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§ 1. Suppose that we have a certain number of rows of n elements 

(n > 1). 

The elements may be arbitrary objects. Suppose that the number of 
mutually different rows is s. Two rows are called different when they 
differ in at least one element occurring at the same place. 

Let us omit from each of tbe given rows tbe i-tb element. thus ob
taining a number of rows of n-I elements. Let S; denote the number of 
different rows among these. We shall prove that 

~ n-) 
SI S] • . . • Sn = S • • (1) 

witb equality if and only if the given rows can be obtained from n sets 
of elements by taking all rows al' a2 • ••.• a n• where al belongs to the 
first set. a2 to the second set . .. .. an to the n-th set. 

§ 2. We shall prove the inequality (1) by induction. It is clear tbat 
it is true for n = 2. Suppose that n > 2. and that the inequality is true 
when n is replaced by n-l. 

Let 

denote all mutually different elements an occurring at tbe last place in 
the given rows. Let Elp) denote the set of all rows whicb have a~) as 
their last element. We shall indicate the numbers s. S; for the set Elp) 

by alP), a~P). 

We have 

ti ) , (l) t- , Ik) f . 1 2 1 Si = (/ ; -i - a; - . . . .. :-t- 0; or I = . . . ... n - ; 

".=- lp) - lp) f - 12k · Sn = a n - a or p - . . . .. . . 

s = all) + a(2) -+ .... + alk); 

and by the inductive ' hypothesis 

Now. by HÖLDER 's inequality. 

11 - 1 I k I 

11 (0(1) + n1,2) _L ..:.... olk))n'::'l =- ~ (alP) niP) alP) )n-I 
I -'1 . ' . " . ,. -,u I " 2 .. . . n-I . 

; = 1 p=\ 

(2) 

(3) 

(4) 

(5) 
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Hence. by (2) and (5). 

and so. by (3) and (4). 

I n-2 I n-2 . I n-2 I 

( )
n-I ~ (I)n-I (I)n-I + (2)n-1 (2)n-1 + + (k)n-I (k)n-I SI S2 • •• Sn-I Sn = IJ a a a • • • a a 

= aO) + a(2) + ... + alk) 

=5. 
This proves (1). If there is equality. then we must have (it'st 

for all p = 1. 2 ..... k. This implies that the rows obtained from tb'e , set 
E(p) by omitting the n-th element a~) from its rows are the same setfor 

each p. Secondly there must be equality (with n-l: instead of n) {or 
this set. It follows. sind the statement concerning the sign of equality 
is correct for n = 2. that the given set of rows is of the nature described 
at the end of the preceding section. On the other hand. ' it is clear that 
for any such set of rows there is equality. . 

§ 3. There is a more general inequality of which (1) is a particular 
case. Let i •• i2 • •• • • ir be t' of the indices 1. 2 •.... n (I -c::: t' < n). Let us 
omit from each of the given rows the e1ements having these indices. 
th us obtaining a number of rows of n-r elements. Denote the number of 
different rows among these by Si, i • . . . ir' Then 

(n-l)(n-2) ... (n-r) 

(6) 

wh ere the product must be extended over all possible co~binations il ;2 ... ir. 
The case of equality is the same as for (1). It is not diflkult to see that 
(6) can be proved by successive application of (1). 

§ 4. We next state a geometrie application of (1). Let XI' X2 ' •••• Xn 

be rectangular coordinates in an n-dimensional space. Suppose we have 
a set of S different points in the space. We project these points on the 
(n-I )-dimensional coordinate spaces Xi = O. Let there be Si projections 
on the space Xi = O. It is understood tbat each point whicb is a projectiqn 
is counted only once. Then we have . . ' 

There is equality if and only if the given set consists of all points 
(al ' a2 • •••• an) obtained from n finite sets of real numbers by taking al 
in tbe first set. 82 in tbe second set. . . . . an in the n-tb set. 

