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Summary. 

It is remarked that FERMI's method of treating the electromagnetic field also can be 
applied to the classical, but not to the quantum theory of the vector meson field. The röle 
of the LORENTZ condition is examined. The connection between the electromagnetic and 
the (neutral) vector meson field is discussed. 

§ 1. lntroduction. Whereas, from a classical point of view, the 
electromagnetic field equations may be considered as the equations for a 
neutral vector meson field with vanishing meson rest mass. it is weIl known, 
however, that the quantized MAXWELL equations cannot be obtained by 
letting 

in the PROCA 1) equations *). This "lack of continuity" can be traced back 
to the following two causes: 

a. In the customary treatment of the MAXWELL as weIl as of the PROCA 
field, the canonically conjugate of the scalar potential. (i.e. the time 
compone.nt of the four-vector potential) vanishes. However, in the latter 
case the scalar potential can be treated as "derived variabIe" 2) i.e. , by 
expressing it in terms of (spatial derivatives of) canonical variables, it can 
be eliminated fr om the Hamiltonian of the field; this is impossible in the 
electromagnetic case. 

b. The different röle of the so-called LORENTZ condition in both cases: 
This condition is introduced in the MAXWELL case for the sake of con­
venience, it having na bearing on the field strengths and field energy. In 
dealing with the vector meson field it is, however, again in the customary 
treatment, a direct consequence of the field equations themselves. 

As to the first point, it has been shown by FERMI 3) that the canonically 
conjugate of the scalar potential in the MAXWELL case need not be zero, 
provided one starts from a suitable Lagrangian of the field. In this note 

*) In th is note we shall understand by PROCA equations the field equations for a real 
vector meson field. . 
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FERMI'S method 4) will be applied to the PROCA field from which it will be 
shown (§ 2): 

a'. That neither in the MAXWELL nor in the PROCA case the canonically 
conjugate of the scalar potential vaIIJishes. 

b'. That in both cases the LORENTZ condition can be treated as an 
accessory condition. 

Still it will appear that it is even now impossible to treat the quantized 
MAXWELL equations asa special case of those of PROCA by taking the limit 
for " = O. Tohe reason for this will be seen to be the different consequences 
which the occurrence of the LORENTZ condition has in the quantum 
theory of the corresponding wave fields . In fact , it turns out (§ 4) that 
the limiting transition ,,~O is singular in the same way as a LORENTZ 

transformation for vlc ~ 1. 
The ))ossibility of the treatment of the LORENTZ condition as an 

accessory one being given, one might ask whether it is necessary to intro~ 
duce it at all, If one would do without it, however, the field energy 
appears not to be positive definite. This has already been stated by 
FIERZ 5) who has, moreover, pointed out that as a consequence of the 
LORENTZ condition only spin 1 particles occur upon field quantization, 
while a theory without th is condition would also yield particles with spin 
zero. As it is, furthermore, just these latter which make the energy not 
positive definite, it is clear that one cannot do without the LORENTZ 

condition, . whatever its way of occurrence in the theory may be. 
The present paper is mainly of a methodical character. Though some 

points raised here cannot be claimed to be new. the lack of a geqeral 
survey of the problems discussed here let it seem justified to include them 
in th is note. 

§ 2. Variation principles. The Eollowing notations are used: 

Greek indices run Erom 1 to 4; summation signs are suppressed. Co~ and 
contravariant tensor components are connected in the usual way. 

The MAXWELL equations can be written as: 

Pl,. = rIl!'); bI' = <h A,.. (la) 

à,. p,.y = O. . (2a) 

where Al is the four~vector potential. Using the same ri'otation for the 
PROCA field. we have: 

(1 b) 

(2b) 
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Elimination of the field tensors F P.7 yields the second order differential 
equations: 

o AY - 0" Ol' AI' = 0, 0 = Ol Ol, MAXWELL 

o A" - 0" Ol' AI' = ,,2 A", PROCA. • 

IE we next introduce, in the MAXWELL case, the accessory condition 

O,U AI' = 0, 

which is known as the LORENTZ condition, (3a) becomes: 

(3a) 

(3b) 

· (4) 

. (5a) 

In the PROCA case, on the other hand, (4) is a consequence of (2b) on 
account of the antisymmetry of FP.7' Thus (3b) becomes: 

