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1. Introduction. The following theorem is due to TCHEBYCHEF. 

Theorem 1. lf P( x) is a polynomial of degree n. and the coefficient of 
xn is I. then 

I 
Max I P(x) I =- zn-I' 

- 1 ~ x ;::; 1 

There is equality if and only if 

1 . . 
P (x) = zn-I cos nt, x = cos t. 

This theorem is well-known. It is extensively dealt with in PÓLY A und 
SZEGÖ. Aufgaben und Lehrsätze aus der Analysis. 2nd volume. where 
further literature is indicated. 

Another inequality. to which I was led. some years ago. while working 
at the interesting problem of Mrs. T. VAN AARDENNE-EHRENFEST in the 
Wiskundige Opgaven 18. Problem No. I , is 

Theorem 2. lf P(x) is a polynomial of degree n, and the coefficient of 
xn is I . then 

1 

J' 1 
I P (x) I d x =- Z n::ï • 

-I 

There is equality if and only if 

1 sin(n+l)t 
P(X)=zn sint ,x=cost. 

This inequality seems to be rather unknown. I am indebted to Professor 
KOKSMA of Amsterdam for calling my attention to the fact that the 
determination of the minimum of the integral of the absolute value over the 
interval (- 1. 1) for polynomials of degree n and with highest coefficient 1 
was put forward as a problem by KORKfN and ZOLOTAREF in the Nouvelles 
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Annales Mathématiques of 1873. and that a solution was given in recent 
years by V. BRZECKA. Sur un problème d' extrémum (in Russian). Comm. 
Inst. Sci. Math . Mécan . Univ. Kharkoff etc .. IV S .. 16. pp. 33-44. Later I 
found that a proofof · the inequality is implicitly contained in a paper by 
STIELTJES in 1876. De la représentation approximative d'une fonction par 
une autre. Oeuvres complètes. Ist volume. pp. 11-20. 

In what follows I shall give a simple proof of both Theorem 1 and 2. and 
some generalizations. 

2. Praaf of Thearem 1. Since 

1 
P (cos t) = cosn t + .... = 2n- 1 (cos n t + .... ). 

Theorem 1 will follow Erom 

Thearem la. lf 

C (t) = cos n t + al cos (n - 1) t + .... + an 

with arbitrary complex caefficients al' .. .. , an, then 

Max I C (t) I =- ] . 

There is equality if and only if C(t) = cos nt. 

Proof· 

Hence 

:Tl 
Put a = - . Then Eor any t 

n 

2n~1 1 i k (1+ 1 Cl) _ ,0, for k = 0,. 1 ....• n - 1 
~ (-I) e -) . 

1=0 ~ 2 n eint for k = n. 

2n~1 \ 0, for k = Q. 1 •.... n - 1 
~ (- 1)1 cos k (t + 1 a) = ) 2 f k 

1=0 ~ n cos n t or = n 

It follows that 

2n-1 

I (-1)/C(t+la)=2ncosnt. 
1=0 

Putting t = O. we infer from this that 

Max I C (I a) I =- 1. 
1=0.1 • . .. .• 2n-1 

(1) 

There is equality iE and only if (-l)lC(la) isequal to 1 for all I. Theri . 
C(t) - cos nt must vanish ldentieally. bein'9 a trigonometrie polynomial of 
order n - 1. and vanishing 2n tilDes in the interval 0 :;;'t < 2:Tl . -
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3. Proof of Theorem 2. Since 

.r I P (x) I dx =.r I P (cos t) I sin t dt 
- I 0 

1 r . = 2 n-ï, ' cos n t + .. .. I Sin t dt 

o 

" 
1 J' = 2 n-I , cos rl t sin t + ... I dt 

o 
JY 

= ;n J' sin (n + 1) t + .. ... I dt. 

o 

Theorem 2 will follow from 

Theorem 2a . ff 

S (t) = sin n t + bI sin (n -1)t + .. .. + bn 

with arbitrary complex coefficients bl ... .. bn. then 

2:< J : S (t) I dt :;;- 4. 

o 

There is equality if and only if S(t) = sin nt . 

