Applied Mechanics. — The circular ring under the combined action of
compressive and bending loads. By C. B. BIEZENO and ]. J. KocH.

(Communicated at the meeting of December 29, 1945.)

1. Introduction. In a previous paper 1), (in these lines to be quoted
as “I"") it was stated that every equilibrium-system (q,t) of radial and
tangential forces, acting on a circular ring can be decomposed into a “‘com-
pressive’ system A(q, t) giving rise only to a normal force N in any cross-
section of the ring (so that both the bending moment M and the shearing
force D are zero) and a “bending” system B(q, ¢) characterized by N = 0.
The first system A, if suitably magnified, leads to elastic instability of the
ring. The required factors of magnification 1,, A, arranged after their order
of magnitude have been introduced in “I"" as the ‘“‘characteristic numbers”
of the buckling problem connected with the A-system and their numerical
computation has been the object of that paper. Here it will be supposed,
that the A-system is sufficiently small as to guarantee the elastic stability
of the construction. It is obvious, that the deflections (and internal stresses)
of the ring, due to the single action of the B-system, will be affected in a
rather complicated way by the simultaneous action of the A-system, which
— alone — would produce no deflections at all.

In this paper it will be shown how the deflection and internal stresses of
the ring, under the combined action of the A and B-system can be derived
from the corresponding quantities occurring with the B-system alone, with
the aid of the characteristic numbers 1 and the corresponding characteristic
functions U (comp. “I"") of the A-system. i}

To prevent lengthy repetitions, the reader is supposed to be fully
acquainted with paper “I".

2. The method. If the ring is subjected to the k—th characteristic (or
critical) load 4¢A, the corresponding characteristic mode of distortion U«
is determined except for a factor of proportionality. To remove this ambi-
guity we restict our attention to that deflection ux, which corresponds to

2
0 : " - ; r
the “normalized’’ characteristic function Uy = ux + ux = ——= M (comp.

E

“I", 3, and “I", 4, 36). The same deflection ux and consequently the same

bending moment M; = — EEI U\ can likewise be sustained by a “bending”
r

1) C. B. BIEZENO aad J. J. KOCH. The generalized buckling problem of the circular
ring. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, 48, 447 (1945).
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loadsystem B (q.t), which readily can be derived from the equations of
equilibrium

— D" =gqr
D =—& B ¢ ) |
M = —t?

(comp. (“I", 2, 1), in which N en N’ must be put equal to zero). From
this it follows that the simultaneously acting loads A and »Bi (x designing

an arbitrary constant) will produce a bending moment M — —52 u” + u),
r

EI

which for every value of xis proportional to M = ——; Uy. If the particular
. r

value of x is required for which the combined loads A and xBi produce a

EI

bending moment not proportional but equal to My = — —- Uk (and conse-
r

quently produce the distortion ux) it can be remarked, that the single
compressive loadsystem 1¢Ax is capable of sustaining the prescribed deflec-
tion ux and consequently to rouse the prescribed moment M. The load-

system A therefore stands up for the bending moment % M, and the
k

remaining part lv_;—l M of the prescribed bending moment My must be

supplied by the bending loadsystem »Bx and consequently » — A l— 1.
k

We learn from these remarks that the effect of the “bending” load-

system By is magnified in the proportion ll—l by the presence of the
. —

“compressive” loadsystem A.

The “reduced” moment — EIMB = Up belonging to any arbitrary B-

system can be expanded into a series

EI MB_UB—Z'kak e e e e e (2
of the characteristic functions Ux of the A-system under consideration
(Comp. “I", 4).

If the ring is subjected to the simultaneous action of the B- and A-
system, the magnifying influence of the latter will exert itself to each
component Bi of the B-system, and in particular the resultant bending
moment M, respectively the resultant function U, due to the joint systems
A and B, is represented by

EIM u= lek—lb"u" N )
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The resultant distortion u of the ring is governed by the differential
equation

u"+u=U.. . . . . . . . . (9

Summarizing it can be stated, that the stress distribution and the distor-

tion of a circular ring under the combined action of a A~ and B-load can

be calculated as soon as the characteristic numbers 1« of the A-system and

the corresponding characteristic functions Ui are known. The function

2

Ug=— E[MB which has to be expanded into the series (2), must be

computed by integrating the third eq. (1), and the coefficients b« occurring
in this series can easily be found by using the orthogonality of the
functions Ux.

3. Application. The ring compressed by two diametral forces P. With
reference to (“I”, 2) we replace the two compressing diametral forces P
(whose points of attack may coincide with ¢ = 0 and ¢ = z) by their
equivalent Fourier-series ¢ and ¢

q:ao—l-Zo'cak cosk<p+2°'°bk sin k(p;tzco—]—fck cosktp—l—?dksin ke (5)
1 1 1 :

in which evidently all coefficients agn 4, b, c and d are zero and in which

D 2D
a)g—=— — ayp—— ——
nr r
so that
q:—-y%——gfcosZktp t=0.. . . . . (6)

From (6) it follows (comp. “I” 2, 18a, b) that the A and B-loadsystems
are represented by

P 2P« cos2k<p w__ 2P »  4k?
Sq =T m T ar % 2e— < BT Rk
(A) (B) . (7
(t‘ 2P g 2ksin2kg ?t"— ZPS; 2k 2k
T ar9 4k —1 T ar 9 4k —1 sm ¢

The normal force Ny, acting upon the cross-section (¢) of the ring and
caused by the A-system is given by

P 2P xcos2ky p ® 2
N:——+ Z‘lkz —_;[l‘l‘?eszOSZk?’:l:ezk:—m t]
and the bending moment M belonging to the B-system by