(5b) 

Considering (1 a , b) as defining F P.?, the equations (2a, b) can be 
derived from the variation principle: 

~ J [; dv dt = 0, · (6) 

with 

· (7) 

in the MAXWELL case ,,= 0 of course. The quantization of the fields 
starting fr om (6) and (7) is weil known and needs no recapitulation here. 
We only rem)nd that the canonical conjugate of A4 vanishes as o4A4 does 
not occur in (7). This leads to some complications in the MAXWELL but 
not in the PROCA case as A4 can there be expressed in terms of the 
canonical conjugates of Al, A 2 and A3 with the aid of the fourth equation 
(2b ). 

FERM)' s method now consists in starting from (6) but taking .) 

• (8) 

where f p.? is defined by (la, b) . It is easily seen that the field equations 
directly derived from (8) are (5a) and (5b) respectively. Thus if we 
start from (8) , it is, at this stage, not necessary to use (4) to establish 
these field equations. In point of fact, (4) cannot now be derived from the 
field equations and the definition of f P. ? , because the latter is not anti­
symmetrical ; and th is is true whether " is or is not equal to zero. It may 
be noted that instead of (4) we now get 

. (4') 

*) An objection of principle which may be raised against the use of (8) with x = 0 
is that the Lagrangian is not gauge invariant. (If x # 0 there is :10 gauge group of course.) 
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However. as will appear below. we do need (4) in the MAXWELL as weIl 
as in the PROCA case in order to obtain a positive definite field energy. But. 
if we use (8) . (4) should now be considered as an accessory condition in 
both cases. That. using (8) in stead of (7) . the accessory condition is 
necessary from a physical point of view is connected with the circumstance 
that f I'v is not antisymmetrical here. This ensues that a choice must be 
made from the solutions of (5) so as to get the correct value of the 
energy. This choice will appear to be (4). 

§ 3 . FOURIER development; energy of the field. Assuming the system 
to be enclosed in a cube of volume I with periodicity conditions on · its 
boundary. and introducing the vector notation 

--. 
AI'=A. -B. 

--. 
A and B can be developed in a FOURIER series in the following way: 

--. --. --. --. --. --. --. --. 
A =. E E ei! [A (j. k) ei(k x) + At (j. k) e-i(k X))]. 

J= V. !,2 --. 
k 
--. --. --. --. --. 

B = L:'[B (k) ei(k x ) + Bt (k) e-i(k X)] . 
--. 
k 

--. 
--. k 
eo -; = ----::;- . 

1 k [ 

--. --. 
ej -; ej'k = djj" 

(9) 

i.e. j = 0 denotes longitudinaI. j = 1.2 transverse waves. Substituting (9) 
in (8) we get *): 

. --.. --. --. --'1· L = f [; dv = j = t.!,2 ~[At (jo k) A (j. k)- v~ At {jo k)A (j. kj] 

. . ~ ~ ~ ~ 

~ ~ [Bt (kl:: (k) - Y~ Bt (kl B (k)] . I)' 

Y~ = J'~ + ,,2. V k = 1 k l. . 

(10) 

In the usual way we obtain from (10) the equations of motion for the 
amplitudes: 

.. ~ ~ .. ~ ~ 

A (jo k) + Y~ A (jo k) = O. B (k) + v~ B (k) = 0 (1I) 

(11) can also be obtained by substituting (9) in (Sa. b) ; if " = O. Vk = Vk . 

*) In expressions like (10) the right rnember should be hermitized. For simplicity we 
write (10) as it stands. 

13 
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The theciry is therefore consistent 50 faro But difficulties arise because the 
Hamiltonian derived from (10) : 

.~. ~ ~ ~ l H = ~ ~ [At (j. k) A (j. k) + v~ At (j. k) A (j. k) -
J ~ 

k • • (12) . ~ . ~ ~ ~ 

- ~[Bt (k) B (k) + v~ Bt (k) B (k)]. 
k 

is not positive definite. And it is here th at (4) plays an essential röle. 
In amplitudinal form. (4) can be written as 

. ~ ~ . ~ ~ 

B (k) = - i Vk A (0. k). Bt (k) = iVk At (0. k). 