Prool. It follows from (1) that 

2n-1 

. 2 (_1)1 S (t + I a) = 2 n sin nt. 
1=0 

lntegratmg over 0 ~ t ~ a, we find 

(I+I)U 

2n~IJ ..::;, (-I)IS(t)dt=4 . 
1=0 

I a 

It results that 

2.~ J', S (t) I dt ==- 4 

o 

and that there is equality if and only if (-1)' S(t) is non-negative on all 
intervals la < t < (I + 1) a. Then S (t) has 2n zeros in the points la. so 
that S (t) - sin nt must vanish identically. being of order n - I. and 
having 2n zeros in the interval 0 ~ t < 2n. 
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4. Analogolls ineqllalities for polynomials of a complex I'ariable . 

Theorem 3. If 

{(z) = ao + a I Z -:- .• . . an Z" 

is a polynomial of the complex lJariable z with arbitrary complex coeffi­
cients. then 

Max ((z) I =- i ao I + I an i . 
Z I~ I 

There is equality if and only if f( z) = ao + an zn . 

. 2" 

Proof. Put (J) = e '1ï Then 

Tl - I 

1: {(zw/)=nao + nanZ". 
1=0 

. (2) 

Por some z on Izl= 1, say Zo' this becomes n(laol+ ! anl)eill with 
real a. It follows that 

Max 1{(zow/)I=- !ao ' + !an l. 
1=0, I, ... ,n-I 

There is equality if and only if [(zow/ ) = ao + anZ~ for all 1=0. I. ... , 
Tl- 1. Then, obviously, f(z) = ao -I- anZ n. 

Theorem 4. If 

{( ) 
I ' I n Z = ao T al Z -+- . • •• T an z 

is a polynomial of the complex lJariable z, then 

2.-, J ! {(e it ) I dt ::>- i ( I ao I + i an I ). 
o 

There is equality if and only if ((z) = ao + anZn with 1 ao 1 = 1 an I· 

Pro of. Putting z = ei t , we find from (2) that 

ry - I int '( 12... int int 
~ e--T{(e' t+ ïï))=na e '2 +na e-2-

1=0 0 , n 

Integrating over a suitably chosen interval to :;;; t:;;; to + 2n. we have 
n 

2~, 

lo+(I+I)1ï 

11-1 J~ int 
~ (- 1)1 e- 'T t (eit ) d t = i ( I ao I + I an 1 ) e i iJ 

1=0 
2" 

t'·+/ïi 
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with rea I {J. It follows that 

2" 

f'f(eit)'dt~4('ao'+'al'). 
o 

It is necessary for equality that 

2n 2n 
has the same argument {J on all intervals to + 1- < t < to + (I + 1)-

n n 

This involves the vanishing of f ( eit) in all points to + 12n. and so f (z) = 
n ' 

an(zn_einto ). i.e. f(z) = ao + anzn with laol = lan I. That. conversely. 
in this case there is equality is easily recognized. 

5. General trigonometrie polynomials. 

Theorem 5. If 
n 

F(t) = ~ Ak eikt 
k= - n 

is a trigonometrie polynomial with arbitrary eoeffieients. then 

Max I F (t) I ~ I A-n I + An I • 
with equality if and only if 

F (t) = A-n e- int + An eint• 

and 

2:z f I F (t) I dt """ 4 ( I A-n I + I An I ). 
o 

with equality if and only if 

F(t) ~A-n e- int + An e1nt 

with I A_n I = I An I· 

Proof. Put 
n 

f(z) = zn ~ Ak Zk . 
k=- n 

Then f (z) is a polynomial of the complex variabIe z. Applieation of Theo­
rems 3 and 4 yields Theorem 5. 

Remark. For a trigonometrie polynomial 

a n 
F(t) = ; + k~1 (ak eos k t + bk sin kt) 
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with real coefficients, the inequalities become 

Max I F (t) I =- V a~ + b~, 
with equality if and only if F(t) = an cos nt + bn sin nt, and 

2.-• . I I F (t) I dt =- 4 V a~ + b~ , 

o 

also with equality if and only if F (t) = an cos nt + b~ sin nt. The first of 
these is well-known; see e.g. PÓLYA und SZEOÖ, Aufgaben und Lehrsätze. 
2nd volume. 