___2Pr g cos2kp
Mp = - 22,"”(2_1—- S )]

2P
— _r [0,3333 cos 2 9+0,06667 cos 4 p-1-0,02857 cos 6 p-+-0,01587 cos 8 p+

+ 0,0101 cos 10 + 0,00699 cos 12 ¢]
(comp. the third eq. (1) and the second eq. (7).
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With reference to (“I'" 8), where an example has been treated analogous
with the “A”-problem under consideration (viz. N = ANy = A(1 + &5 cos
2¢p + g4 cos 4¢) ), we restrict ourselves to the summing up of the following
numerical results with respect to the first two characteristic numbers 4,
and 1, and the two corresponding characteristic functions:

3EI = 3El =
}.1_10336——5, 12_536287?
U,/r o Vs5/r =0,8396 cos 2 — 0,0784 cos 4¢ — 0,0041 cos 6 ¢ — % (10)
—0,0014 cos 8 p —0,0005 cos 10p —0,0003 cos 12 ¢
JT * TT *
—EN" V5_—17rW5_+0,8123c052¢p—0,3796 cos4p— (11)

—0,0460 cos6 ¢ —0,0266 cos8 ¢ —0,0162cos 109 —0,0112 cos 12¢

U,jr &> Viijr=6,9010 cos 2 ¢ + 15,3749 cos 4 —4,9193 cos 6 ¢ + % (12)'
- +0,0784 cos 8 p—0,0651 cos 10pp —0,0308 cos 12 ¢

T <5 * bef Ayt
— ITrN° V?’—_P_r Wi =1,2819cos 2¢ + 14,320 cos 49 — (13)

— 10,7560 cos 6 ¢ -+ 0,3678 cos 8 ¢ —0,4107 cos 10p —0,2678 cos 12 ¢

(in these latter series all terms following that with cos 12¢ are neglected).
In the expansion

Mp r?

ﬁ:blul-*‘bzl]z’*‘.... e e e e e (14)

the coefficients b; and b, are defined by

—fNo u, . MB' dqp—b,fNOUqup resp.

—fNouzM"r fNoUquo
0

If we replace U, and U, by their approximate values V3 and V3, we find:

fW.MBt fvt Wt dlp,
:—fW* MBI‘ d(p fVu Wn d(P

(15)

/

(16)
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The computation of these coefficients only requires the evaluation of the
integrals

f WE =2 MBr f Vs Ws dp and the analogous ones for b,, (17)

If we write:
6 6
Mp—=— = 2 makcos2kp, V; =r X vsrcos 2k,
T k=1 k=1
.
W;:—P—"Zw;kCOSZk(]) B € 1))
JT 1 g
(comp. 9 and 11) we find:
27
2 2.4 6
IW' MBr Zf d 2 wzkakCOSZZktpdq::
a2 EI =,
2 P2 4 2 P24
=ET, 2 wai max =0,24348 -
2 27
g P = :
fV5 Widp=——23 fv;szk cos? 2 kpdp =—Pr? 3 vip wap =
T k=1 k=1
0 0
=—0,71021 Pr?
whence
2 Pr?
b, = 0,34196 ~EIl (19)
Analogously it is found that
_ 2P
b,=0.003822 . . . (20)
The deflections u; and uy of the ring corresponding with the components

—b1 Ef 5 Uys—by E;I U, ... of the bending moment Mg can be calculated

from the equations
u +u,=b, U, w4 u,=bU,.... . . . (21)
resp.:
uy + u; = 0,28715 cos 2 ¢ —0,02681 cos 4 — 0,00140 cos 6 p —
—0,00048 cos 8 p—0,00017 cos 10¢p —0,00010 cos 12 ¢
u; + u, = 0,02638 cos 2 ¢ + 0,05876 c.os 49—0,01880 cos 6 ¢ +
+ 0,00030 cos 8 p —0,00025 cos 10¢p — 0,00012 cos 12 ¢
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(comp. (11) and (19), resp. (12) and (20)), from which it follows:

u; =[—0,09572 cos 2¢ + 0,00179 cos 4 ¢ + 0,00004 cos 6 ¢ +

+ 0,00001 cos 8¢ + . . .] zgl’ @

3
u,—[—0,00879 cos 2 — 0,00392 cos 4 ¢ + 0,00054 cos 6 p—+-.. .] 21;;1

The resultant distortion u* of the ring, caused by the simultaneous action
of the A and B ]oadsystems is given by

¥ A 1 1
Uu—-— 1+ llz+ =ty iyt oot A s uyti.s (23)
M— A—1 A—1
The series u; + u, + ad inf. represents the deflection u of the ring which
occurs if no secondary effect is present. This deflection can be calculated
by one of the well-known elementary methods (f.i. with the aid of
CASTIGLIANO's theorem). The series lii—{— ,l—uz_z + ... can readily be
1— 2 —
broken off with the third term in consequence of the fact, that ux decreases
and Ak increases rather rapidly with increasing k. We therefore write:

u
u—u-{-l_l }-12_1. S 2
Atp =0 and ¢ :g the following results are obtained
-
w=— 20 [orress 0P8, OQOZT (25)
1,0336 —— P —1 53628 —=- P —1
. 2 Pr? 0,09748 0,00433
b=+ nE’I 0,10730 + s & (26)
1,0336 pz—l 5,3628 P2_1

The secondary effect to which the “compressive” A-system gives rise in
influencing the deflections caused by the “‘bending”’ B-system as represented
by the second and third terms in these expressions has been expressed in

terms of the quotlent3 ] . viz, the quotient of the first critical all-sided

PZ

pressure qcr of the ring (q.r = 3—E21) and the “‘mean normal pressure P/n
_ r

beloging to the two forces P.