This can with the aid of the equations of motion be brought in the form: 

~ ~ ~ ~ 

Vk B (k) = Vk A (0. k). Vk Bt (k) = Vk At (0. k). . (13) 

Now there are two ways of introducing an accessory condition in c1assical 
theory which we shall discuss successively with regard to their bearing on 
our problem. 

The first method, which is not applicable generally, consists of looking 
for solutions of the restricted problem (i.e. the problem involving the 
condition) under those of the general problem (not involving the con­
dition ) . In our case th is means that we have to look for solutions of (Sb) 
which satisfy (4). S 0 obviously is a solution of (4') *). It is character­
iud by the boundary conditions: th ree dimensional periodicity, S and 

S = 0 for t = to. As these conditions are fulfilled for a c1ass of solutions 
of (Sb), the first method is valid here. This result is independent of the 
value of x. T ,hus, both if x = 0 and x ~ 0 the LORENTZ condition S - 0 

can be replaced by S = S = 0 at a given time, in vacuum as weil as with 
a charge current density. 

The second method, c10sely related to LAGRANGE'S parameter method, 
simply consists in substituting (13) into (12) which yields the positive 
definite form: 

H= ~ 
i=I,2 

, ~ ~ ~ ~ 

,2'[At (j. k) A (j. k) + v~ At (j. k) A (j. k)) + 
~ 

k 

~ . ~. ~ ~ ~ + ~ ~ [At (0. k) A (0. k) + v~ At (0. k) A (0. k)] 
~ vk 
k 

. (14) 

which holds for any x; thus the second method too applies to both cases. 
An equivalent, but more direct. way to obtain (14) is to start from the 
Lagrangian (7) instead of (8). If x = 0 we only get a contribution of 
the transverse waves, as it should beo 

*) It is interesting, though not essential fpr the .present purpose, to note that (4') 
remains va lid when the charge current density is introduced on the right hand side of (Sb) . 
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§ 4. Quantization of the field. According to (10), the canonical 
-+ . -+ '-+. -+ 

conjugate of A(j, k) is At(j, k), that of B(k) is -Bt(k), etc. In order to 
quantize the field we have therefore to postulate the relations: 

• -+ -+ ! [At (j, k), A (j', k')] = -ih bjj , b1t, . 
• -+ -+ 

[Bt (k), B (k')] = i h b1-:' ' 
. (15) 

all other pairs commuting. In the usual way we find fr om (15) that the 
Hamiltonian takes the form, (the notation will be obvious): 

-+ -+ -+ -+ 
H =.Eh iidNA (1. k) -\- NA (2, k) + NA (0, k)-NB (k)]. . (16) 

-+ 
k 

where the N's are diagonal matrices with the characteristic va lues 
0, I, 2, .... As was to be expected, H is not positive definite in this case 
ei th er. We must therefore introduce the LORENTZ condition here too. We 
thus have to find the quantum mechanica I analogues of the two methods 
of the previous section for an accessory condition X = 0 in a quantum 
mechanical problem characterized by a Hamiltonian H. 

First method: Although the most straightforward way would be to 
interprete X = 0 as an operator identity and then to proceed in a similar 
way as in the corresponding ·classical treatment, this method is readlly 
seen not to be applicable to the problem on hand, as (13), interpreted in 
this way, is incompatible with the commutation relations. Thus we shall 
have to find another treatment. FERMI'S idea now is to solve the unrestricted 
problem 

• (17) 

and th en to look for functionals lP for which X lP = O. In genera!. however, 
such lP'S do not exist. 

Second method: th is simply consists in starting from the Lagrangian (7) 
and thus from the Hamiltonian (14) instead of using (8) and (12)·). 

We shall now discuss the applicability of both these methods, first in 
the MAXWELL, th en in the PROCA case. 

% = O. It is well known that here the first method can be used 3). There 
appear to exist occupation number functionals lP, solutions of (17), where 

-+ -+ 
H is taken from (12), which vaJlish when operated on by B(k) -A(O, k) 

-+ -+ -+ 
or Bt (k) - At (0, k). For these functionals we will have NA (0, k) '1' = 

-+ 
NB (k) '1'. The energy (16) reduces therefore to the positive definite farm: 

-+ -+ 
H =.E h Vk [NA (1. k) + NA (2, k)]. 