There is. of course. an analogous geometrie application of (6). 
18 
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§ 5. Finally we discuss an extension of the inequality (1) which 
concerns the measures of a set of points E in an n-dimensional space 
with rectangular coordinates XI' XI • .•.• Xn and its projections E i on the 
(n-I)-dimensional coordinate spaces Xi = O. In order to avoid the possible 
occurrence of non-measurable sets, we shall assume that E is either a 
c10sed or an open set. Further we suppose that E is bounded. It will 
be c1ear. however. from what follows that it is possible to make much 
milder restrictions. Let e denote the measure of E. and ei the (n-l)
dimensional measure of Ei . Then 

(7) 

lt is a simp Ie matter lo derive this from the result of the preceding 
section, but it will be difficult to find in th is way when there is equality. 
Therefore we shall give a direct proof. 

It is clear that (7) is true for n = 2. Suppose th at n > 2. and that (7) 
is true when n is replaced by n-l. 

Consider the set of all points of E for which Xn =.t Let e (À) denote 
its (n-l)-dimensional measure and let ei (À) denote the (n-2)-dimensional 
measure of its projection on the space Xi = 0 (i = 1.2 .. ... n-l). We have 

ei =.r I:'i (J.) dl for i = 1. 2 .. .. . ,"-I; 

en =- E (À) for all i.; . 

e =.f F. (À) dl ; 

and by the inductive hypothesis 

f: 1 (À) e2 (À) ... I:'n-I (J.) =- I:' (À)/-2 

Now. by HÖLDER's inequality for integrals. 

I 

7i. Cf Ei (À) dÀ) n-I >.f [EI (À) E2 (À) . .. En - I (À));'~I di. . 

Hence. by (8) and (ll). 

From this it follows. by (9) and (10). that 

I J' 11-2 I 
(el e2' •• en - I en)"-1 =- E (À)n-I f: (l)n-i dÀ 

= J'E (À) dJ 

= e. 

(8) 

(9) 

(10) 

(11) 



275 

This proves (7). A reasoning analogous to that at the end of section 2 
shows that there is equality if and only if E is. a set of n~dimensional 
measure zero being neglected. the product of n one~dimensional sets on 
tbe n coordinate axes. 

It is hardly necessary to mention th at there is an analogous continuous 
extension of (6) concerning the (n-r)~dimensional measures of the 
pl'ojections of E on the coordinate spaces Xi, = Xi, = .. . = Xi r = O. 

Remark. For n = 3 it was proved by MINKOWSKI that for a convex 
set E 

el + e2 + e3 =- 3 e; . 

with equality if and only if E is a cube with its edges parallel to the 
coordinate axes I). The corresponding inequality for arbitrary n is 

n-I 

el + e 2 + ... + en =- ne n (12) 

lt is true for an arbitrary set E. Indeed. by the inequality of tbe 
arithmetie and geometrie means. (12) is a consequence of (7). There is 
equality if and only if E is. a set of measure zero being neglected. tbe 
product of n sets of equal one~dimensional measure on the coordinate 
axes. 

It is possible. alsof to derive (7) from (12). Consider the set EI consisting 
of all points (el XI' e2 X2. ' . • • en xn). wh ere (XI' X2 • •••• Xn) is a point in 
E. The measure of EI is e. el e2 ' . . en. and the (n-l)~dimensional measures 
of its projections on tbe (n-l )~dimensional coordinate spaces are all 
equal to el e2 . .. e n. and 50. by (12). 

and therefore 

n-I 
::::.- n n . el e2 . . . en = ne . 

, =- n- I el e2' . . ell = e . 

with equality when EI satisfies the condition for equality in (12), whicb. 
as is seen at once, means that E is. but for a set of measure zero, the 
product of n sets on the coordinate axes. 

1) H . MINKOWS KI. Volumen und Oberfläche. Mathematische Annalen 51 (1903). 
pp. 447-495. 


