfy besides the inequality 

at -fJ ~ 0, -+- 1, -+- 2, ... (t = 1, "', n). 

Then the following formula holds: 

n 6. m,~ (t) .E e(m+n-q-2J.-I)niat --.,.-::-.:.......:....:.,---
t= 1 sin (fJ-at):n 

(67) 
q 
II sin (b j-fJ) :n 

i=m+1 = _:nm+n-q-I e(m+n-q-2J.-J)nt;3 !....-""n---'---'------

II sin (aj-fJ):n 
j=1 

Pro of. From the definition of the coefficient 6 it follows that 

6. m,;+1 (t) with 1 :;;'t:;;' n and an+! = fJ isequal to 

:n 6. m,~ (t) 
sin (fJ-at):n' 

Formula (67) is therefore a particular case of ('66). 

Lemma 6. Suppose that h, m, n, q and À are integers with 

1 -== m + 1 -== h -== q and 0 -== À -== m + n - q - 1 : 

suppose further that the numbers alo " ' , an fulfi! the condition (20) and 
satisfy besides the inequality 

at -bh ~ O. -+- 1, -+- 2, ... (t = 1, " ' , n; m + 1-== h -==q). 

Then the following formula holds: 

n 6. m,~ (t) 2 e(m+n-q-2J.-I) ntat = O. 
t= 1 sin (bh-at):n 

(68) 

Pro of. Formula (68) is a particular case of (67), since the right-hand 
side of (67) vanishes for fJ = bh (m + 1 :;;, h:;;' q). 

Lemma 7. Suppose that m, n and pare integers with 0:;;' n :;;, pand 
m ;;;;: 0; further that À is an arbitrary integer; flnally that the numbers 
b1 , - " ' , bm satisfy the condition 

bj-bs ~O. -+-1, -+-2, ... (j= 1, "', m; s= 1, "', m; j~s). 
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Then the followingfocmula holds: 

B;' n r;' n ().) _ Ei;' n r;' n (p-m-n-).) 

(69) 
s=1 

Pro of. If we replace m, n, q, c, ai and bi successively by n, m, p, )" 

bi and ai. the coefficients Am.~. Am.~ . .Qm ' ~(r) and .Qm'~(r) transform 

successively into B;·n. B;·n. r;·n().) and r;·n ().); on account of (16) 
formula (59) reduces then to (69) . 