-+ 
k 

(18) 

.) A Ie ss direct way of fonnulating this methad is: start from the classical Hamiltonian 
(12), elimillate with the help of the classical condition X = :0, (i.e. (13)) one of the 
variables and then sol.ve the ensuing restricted quantum mechanical problem. 
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Let us now consider the second method. Thus we have to start from (14), 
(with Y. = 0 of course) . Quantization of this reduced problem leads at 
on ce to (18). This treatment consists essentially in gauging the fields in 
such a way th at the longitudinal and scalar part of the four-vector 
potential are eliminated before performing the quantization. 

Y. =j=. O. Using the first method, and interpreting (13) accordingly, we 
would get 

~ ~ 

Y~ NB (k) 'P = v~ NA (0, k) 'P, 

which is nonsense, as the N's can only be whole nunibers . This means th at, 
in the FERMI-interpretation, the two relations (13) are mutually in­
compatible. 

Thus the first method has to be discarded (although it can be seel} to 
give a positive definite H), and we must resort to the second one, i.e. we 

~ 

must start with (14). The canonical conjugates of A ( I, k) etc. are 
. ~ ~ ,,2. ~ . 
At(I, k), that of A(O, k) is - 2' At(O, k) . The commutation relations there­

vk 
fore can be written as: 

. ~ ~ 

[At(j.k).A(j'.k')]=-ih<5 jj , <51;. j=1.2 (19a) 

~ ~ ~ 
[Àt(0.k),A(0.k')]=-ihv<51;. ~.. (19b) 

x 

This yie1ds:, 
~ ~ ~ 

H =z h Vk [NA (1. k) + NA (2. k) + NA (0. k)]. 
~ 

k 

which is the desired result. 
The relations (19) can be put in a more symmetrical form by performing 

~ ~ 

the following transformation to the new variables C (k) and A (3, k): 

~ ~ 

x A (0. k) = "lik C (k) + 1' k A (3.k) I 
" B (k) = J'k C (k) + Vk A (3. k). ~ 

. (20) 

A (3, k) and C (k) are the amplitudes of the plane waves representing free 
particles with spin I, the amplitude being directed along the direction of 
momentum, and spin 0 respectively 5). The LORENTZ condition in the new 
variables is simply: 

~ ~ 

C (k) = 0, Ct (k) = O. 

The Hamiltonian becomes: 

j=3 • ~. ~ ~ ~ 

H = 2' 2'[At (j. k) A (j, k) + Y~ At (j. k) A U,·k)]. 
j=1 ~ 

k 
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The commutation relations are now: 

.... ... 
[At (j. k). A (j'. k')) = - ili ~jj' dkk ,. j = 1. 2. 3. 

and the . diagonalized Hamiltonian is: 

... ... ... 
H = I h Vk [NA (1. k) + NA (2. k) + NA (3. k)] . ... 

k 

Though we apparently can treat the quantization of the MAXWELL and 
PROCA case in the same manner. viz. by using the second mcthod, yet the 
former cannot be derived from the latter by letting . r. tend to zero. The 
reason for this is that the relation (19b) would become meaningless or, in 
other words, that the transformation (20) . which is essentially a LORENTZ 

transformation with fJ = Yklpk, would become 5ingular. 
Comparing, finally , the first method with regard to its applicability to 

the classica I PROCA field on the one, to the same quantized field on the ... . ... 
other hand. we remark: the condition C(k) = Ct (k) = 0 classically means 
that we have to put equal to zero an infinite number of oscillator amplitudes . ... 
viz. those referring to spinless mesons, for all k. This. of course, is 
practicabIe. But such a procedure is impossible in the quantum mechanical 
case on account of the zero point vibrations; this is another way of 
expressing why the first method applies the classicaI. but not to the 
quantum PROCA case. 

In the MAXWELL case, the transformation (20) los es its sense, as 
explained above. The LORENTZ condition now amounts to the equality of ... 
two oscillator amplitudes, (for given k ; cf. (13) with Vk = Yk), and this 
is indeed, also quantum mechanically, possible. Thus we see from (20) 
how it can be that the first method applies to the quantum mechanical 
MAXWELL but not to the quantum mechanical PROCA case. 
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