Mathematics. A simple proof of certain inequalities concerning poly-
nomials. By C. VissER. (Communicated by Prof. J. G. VAN DER
CORPUT.) ;

(Communicated at the meeting of October 27, 1945.)

1. Introduction. The following theorem is due to TCHEBYCHEF.

Theorem 1. If P(x) is a polynomial of degree n, and the coefficient of
x" is 1, then

1
Max | P(x)|=7a=1.
—1=x=1

There is equality if and only if

P(x)= énL_I cos nt, x = cos t.

This theorem is well-known. It is extensively dealt with in PoLYA und
SzEGO, Aufgaben und Lehrsitze aus der Analysis, 2nd volume, where
further literature is indicated.

Another inequality, to which I was led, some years ago, while working
at the interesting problem of Mrs. T. vAN AARDENNE-EHRENFEST in the
Wiskundige Opgaven 18, Problem No. 1, is

Theorem 2. If P(x) is a polynomial of degree n, and the coefficient of
x" is I, then

1
* 1
J | P(x)|dx=35=i.
-1
There is equality if and only if

|l sin(n+1)¢
P(x):fn—(‘sint )* , X—=cost.

This inequality seems to be rather unknown. I am indebted to Professor
KoksMA of Amsterdam for calling my attention to the fact that the
determination of the minimum of the integral of the absolute value over the
interval (— 1, 1) for polynomials of degree n and with highest coefficient 1
was put forward as a problem by KORKIN and ZOLOTAREF in the Nouvelles
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Annales Mathématiques of 1873, and that a solution was given in recent
years by V. BRZECKA, Sur un probléme d'extrémum (in Russian), Comm.
Inst. Sci. Math. Mécan. Univ. Kharkoff etc., IV S,, 16, pp. 33—44. Later I
found that a proof of the inequality is implicitly contained in a paper by
STIELTJES in 1876, De la représentation approximative d'une fonction par

une autre, Oeuvres complétes, 1st volume, pp. 11—20.

In what follows I shall give a simple proof of both Theorem 1 and 2, and

some generalizations.

2. Proof of Theorem 1. Since

Pcost)=cos"t+.... :2—,}_—|(cosn t+....),
Theorem 1 will follow from
Theorem 1a. If
C{)=cosnt+a,cos(n—1)t+....+ axn
with arbitrary complex coefficients a,, ..., an, then
Max|C () |=1.
There is equality if and only if C(t) = cos nt.

Proof. Put a — . Then for any ¢t
n

2n-1 . 0 fork=0 >1 coo,n—1
PNTERTL lk(t+la):s . o ,
1=o( 1) e 2neintfork =n.

Hence

2n—1 SOfork'::(),l,....n—"l

150 b L v e [ -h e {2ncosnt for k=n

It follows that
2n—1
2 (—1))C(t+la)=2ncosnt.
=0
Putting ¢ = 0, we infer from this that

Max |C(la)|=1.
-1

[=0,1,...,2n

(1)

There is equality if and only if (—1)!C(la) is equal to 1 for all I. Then
C(t) — cos nt must vanish identically, being a trigonometric polynomial o_f_

order n — 1, and vanishing 2n times in the interval 0 <t < 2x.
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3. Proof of Theorem 2. Since

flP(x)Idx—[[P(cost)lsmtdt
{Icosnt-k .| sin ¢ dt

1 »
_2"—‘1J |cosntsint+...|dt
0

:Elﬁflsin(n-{—l)t+....|dt
0

Theorem 2 will follow from

Theorem 2a. If
S(t)=sinn¢t+ b sin(n—1)t+....-+ bn

with arbitrary complex coefficients by, .... bn. then

fn=S(t)ldt§4.

There is equality if and only if S(t) = sin nt.
Proof. It follows from (1) that

2n—1

2 (NSt + la)=2nsinnt.
=0

Integrating over 0 < ¢ < a, we find

S (I+1)a
Z'f(—l)’S(t)dt:4.
—0

la

It results that

2
J;S(t)sdtzq
0

and that there is equality if and only if (—1)/S(¢) is non-negative on all
intervals la <t < (I + 1)a. Then S(¢) has 2n zeros in the points la, so
that S(#) — sin nt must vanish identically, being of order n—1, and
having 2n zeros in the interval 0 <t < 2.



279
4. Analogous inequalities for polynomials of a complex variable.
Theorem 3. If
flz)=ay+a, z-+....a52"

is a polynomial of the complex variable z with arbitrary complex coeffi-
cients, then

I\JIax f2)|=iag +iani.
z|=1

There is equality if and only if f(z) = a, + anz".

2

Proof. Put v = e " Then

"E‘lf(zwl):nao+na,,z". R 1)
1=0

For some z on |z| =1, say z, this becomes n(|ag| + |an|)e’* with
real a. It follows that

Max (f(zow!)|=lap' + anl
I=0,1,...,n—-1

There is equality if and only if f(zqw!) = ay + anz? forall /=0, 1, ...,
n — 1. Then, obviously, f(z) = a, + anz".

Theorem 4. If
f(z)=ap+a,z-+....+anz"

is a polynomial of the complex variable z, then
2
fFf(ei‘):dt§4(laol+;a,,|).
0

There is equality if and only if f(z) = ay + anz" with |ag| = |an|.

Proof. Putting z — ei!, we find from (2) that

"2‘ . (nt f( i(r+12%)) 2t Lt
e e =nage +nage
1=0 9 "

; . . 2n
Integrating over a suitably chosen interval ¢, < ¢t < ¢, + ~—, we have
n

2a
tot(I+1)
t

n—1 — :_" 3
2

by (-1e
1=0

20
tHlg

fleitydt=4(lag: +|an|)eif
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with real f§. It follows that

flf(e“)ldti‘i(laoH—laxl')-
‘0

It is necessary for equality that

int

(—1)' e=7 fle")

has the same argument g on all intervals ¢y + [ 2n<t<t0 + (I + l)%:—'

n
This involves the vanishing of f(e’t) in all points ¢, + lzn—n, and so [(z)} —
an(z" —eint0), je. f(z) = ag + anz" with |ag| = | aa |. That, conversely,
in this case there is equality is easily recognized.

5. General trigonometric polynomials.

Theorem 5. If
F()= 3 Ayeikt

k=—n

is a trigonometric polynomial with arbitrary coefficients, then
Max |F (0 |=|A-n|+ Anl.

with equality if and only if '
F()=A_,eint A, e,

and
2=
f|F(t)|dtz4(1A_n1+lA,.1).

with equality if and only if
F()=A_pe int + A el
with | A_a | = | An |.
Proof. Put
Fle=ar 3 Ay,

k=—-n

Then f(z) is a polynomial of the complex variable z. Application of Theo-
rems 3 and 4 yields Theorem 5.
Remark. For a trigonometric polynomial

Flo =2+ k‘i (ax cos k ¢ + by sin kf)
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with real coefficients, the inequalities become
Max|F ()| =1 a2 + b2,

with equality if and only if F(t) = a. cos nt + b, sin nt, and
s
/|HM&;4V¢+M.
.0

also with equality if and only if F(¢) — a. cos nt + b, sin nt. The first of
these is well-known; see e.g. POLYA und SzEGO, Aufgaben und Lehrsitze,
2nd volume. '



